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Abstract— A phone+car+cloud system can improve many
vehicular scenarios significantly due to improved telemetry
and the resulting optimizations. The core problem however
is the inability to cope when inputs are missing or impossi-
ble to obtain apriori. We develop the concept of inference
remapping which learns using correlations how to best use
available substitutes for the missing inputs. We also describe
an end-to-end system Sparc that combines an OBD device, a
phone app and a cloud backend to drive a variety of applica-
tions. In particular, for the case of fuel usage prediction, we
obtain a mechanical engineering theory based model that is
accurate to within 2% when given ideal inputs (OBD data).
We show how to remap the inference to only use phone data
(7% error) or data available from a map (within 20% error
for half the rides, which is 4 x more accurate than state-of-
art). A side-effect of our model is that we can offer detailed
comparative feedback to drivers on their driving behavior.

1. INTRODUCTION

We have to transform how we use automobiles to reduce
urban gridlock, pollution, and our impact on the climate.
Connecting vehicles to the cloud offers improved teleme-
try and can lead to optimizations that lower cost, both indi-
vidual and societal, and improve user experience. A recent
study [22] finds that 11-13% of commute time is due to traf-
fic congestion, 10-17% of urban fuel is wasted at stoplights
where there is no cross traffic, and 80% of accidents are due
to driver distraction. A cloud-connected car can be routed
along the least congested path, directed to an available park-
ing space and can offer rich feedback on driving behavior
and vehicle’s condition.

We would like to offer value in four different contexts:
Before driving: E.g., Does my car have enough gas after my
daughter/son drove it last night? What route should I take to
save fuel/ save time? Is my car in good running condition?
While driving: E.g., Where will I quickly find parking? Im-
pending congestion or accidents along the forward route? I
am running late, is my contact aware of my estimated time
of arrival? After driving: E.g., How much did that trip cost?
How could I have driven better? How do I compare to other
drivers? When not driving: E.g., Is my child/mother driving
safely? Where is my spouse? Is it safe to text him/her now?

Smartphones are a key enabler here. In part, because they
have sensors and a backhaul to the cloud that cars may not
otherwise have. More fundamentally however, phone soft-
ware and hardware can update much more quickly relative

to the average lifetime of a car (averages 17 years [22]) al-
lowing for rapid innovation. Further, it has become rela-
tively easy to interface with the car. Bluetooth devices that
plug into the on-board diagnostics (OBD) port or speak the
car-area-network bus (CANBUS) protocol are available at
low cost. These devices can monitor detailed vehicle state
such as the instantaneous rate of fuel being injected into the
engine. As a result, we note a recent substantial increase
in startup activity in vehicular phone apps— some improve
driver risk profiling for insurance [10, 23] and others offer
trip analytics and assist with parking [24, 6].

We argue that a commonly recurring problem here is the
inability to cope with missing inputs. For e.g., Automatic [6]
infers how much fuel was spent on each segment after a ride.
But, it cannot do so if the OBD device is not installed or
if the phone app loses connectivity with the OBD device.
Anecdotal evidence from our deployment reveals that this is
by far the common case. Relatively few drivers install ad-
ditional devices and even for those that do, the OBD feed is
not always available for mundane reasons such as the driver
bumping device with her leg or due to hardware and software
faults on the OBD device.

Worse, in some cases, the inferences are needed before the
inputs are available. For e.g., picking the most fuel-efficient
route requires predicting how much fuel will be spent by
a car along each potential route. But, how can we do this
without the sensor feed from OBD for each route?

We call this the inference remapping problem. That is,
suppose an inference algorithm requires some inputs and of-
fers an output. Can we adapt the algorithm to work when
some of these inputs are missing or are impossible to obtain
(as they are for the case of predictions)? If solvable, this sub-
stantially increases the coverage of any inference technique—
inferences may be available for {cars, drivers, routes, times}
for which no sensor feed exists. Continuing our fuel usage
example, with remapping, one could infer the fuel use for
a car, driver, route and (future) time without the driver in-
stalling an OBD device or driving that car along that route.

Our basic intuition is simple: substitute the missing in-
puts with similar data that is available. For e.g., the speed
limits, slopes or road segments and location of stop lights
are available from a map. Could we estimate the absent
OBD feed from such roadstate information? In some cases,
other drivers or other cars may have driven along a route.
Can we extrapolate from one driver or car to another? Also,
the phone sensor information can partially substitute for the



OBD feed. Can we estimate what the OBD feed would have
been from a phone sensor feed?

The key challenge however is that to get a high quality
inference with these substitute inputs, one has to carefully
capture the aspects of the ideal inputs that matter for the
inference and identify how to estimate them from the sub-
stitute inputs. For e.g., we will show later that estimating
fuel use on a road depends significantly on how the speed
changes when driving on that road. The energy efficiency
of an engine varies with the speed. Sharp speed increases
require more energy than gradual increases. Decreases in
speed due to braking mostly dissipate as heat so while the
average speed of two rides may be the same, the ride with
more changes in speed uses more fuel. There is also a com-
plex dependence with the road slope and vehicular charac-
teristics such as mass and frontal area. When going down a
hill how much of the lost potential energy translates to speed
increase depends on the aerodynamics of the vehicle. An-
other challenge is that the substitute inputs fundamentally
lack some aspects of the ideal input. For e.g., OBD feeds re-
veal the torque generated by the engine. None of the phone
sensors match directly to engine torque. More details follow
later; but in short, transforming substitute inputs to mimic
the ideal inputs is non-trivial.

In this paper, we present the Sparc system ' that takes a
first step towards solving the inference remapping problem.
For the example fuel usage inference, Sparc uses mechani-
cal engineering theory to build a model of vehicular energy
usage. For the case when ideal inputs are available from
the OBD device, Sparc learns the parameter inputs for this
model using regression from just a small amount of OBD
data. Sparc also shows how to remap the inference to use
inputs from just the phone sensors or just the information
available from a map. The latter allows Sparc to predict fuel
usage on a route even when Sparc has no drive-feed be it
from a phone or OBD device for that route.

Further, we built Sparc end-to-end and offer results from
a deployment study on twenty cars in two cities over six
months. Sparc has an extensible data-collection platform,
comprising a mobile app and a cloud-server backend. The
app collects data from phone sensors and an OBD device
in the car over Bluetooth. It has an asynchronous data-
management framework leading to power-efficient data up-
loads without user intervention. Sparc map-matches GPS
readings to acquire road grade and traffic information [18,
26]. We use data from OpenStreetMaps as well as a propri-
etary vendor. Finally, besides collecting telemetry informa-
tion for data insights, Sparc also communicates to the cloud
in real-time allowing it to enable the use-cases described in
the second paragraph.

A side-effect of the remapping model used for fuel usage
estimation is the ability to provide a precise breakdown of
where fuel is spent. For e.g., Sparc breaks down the energy
spent into the parts required to combat aerodynamic drag,

1Sparc = Smartphone + Car + Cloud

increase kinetic energy, increase potential energy, to combat
rolling resistance etc. This breakdown helps answer ques-
tions such as: how does cruise control impact fuel use? Fur-
ther, by comparing drivers traversing similar roads, we offer
comparative feedback on driving styles such as acceleration
and braking patterns and the impact of driving styles and car
choice on fuel usage.
Our key contributions are:

e An extensible end-to-end smartphone+car+cloud sys-
tem that collects telemetry data and offers various ap-
plications to drivers (§3).

e A first solution to the inference remapping problem for
the case of fuel usage prediction (§2). The ideal in-
puts from OBD device yield a 2% error indicating that
the mechanical-engineering based model is reasonably
complete. We show that using just the phone sensors,
the fuel estimation error is below 7% (§5.2). Further,
when predicting fuel use on roads for which it has no
driving feed, Sparc is roughly 4x more accurate rela-
tive to the state-of-art: 48% of trips are predicted to
within 20% error (§5.3).

e Results for driver feedback and comparative analysis
(§5.4) on a sizable longitudinal study identifies drivers
with under-inflated tires (more rolling resistance than
expected), a sedan driver with such gradual braking
pattern that he reclaims more of the kinetic energy that
would otherwise be lost than a hybrid SUV and drivers
whose dominant energy loss is aerodynamic drag (high
frontal area predominantly driven on highways at very
large speeds).

We note however that the ability to remap inferences de-
pends both on the property being inferred and the quality of
the substitute input. For e.g., anomalies such as hard brak-
ing instances can be estimated using OBD feed; accelerom-
eter readings from the phone can substitute but roadstate
information would not suffice. Further, inference remap-
ping is similar to techniques like PCA that leverage cor-
relation between disjoint datastreams. However, whereas
such work [25] saves energy by monitoring and communi-
cating only the subset of inputs that is most useful for infer-
ence, here, we focus on obtaining the best possible inference
given whichever subset of inputs and substitutes happen to
be available. More specifically, the problem at hand — fuel
usage prediction — is complex function rooted in the physi-
cal world. This leads to positives (can leverage mechanical
engineering theory) and challenges (many factors affect fuel
in intricate ways). Finally, GreenGPS [16] was the first to
tackle the problem of fuel usage estimation. Sparc newly
offers driving feedback and develops inference remapping.
The major change is a much more detailed modeling of en-
ergy use and remapping. Without either the estimation errors
were substantial on our dataset perhaps because it contains
rides from urban settings with very different congestion pro-
files and a variety of road slopes. Our dataset lacks data



Crowd-sourced data from
secondary channel (e.g., phone
sensors, road-state from cloud)

Car-sensor data
(from OBD port)

i ;

v
Physical Model Model
Development Physical Remapping

Target inference

(g, fuel use, STEP 1 Model STEP2  Re-mapped
driver behavior) Model
- Model Application/
Information about Analytics
the car or driver? T STEP 3
(e.g., fuel use, .‘a .

driver behavior) Real-time data from secondary source (e.g.,

phone sensors, road-state from cloud)

Figure 1: Inference remapping: We build a physical model using data from
the car sensors and approximate it using training data from a secondary
channel. This approximation helps us infer the car/driver state even in the
absence of car-sensor data from the OBD port.

from very cold and very hot places, so there may still be
some aspects missing in the model. We also take care to
point out that not all of the use-cases have been implemented
(details follow). However, we believe that the Sparc system
and inference remapping are a good step towards enabling a
phone-+car+cloud architecture.

2. INFERENCE REMAPPING

In this section, we present details of our inference-
remapping approach. The key idea is to carefully learn how
to use substitutes when desired inputs are missing or impos-
sible to obtain (Fig. 1). First, we develop a physical model
that uses the ideal inputs to make some inference (such as
how much fuel is used in a trip? time to next fillup? erc.).
The features of the model depend on the trip under consider-
ation and are computed from the ideal inputs, this could be
just OBD data or some fusion across many sources. The pa-
rameters of the model are learnt from regression over ground
truth. Second, we remap the features in the physical model
so that they can be derived using only the available data,
which is some subset of ideal along with substitutes (e.g.,
just phone sensors, just road-state information from offline
maps in the cloud, historical information from other drives
etc.). To achieve the re-mapping, we train a new set of pa-
rameters that relate the available data to each of the features
in the physical model. For this, we use training data that
contains the ground truth, the ideal data and the data from
the relevant secondary channels (e.g., phone sensors, dash-
mounted GPS, efc.). Finally, during inference we apply the
most appropriate model given the data available.

To make the discussion more concrete, we focus on a spe-
cific case study: we show how to build a physical model that
infers the amount of fuel-use in cars using data from sensors
in the car. We then train two remapped models— one that
uses only data from the phone sensors and the other using
only data from a map— to approximate the physical model.
We evaluate each of these models on scenarios where they
apply. For e.g., at the end of a drive where the ideal OBD
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Figure 2: Anatomy of an actual ride. Energy to counteract rolling resistance
is proportional to distance traversed; for aerodynamic drag it is proportional
to v2* distance. The user starts on surface roads, enters a highway on a
downhill ramp and picks up speed (after 50 s). The highway goes up and
down a sequence of hills ending up at a lower elevation than where the user
joins the highway (100-220 s). At around 250 s, the user exits the highway
and stops at a traffic light. The remaining trip involves surface roads that
gain elevation and finally a stop.

data is available, we use the physical model to compute trip
analytics. For predictions, we use the remapped model that
only uses maps and historical congestion data.

2.1 Step 1: Model Development

Burning fuel produces energy. Hence fuel usage can be es-
timated from the total energy expended during a trip. En-
ergy is expended for various reasons. Figure 2 depicts an
example trip in our dataset. The caption details what hap-
pened during the trip. Note how the instantaneous fuel used
(at top) varies during the course of the drive. It starts at a
low value when the user is on surface roads and hits the first
peak when the user increases her speed to join the highway
(at 50 s, correlated bump on increase in kinetic energy). The
peak does not last for very long since the ramp that leads
to the highway goes downhill (note the decrease in potential
energy at that time). Note that the energy to combat aerody-
namic drag (o< v3t) and rolling resistance (o< vt) are larger
when the driver is on the highway (from 50 to 250 s). Once
the user reaches highway speed, note that the fuel used goes
up and down in sync with the highway (compare change in
fuel to changes in potential energy). At stop (250 s), fuel
usage returns to a small value. Finally, on surface streets
note that the bumps in fuel use track bumps in both poten-
tial and kinetic energy since the streets changes in elevation
and require frequent changes in speed. To sum up, total en-
ergy spent is an intricate function of several factors; each of
which can be dominant depending on the conditions.

Model Summary: In summary, we informally note that
the grade of road impacts change in potential energy as well
as the rolling resistance. The speed of vehicle impacts the
change in kinetic energy and the aerodynamic drag that is to
be countered to sustain the speed. Braking dissipates extra



kinetic energy into heat. Vehicle-specific parameters such
as the mass impact both potential and kinetic-energy terms.
The vehicles’ aerodynamicity affects drag. The engine and
drivetrain efficiency impact how much useful energy is gen-
erated from burning fuel. Driver-specific behavior such as
hard acceleration, braking, and transmission shifts also im-
pact energy use: when accelerating hard, the vehicle’s fuel
injection unit has less time to modulate fuel injected leading
to less useful energy for the same fuel burnt. Finally, mis-
cellaneous aspects include windows being open, the temper-
ature, use of A/C and other electrical equipment. The de-
tailed model follows.

Model Details: To develop an instantaneous model of en-
ergy consumption from first principles, consider a small pe-
riod of time A;. Suppose that the vehicle moves with veloc-
ity v on a road of grade 6, changes velocity by A,,, and burns
fuel at a rate f.

(instantaneous) Energy generated by the engine = nfA,

where 7, usually termed engine specific fuel consumption,
indicates the engine’s efficiency in burning fuel; this is a
function of torque and engine revolutions-per-minute (RPM)
[8]. Slower speeds (low RPM) and/or very high torque val-
ues lead to lower 7 values. However, most engines have
a large operating region where the engine’s efficiency is
roughly the same. Typical combustion engines have an effi-
ciency around 30%; i.e., roughly 30% of the heat produced
by burning fuel is converted into mechanical energy.

(instantaneous) Mechanical energy at engine = 7w/,

where 7 is the torque and w is the RPM at the engine. This
energy is used in a few ways. The (Instantaneous) energy
spent can be attributed to the various reasons shown in Ta-
ble 1. Note that some of the energy /osses can be used to
offset other needs. For instance, one can slow down with-
out braking, by letting loss in kinetic energy compensate for
rolling resistance and aero drag. While every increase in po-
tential or kinetic energy requires burning fuel, their loss is
not fully recovered. For example, most braking dissipates
kinetic energy into heat. Thus, we assume some recovery
factors (R, Rs) and treat the changes differently based on
whether they are increases or decreases.
By the law of conservation of energy, we have:

Energy generated + Recovered = Energy used.

Using all of the energy components show in Table 1 and re-

arranging terms, we have:
nfAy = Twh,
= P.A; + P A
n mg[sinflorvAs + mu[Ay]os
Nt
N crrmgeosfu g + Fcq A pr3A,

Mt
+ Rimg[sin 0o vA; + Romv [Ay],_ . (1)

2.1.1 Features of a Trip

Observe that the physical energy-consumption model in
Equation 1 relates fuel use (on the left) to measurable as-
pects of the trip (on the right). We will call the measurable
aspects of a trip to be the features of that trip. Table 2 lists
our current set of features. How to estimate these features in
the ideal case? A device plugged into the OBD port of the
car can report these sensor readings: f, v, w, and 7, which
represent the mass air flow sensor output (i.e., the fuel in-
jection rate), vehicular speed, RPM, and torque as measured
by the vehicle’s engine control unit. Phone’s GPS provides
location, which when map-matched can reveal the slope of
each road segment . The data is usually sampled once every
few seconds at each of these sources but needs to be fused
properly (more details in §2.2.1).

Note that the values in the right column of Table 2 are a
multiplicative parameter away from the corresponding en-
ergy term on the left in the vehicular energy model (Equa-
tion 1). These parameters m, A, and 7, stand for the mass of
the car, its effective area and the engine’s efficiency, which
is itself a function of torque and RPM. These coefficients are
specific to a car and can vary from one trip to the other.

Given trip features and the fuel usage ground-truth in-
formation from OBD, we pursued a few approaches to
learn car-specific multiplicative parameters: (a) linear re-
gression with the above features, (b) non-linear regression
with the underlying raw variables such as velocity, time
and slope (v, t,#), (c) a classifier that uses discretized “fu-
elUsage" as the label (e.g., [0-.1) gallons, [.1-.2), ...) and
(d) decision trees. Linear regression worked the best when
used in the following way: (1) 10-fold cross-validation to
avoid overfitting, (2) to keep the parameters robust to trip
duration, combine features from contiguous epochs so as to
effectively train on epochs of many different sizes.

Why does linear regression do well? Because, at first
blush the features are not even independent (see Table 2),
so shouldn’t linear regression be a bad choice? We found
that using the underlying variables (e.g, v, ) as features re-
quires learning a non-linear model for which known algo-
rithms are less effective. Decision trees or a classifier with
fuelUsage would have been better if the epochs were divis-
ible into regimes where the relationship between fuel usage
and the trip features differs substantially. Decision trees did
obtain slightly lower error, however the trees were much big-
ger, hinting at potential overfitting.



Source Energy model |Contributing factors
mg(sinf]o+ vA; |To oppose gravity. Here, m is mass of the vehicle.
crrmg cost vA; | To oppose rolling resistance due to visco-elasticity (of the part touching the road bends) and
Losses the pressure differential in the tire due to movement; the coefficient of rolling resistance, ¢,
at the is about .01 for radial tires on concrete; c,, depends weakly on v? and strongly on road condi-
wheel -tions (e.g., concrete vs. sand differs by 3x); friction is a much smaller component.
%chpv?’At To oppose aerodynamic drag.
muv [A,]y,  |To increase kinetic energy.
Electrical P.A, P, is the electrical load induced by A/C and other car accessories. Alternators are 40-60 %
losses efficient; load due to headlights is 110 W; A/C can be up to 720 W; not a large factor; about
2-5 mpg.
Standby I, P, A, Ps is the power drawn to keep the engine in standby when the car is stationary. I is an
losses indicator variable denoting car is in standby; we set Iy = 1 if v < S5mph.
Nt This term denotes the fraction of engine’s energy that is delivered to the wheel by the
Drivetrain transmission system 7); ranges from 94 % efficient with manual to 70 % for some old auto-
losses -matic transmissions; the effective number, over a ride, depends on how many gear shifts were
needed; e.g., maintaining speed on a flat road vs. frequent starts-and-stops are very different.
Other mg[sinf]o_ vA; |Loss in potential energy e.g., when going down a slope.
losses mv [Ay],_  |Loss in kinetic energy e.g., when slowing down.

Table 1: Components that contribute to the instantaneous energy spent in a car.

feature represents how computed
Energy from burning fuel S FA
Energy generated by engine S TwA
Change in kinetic energy,
+’ve (and -’ve) Z U[Av]0+
Change in potential energy,
& +’vep(and -ve) &y Z[Sin 9]0+ vA;
Aerodynamic Drag S A,
Rolling resistance > cosfuAy
Standby S A
Miscellaneous STA
. > V2 A
Supporting S A,

Table 2: Trip features that help with estimating energy use.

2.2 Step 2: Model Remapping

In this section, we will show how to remap the physical
model of Equation 1 to data from two different substitute
sources. First, we show how to re-map the physical model to
use phone-sensor readings and a map (§2.2.1) and then to the
road-state information obtained from just the map (§2.2.2).

The trip features shown in Table 2 are the anchor points
for the remapping. We observe that the substitutes are lack-
ing in a few ways: neither can account for engine torque 7;
map only has static information such as speed limit, grade
and stop lights but lacks dynamic changes in speed. Hence,
both these remappings lower inference accuracy (due to lack
of requisite data) but increase coverage (since they require
more easily available data).

2.2.1 Remapping to Phone sensors + Map

Use cases: We will argue below that not having the OBD
sensor only lowers inference accuracy slightly! Though this
remapping cannot help with predictions since phone sensor
readings are only available after the drive, it is helpful in a
few cases: (1) after a driver has collected some OBD data,
she no longer needs the OBD device to obtain trip analy-
sis and driving feedback; the car parameters inferred from
ground truth are reusable and trip features can be obtained
from phone app + map and this remapping and (2) addition-
ally, even a driver who never installed OBD device can ob-
tain trip analysis and driving feedback by using either the
best-guess car parameters based on manufacturer specs or
by matching onto the car parameters derived for similar cars
(similarity based on model/ year/ engine size/ etc.) that have
reported OBD data to Sparc.

Remapping: The goal of remapping is to compute features
in Table 2 from just phone sensors + map. We have no equiv-
alent information for the 7w term. From Eqn 1, this means
that any changes in 7), the efficiency of burning fuel, are not
captured. To compensate, we do the following: (a) derive
velocity v from phone sensor instead of OBD, (b) derive 6
from GPS location + map matching as before and (c) divide
data into regimes that are likely to have the same 7 value
and train different parameters by regression per regime. This
works because most engines have one large operating regime
where 7 is roughly the same and other regimes (slow or very
high speed) where 7 is lower. Dividing the training data into
regimes helps learn the different 7s.

Data fusion and cleaning: When fusing readings from dif-
ferent sources, a key insight is to compute a sum (or integral)
over the instantaneous observations. Given data that is ob-
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Figure 3: Speed on segments: the left graph shows the (average) speed
achieved by all drivers vs. the posted speed limit per road segment. We see
that the average speed can be quite different from posted speed limits. The
right graph compares the variation in speed vs. the average again per road
segment. Solid blue plots the trend; we see that the standard deviation is
between 10 and 15 mph for most road segments.

served at different times (and frequencies), we want to com-
pute feature values that are joint functions of the raw values.
To see why this is hard, observe that the grade of the road
can change many times between successive speed readings
from GPS; the fuel sensor ground truth reading may have
been sampled three times per speed sample and none of the
sampled times may match.

Sparc extracts feature values per epochs which are non-
overlapping intervals of time sized such that each data source
is observed a few times per epoch. We use epoch size of
5 s for most cars but some older cars need larger epochs of
60 s. Computing feature value mimics a piece-wise integral
over the raw readings. First, the readings are transformed
into piece-wise linear functions of time. For e.g., if the i’th
velocity reading at time ¢; is v;, then

t—1;

v(t) = v; +
®) Yt —

(U1'+1 — ’Ui) ift e [ti, ti+1]~
Second, the feature value is computed by integrating over
the piece-wise linear functions of the corresponding read-
ings. For e.g., for epoch [ty, t.], the rolling resistance feature
is f;; cosf(t) v(t) dt.> Finally, wherever possible we avoid
integrating over a rate if the underlying value is available.
For e.g., when using GPS data, we replace Li"‘v(t)dt with
a piece-wise sum of the distances between the locations ob-
served during [tp,t.]. Otherwise, even small errors in esti-
mating the rate accumulate over time.

We handle missing readings carefully. Since many of the
readings are rates, e.g., f is fuel injection rate, interpolating
a large hole with the value at the ends can lead to large error.
Hence, we only using epochs that have no holes larger than
a threshold and have data for at least a threshold fraction.

2.2.2  Remapping to Map (Road-state Data)

Use-cases: This remapping is likely to result in much more
error as we discuss below. However, it is very important
since the map information is static data that is always avail-

2We use closed form expressions for each of the integrals.
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Figure 4: Comparing actual stops (speed < 5 mph) with those inferred from
the map.

able, the remapping can predict fuel usage apriori and on
roads that were not observed before by Sparc.
Inadequacies: Maps only have static information such as
speed limit, slope and stop light information. But, fuel use
depends on the changes in speed: kinetic energy depends di-
rectly on the change in speed and terms like aerodynamic
drag oc v3 vary substantially with small changes in veloc-
ity. 3 Hence, using the speed limit as GreenGPS [16] does
leads to sizable error.

Measurements from our deployment help quantify this
problem. Figure 3 (left) compares average speed on a road
segment with the posted speed limit on that segment. The
plot on the right depicts the standard deviation in speeds ob-
served on that road segment vs. the average observed speed.
Note that the actual speed on a segment is correlated to the
posted limit but there is substantial noise.

Stop lights are another complication. Figure 4 compares
the actual stops observed in a trip with the inference from
the map. We say that a vehicle is stopped if the speed from
GPS is below 5 mph. The actual stops can be less than that
estimated from the map (e.g., traffic signal is green) or many
more (e.g., due to congestion). In our dataset, we see both
types. Worse, not every stop costs the same amount of en-
ergy. Stops on higher speed roads have a larger effect since
more kinetic energy is lost per stop.

Remapping: We realize from above that there is at best a
tenuous connection between map info per road segment and
the desired features (Table 2 that correlate with fuel usage).
However, our key insight is that similar road segments have
similar desired features. That is the desired features of a
segment with posted speed limit of 40mph, 2% grade, with a
highway on one end and a stop light at the other are likely to
be similar to another segment with the same characteristics!
With just a few drivers, Sparc already has ground-truth fea-
tures for tens of thousands of road segments. This set is large
enough that any unseen road segment has a large number of
similar segments for which features are available.

Hence, Sparc’s strategy to remap is (a) given a route on
the map, obtain from the map the information shown in Ta-
ble 3 for each road segment along the route, (b) add time-
of-day/ day-of-week values to capture congestion, and (c)

3say vehicle has speed 1 and 2 for unit time each; aerodrag o
S" 3t = 9; but, using average velocity leads to 2  (1.5)* = 6.75



Road-state parameters how computed

road length x from map
road speed limit v, v2, from map
road grade 6, from map
road rolling resistance x cost

road change in potential energy,|z[siné]o+

+’ve and -’ve

road aero drag . o |@?
road rush hour velocity multipliers |7, 7,2
road num stops S

Table 3: Road state parameters

use training data to learn a regression model from the val-
ues in Table 3 to each feature in Table 2. An example such
model would compute how much energy will be spent in
kinetic energy change on a road segment based on the ki-
netic energy change observed on similar road segments and
at similar times-of-day/ days-of-week.

2.3 Step 3: Model Applications

In this section, we describe how the developed models are
used in different scenarios with different available inputs. In
addition, we describe how to offer feedback to drivers.

[A] Estimate fuel use after a trip. As discussed already, a
driver need only use an OBD device for a short while to pro-
vide training data. Subsequently, Sparc can work roughly
equivalently with and without data from the OBD device
by using just the phone sensors and the map via the remap
model in §2.2.1. Drivers who never install OBD can also
receive estimates if Sparc happens to have training data from
similar cars (make, frontal area, engine size etc.). Sparc’s
remapping simplifies the burden on the user substantially.

[B] Predict fuel use before a trip. As discussed already, the
remap model in §2.2.2 that uses just the map information can
help here. The error is likely to be smaller as more and more
data reaches Sparc because, then it would be able to train the
remap model at finer granularity; more support lets it divide
the observed road segments into finer bins and train different
remap models per bin.

[C] Provide feedback on driver behavior. Observe that a
side-effect of the model construction is that we can break-
down, at the end of each trip, how much of the energy went
into each of the components in Table 1. That is, for ex-
ample, we could tell for each trip how much energy went
into combating aerodynamic drag vs. rolling resistance vs.
changing kinetic energy. Further, all our remapping models
preserve this property. With the substitute input (just map or
just phone+map), we can still breakdown per component.
We leverage this property to offer feedback to drivers.
Such feedback takes two forms. First, we can compare per
component values to what they should be leading to correc-
tive guidance to drivers. An example would be rolling resis-
tance using up a larger fraction of energy than it should for a
ride on surface streets due to under-inflation of tires. Second,
on segments that are driven by multiple drivers, we could

compare their relative driving behavior. An example here
would be identify driver or car peculiarities such as grace-
ful braking or aerodynamic drag that are atypical relative to
other drivers/cars. More specific examples from our deploy-
ment are in §5.4.

In conclusion, we note that so far we have discussed how
remapping can estimate fuel usage for a {car, driver, route,
time} tuple even when many of the ideal inputs are miss-
ing or impossible to obtain. The approach can easily ex-
tend to similar cases such as estimating the time-till-fuel-
dipping-below-10%. Rare occurrences such as the likeli-
hood of accidents are amenable to similar remapping be-
cause the substitute inputs (roadstate) has aspects correlated
to the ideal features; however, doing so would require more
data due to the rarity of occurrence. Anomalous driver be-
havior, as discussed before, such as likelihood of braking
is less amenable: roadstate information is unlikely to suf-
fice, but phone+map may be useful. While more work is
needed, we believe that remapping is a crucial part of any
phone-+car+cloud system.

3. SPARC DESIGN

Here, we describe aspects of the Sparc system. There are
three main components: (a) an OBD device to connect ve-
hicle with the smartphone, (b) a smartphone app that serves
as a driving assistant, collects sensor data and acts as a con-
duit between the vehicles and cloud, and (c) a cloud based
backend that supports inferences (map matching, building
models, remapping) and real-time interactions.

3.1 Communicating with the car

To communicate with the vehicle, Sparc uses off-the-shelf
bluetooth devices that plug into the On-Board Diagnos-
tics (OBD) port in our volunteers’ vehicles. Vehicles sold
in the US after 1996 are required to have an OBD port; the
port is often found underneath the steering. The device can
poll data (e.g., speed, RPM, temperature etc.) from sensors
on the vehicle. Figure 5 shows two of the devices that we
used. They retail for under 30$ and can fit non-obtrusively.
Devices from two off the three manufacturers that we tried
were reliable; the third had > 50% failure rate. The OBD
device interfaces with the vehicle using the Controller Area
Network (CAN) bus. Readings from the OBD device are
used as features for post-drive analysis of trip activity. They
also help train remapping models such that subsequent in-
ferences only need phone sensor data or map based data. As
future vehicles become more capable, it might be possible
to poll even more data directly from the vehicle using stan-
dardized APIs (e.g., over DSRC).

3.2 Sparc smartphone application

We built a smartphone application for the Windows Phone
platform. The app connects to the OBD device via Bluetooth
and queries the engine control unit of the vehicle. The Pa-
rameter Identification Number (PID) in the query identifies
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Figure 5: OBD-II devices used

the information requested (e.g., 010D for speed). Vehicle
manufacturers implement several proprietary PIDs but to be
broadly applicable we only rely on the PIDs in the OBD-II
standard. Some vehicles do not have the sensors needed for
some PIDs; for e.g., some Audi models do not have the fuel
injection sensor. Further, sensor values update at different
timescales and queries on some (older) cars take over 10x
longer than normal for the same PID. Hence, our app first
sweeps the PID space to identify PIDs that offer non-trivial
responses and the frequency at which they update. Then,
it generates a polling schedule such that the more relevant
PIDs (e.g., speed, torque, fuel) are polled at least once every
few seconds. To compare, polling all the standard PIDs in a
round-robin manner retrieves much less information *.

To appeal to driving aficionados, a live dashboard in the
app displays some of the information from OBD-II (see app
screen-shots in Fig. 6).

Bluetooth usage is not a problem. Surprisingly, we found
that even when our app is connected to the OBD device, the
phone can establish other Bluetooth connections to say head-
sets or the car speakers. Thus, the app does not disrupt these
activities. This is because Bluetooth allows one connection
per profile at a time; and OBD devices have a profile differ-
ent from these other devices.

To be widely useful, the app has to satisfy a few con-
straints. First, it should be able to run continuously in the
background and collect data whenever in a moving vehicle.
Otherwise, the app will either miss rides or drain the battery.
In an earlier version we found that users remembered to turn
the app on (or off) less than 20% of the time. Second, the
app’s power drain should be an insignificant fraction of the
total power draw. Typical users drive a car for less than two
hours a day; so two hours of data collection (and 22 inac-
tive hours) should cost say less than 10% of the day’s power
draw. Third, to preserve volunteer’s privacy, the app should
allow scrub personally identifiable information such as loca-
tion of homes and destinations.

Energy management. Our app, as implemented, achieves
most of the aforementioned goals. The application stays
inactive in the background consuming almost zero energy
while the phone is stationary. A minimal background task
periodically searches for a Bluetooth paired OBD device and
wakes up the app when it succeeds. This lets us catch ev-
ery trip; it is implementable on different platforms unlike
the significant location change trigger (only iOS) and is less
power hungry than continuously processing the accelerom-

*in the information theoretic sense

Figure 6: Screen-shots of our app.

eter to detect movement. On windows phone 8.0, the app
is ejected after four hours of inactivity; hence, we foast the
user to restart the app. The app goes back to sleep when it
senses that the vehicle is no longer moving (based on a dis-
tance traveled and speed check). Across all of the deployed
users, the average power draw is 0.4%/ minute when app is
awake and 0.01%/ hour otherwise. The app is awake on av-
erage for 35 minutes each day. Logs are uploaded to Azure
lazily when the device is connected over WiFi and sufficient
battery charge remains.

3.3 Cloud services

The Azure based services manage the data collection ac-

tivities from the users’ smartphones. It is also responsible
for map-matching and providing the features for the map-
only remapping model (§2.2.2). We use OpenStreetMaps
and maps from a proprietary vendor to build these models.
We map-match, i.e., from GPS location readings, we iden-
tify the most likely path along road segments through an in-
ference algorithm that is similar to Viterbi decoding. Other
cloud services include a public-portal for our users where
they can view and analyze their driving history.
Building models. The server also coalesces data from mul-
tiple users and vehicles to train and build models for Sparc
based applications. These models (e.g., for inference remap-
ping) become more accurate as the server gathers higher vol-
ume of data from the drivers’ phones and vehicles. In sec-
tion §5.4.2, we discuss how much training data is necessary.
Remapping also enables Sparc to offer value to drivers and
vehicles that use the system with just the smartphone appli-
cation. Till date, we have collected more than 4,400 miles of
data from 20 vehicles. The deployment and user study were
conducted under purview of Microsoft Research’s privacy
policy. We plan to release the Sparc smartphone application
in the app store before publication date.

3.4 Beyond fuel prediction

Our phone+car+cloud architecture lets us build a set of
diverse applications. We have already implemented a hand-
ful in addition to trip analytics, fuel usage prediction and
driving feedback. They include a a location based real-time
traffic alerter (using the Bing Maps API). Also, a "FindMy-
Car" button that shows a user where her car is parked. We
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Figure 7: Breakdown of miles traveled in dataset along various aspects.

say that a car is present near the last (first) GPS reading ob-
tained by our smartphone app before (after) it lost access to
the OBD device, which happens when the engine turns on
-> off. We note some limitations for this heuristic; in partic-
ular it cannot disambiguate between floors in multi-tiered or
underground parking lots. Finally, a website that (1) offers
FindMyCar from a browser, (2) visualizes the user’s trips on
a map and (3) offers some longitudinal analysis about driv-
ing patterns and energy use.

4. DEPLOYMENT & MEASUREMENTS

In this section, we present details about our system deploy-
ment. We point out the diversity across cars (makes, years)
and roads (re: speed, grade and congestion).

4.1 System Deployment

We deployed our app and OBD devices to twenty volunteers
and collected data from Aug. 2013 to Dec. 2014. The vol-
unteers drove a total of 151 hours covering 4423 miles and
15846 unique road segments. The system deployment is un-
der the approval of an internal review board supervised by
our organization’s privacy team.

Figure 7 shows a break down of the the miles traveled by
the volunteers in our dataset based on various aspects. We
see a wide range of manufacturers and engine sizes varying
from small sedans (< 2 liter engines) to large SUVs (> 3
liter engines). Roughly half of the miles were from roads
with non-trivial banking grade (§ > 1°). Also, roughly half
are at speeds below and above 40 miles-per-hour (mph), in-
dicating a mix of highway and surface-road miles.The top
fifteen drivers contributed most of the data. Figure 8 vi-
sually depicts all the road segments that we have collected
data over; the color of a road segment indicates the number
of distinct drives through that segment.

4.2 Challenges and opportunities in estimat-
ing fuel usage

Predicting fuel usage would be simplest if a vehicle always
operated at the same fuel efficiency. Figure 9 shows the per-
vehicle distribution of fuel efficiency (MPG). We see that
for a majority of cars, their inter-quartile difference is larger
than 30% of their average. In fact, for over 70% of the cars,
the observed median fuel efficiency was outside the range in-
dicated by EPA’s MPG estimates for city and highway use.
The median was away by up to 10 MPG. Note that the range

Figure 8: Routes traversed by our drivers in two cities; darkness of the color
indicates the number of distinct trips per segment.
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Figure 9: Distribution of fuel efficiency (Miles per Gallon) across vehicles
in dataset. The 10th, 25th, 50th, 75th and 90th percentile values are shown.

is quite large to begin with since the MPG estimate for city
driving is often 6 — 10 MPG less than the highway estimate.
To understand further, Figure 10 plots the fuel used vs. dis-
tance traveled in contiguous two minute periods. The points
appear to cluster into two groups; those on the right are from
faster roads. However, even within each group, there is sub-
stantial variation. This means that predictions based on ex-
pected MPG are unlikely to be useful.

We next consider trips between the same begin and end
locations. When driving within a metropolitan area, there
are often a handful of usable routes to take between a given
pair of locations. The route that a driver picks impacts fuel
use. For the same route, varying congestion levels would
impact fuel use. Finally, the variation is likely to be larger
when multiple cars are considered, owing to different car
types and driving styles. Figure 11 plots the ratio of the
fuel used in a trip by the average fuel used by all trips be-
tween the same locations. Figure 12 computes the number
of rides that are off by more than a given error threshold
from the average. We see that even when limited to trips
0.14
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0.04
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0

Fuel used (gallons)
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Figure 10: Fuel use vs. distance travelled in a 2 min. period across all cars
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Figure 12: For trips between the same begin and end points, the fraction
that are outside a given error threshold from the average

for the same car (and driver), 31% (9%) of trips are off by
more than 20% (50%) of the average. The average error only
becomes larger when trips from all cars are included. This
illustrates both the challenge and the promise: even for the
same car and route, fuel use varies substantially; however, if
only accurate predictions were available, choosing the best
from among the different routes between a pair of locations
can reduce fuel use substantially.

S. EVALUATION

In this section, we evaluate the accuracy of our physical
model for fuel usage. We show that our physical model that
uses data from the OBD port of cars helps us estimate fuel
usage with less than 3% average error. Through inference
remapping we show that we can use data from phone sen-
sors to estimate fuel usage with less than 6% average error
(compared to the ground truth). By remapping to the road-
state data, we also show that we can predict fuel use before
a trip with <20% error on the 85" percentile trip. We also
describe some interesting feedback on driver behavior.

Qualitative comparison. Before delving into the numbers,
we first qualitatively compare Sparc with related research
and commerical systems. Table 5 presents this compari-
son. GreenGPS [16] estimates fuel usage given OBD train-
ing data. However, it does not provide feeedback re: driv-
ing behavior and since it does not remap the roadstate in-
puts, its error is very high when OBD data is not available.
CMT [10] focuses on risk profiling drivers based on smart-
phone sensors only; it examines aspects such as hard accel-
eration/ driving above speed limit and offers insights to both
drivers and insurance companies. However, CMT does not
consider fuel consumption and does not connect with the car.
Automatic [6] and Mojio [24] use OBD, an app and cloud
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connectivity to provide trip analytics, vehicle diagnostics in-
formation and location-related applications. While Sparc of-
fers similar services, our inference remapping deals better
with missing data sources (e.g., no OBD device) and hence
is likely to be more widely usable.

5.1 Methodology

Dataset: We use the traces collected from unconstrained
drivers that we described in §4.1 for this analysis.
Metrics: Per trip, we measure the error in estimating fuel

used: estimate — actual

relativeerror = 100 *
actual

The estimate can either be generated before the trip was
taken, i.e., a prediction, or could be computed post-facto
from the sensor readings obtained during the trip. When the
sign of the error is not relevant, we show the absolute value
of the relative error. Per driver and given a collection of trips,
we also compute the contribution to fuel usage due to each
of the major components: rolling resistance, increasing po-
tential energy, increasing kinetic energy, aerodynamic loss,
idling and the others. We also estimate the net positive con-
tribution from the decreases in potential and kinetic energy
(e.g., rolling downhill requires less fuel to maintain speed).
Compared alternatives: We have a choice in how the trip
features are obtained, how the car-specific parameters are
obtained, and how both are combined. In our experimental
results, OBD features and Phone features refer to trip features
computed based on sensor readings from the corresponding
device (see Table 2). Road features refers to trip features com-
puted based on data from the map (see Table 3). Further,
OBD parameters and Phone parameters refer to the car param-
eters that are used in the physical model derived from OBD
features (§2.1) and the remapped model based on the Phone
features (§2.2.1), respectively. By Stock parameters, we refer
to car parameters that are obtained from automobile specifi-
cations. Finally, Road—Phone features refer to parameters of
the remap model that relies on just map information (§2.2.2).

Not all of the parameter+feature combinations are inter-
esting. We use the combinations that are most relevant
per §2.3 for our evaluation.

e SR refers to using the stock car parameter along with
the road features in the physical model. Without
remapping, this is the best one could do for prediction
and post-facto estimates.

e OO refers to using the OBD parameters along with the
OBD features in the physical model. We expect this
combination to have the smallest error. Fuel usage is
directly estimatable given OBD data. So, the value of
this datapoint is primarily to check the correctness and
completeness of the physical model.

e PP refers to applying the phone parameters along with
the phone features in the physical model. Both OO and
PP are only usable post-facto, i.e., after the drive, since
the features are not available apriori.



Section Experiment

Summary of Results

Application 1: Post-drive fuel usage prediction

§5.2 (Fig I3) Estimating fuel consumption affer a drive us-
ing smartphone + OBD model vs. smart-
phone only model.

For estimation intervals over 100 sec., (a) average error < 7% using smart-
phone only. Using both OBD + smartphone, average estimation error < 2%
for 100 sec. intervals and < 6% for 10 sec. intervals.

Application 2: Pre-drive fuel usage prediction

§5.3 (Fig 14) Estimating fuel consumption before a drive.

Using road state model to covert road features into phone features (PhRPh)

results in < 20% errors for 48% trips. Better than the baseline (PIR) and other
schemes (PhR, OR) which have < 20% errors for 13%, 11% and 12% trips
respectively.

Application 3: Analyzing driving behavior

§5.4 (Fig 16) Analyzing driving behavior impact on fuel
consumption for the same trip.

Our model identifies driver’s impact on different fuel consumption factors
(e.g., resuable kinetic loss, using older tires). We identified drivers whose

gentle braking behavior enabled resuse of vehicle’s kinetic energy.

§5.4.1 (Fig I7) Per-user Tong term driving impact on fuel

consumption.

Analyzing kinetic energy re-use resulted in idenfying drivers with gentle
braking and its impact on fuel consumption. Insights about the impact of

drivers’ most frequent commutes on overall fuel consumption.

Table 4: Summary of evaluation results.

Features Us CMT [10] GreenGPS [16] Mojio [24]
Analyze driving v’ v
Pc):ehagior — — e

I1
W?t outV6BD
Analyze fuel v v v
consumption

Table 5: Comparing features of Sparc vs. other applications.
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Figure 13: Estimating fuel consumed during a trip using data from (a) the
OBD device and phone (2) the phone alone. We can estimate the fuel con-
sumed during a trip with good accuracy using only the phone. The variation
shown is across different drivers.

e PRP refers to using the phone parameters and the
road—Phone features. This is usable for prediction
since it only uses road features at runtime. 3

Table 4 summarizes our evaluation results.

5.2 Estimating Fuel Use After a Trip

After completing a trip, can we measure the amount of fuel
consumed during the trip? This is of some value to a driver;
she can estimate how much emissions her driving caused.
It may be especially useful when the tank is nearly empty.
Even this simple use-case is not possible today without in-
stalling an OBD device. Using inference remapping, we can
estimate fuel use using data from phone sensors.

Figure 13 plots the absolute value of estimation error vs.
the duration that the estimate was computed over for both
the OBD model (OO) and the Phone model (PP). Per car,
we compute the average error over all non-overlapping con-
tiguous traces of a given duration. The error bars show the

> We skip Road—OBD features and ORO which applies the OBD
parameters on the road features since the results are similar to PRP.
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quartiles and min, max across drivers. Most trips last well
over 100s; here, PP yields an average error of 7%. All
the cars have less than 10% error. Comparatively OO has
a much smaller error, 2% at 100s and just 6% for 10s in-
tervals. Recall that if an OBD device is installed, the fuel
usage is directly available. Rather, we compute the error of
OO to sanity check our models. We conclude that for most
trips just the data available from the smartphone suffices to
obtain highly accurate estimates.

5.3 Predicting Fuel Use Before a Trip

In this section, we evaluate our ability to predict fuel us-
age. In our dataset, we observe that a large fraction of the
trips that drivers take involve road segments that were not
traversed before. Hence, we are more interested in predict-
ing fuel for such cases. Figure 14 depicts the error for a
few schemes. Recall that PRP first uses the road-state model
to remap road features (from a map) to phone features; to
which it then applies the car parameters learnt using training
data from the phone. We see that for 49% of the trips, their
predictions of fuel usage are within 20% error (gray region
in figure). This is significantly better than the results for the
baseline (SR) and the other predictive schemes (PR, OR).
The fraction of trips that can be predicted to within 20% er-
ror are 13%, 11% and 12% respectively for these schemes.
We see that about 4 x more trips can be predicted to within
20% error by PRP.

It is interesting to note that related pieces of work for fuel-
use estimation like GreenGPS [16] learn the vehicular model
from OBD data but cannot extract features for unseen roads.
Hence, its performance is slightly worse than that shown for
OR. Worse because their energy model relies on average ve-
locity rather than piece-wise integrals (§2.2.1). Further they
do not separate out the positive and negative parts of changes
to potential and kinetic energy which is important as we see
next when consider per-component contributions.

Why does using the road features, readily available from
the map, lead to such poor predictions? This is because,
as we saw in §2, the actual speed for a driver on a road
segment can be very different from the posted speed limit;
and variations in speed due to acceleration and braking are
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Figure 14: Comparing prediction error across a few schemes. PhRPh sig-
nificantly out-performs the rest.

not directly estimable from map information. SR, which in-
fers car parameters from automobile specifications has po-
tentially another source of error: the specs. report mass and
frontal area but several other parameters are not publicly
available per car. For instance, we do not have the aero-
drag coefficient per car (cq), which depends on the specific
shape of the vehicle. Similarly unavailable are the efficiency
of its transmission shaft in transferring energy from the en-
gine to the wheel (7;) and its efficiency of burning fuel (7).
For these coefficients, we use best guess estimates from me-
chanical engineering literature. We use ¢q = 0.29,7; =
7,m = .3,¢ = .01. We evaluated an alternative scheme
that learns these parameters, i.e., given training data consist-
ing of road features and ground truth fuel usage information,
it learns car-specific parameters. Call that the road param-
eters. Applying these parameters to the road features does
slightly better: 21% of trips are within 20% error. We do not
show this on the plot for clarity. Finally, the key reason why
PRP does better is its ability to learn from crowd-sourced
data; a method that estimates aspects relevant to fuel con-
sumption based on easily available features of roads.

Is there room to improve the predictions? Figure 15 com-
pares our best predictive scheme PRP with two alternatives
that are not well suited for predictions. 4,,. over common
applies the phone-learnt parameters to the average phone
features from other cars that traversed common road seg-
ments. In our dataset, while most trips have some common
segments, the trips are dominated by road segments not tra-
versed by any other car. So, this scheme has a small cov-
erage (the fraction of road segments that we could predict
fuel for). Looking at just the common segments, we see that
P Avg. Over common is only marginally better than PRP. We at-
tempted to improve this by only using phone features from
similar cars but that further reduced coverage. If much more
data from many more cars was available, this scheme may
perform better; however, PRP appears to be more suitable
when only a little bit of crowdsourced data is available. Fi-
nally, we see that the PP is significantly better than PRP:
86% of the trips are within 20% error, indicating that there
is room to improve our predictions further. Recall however
that PP requires phone features and cannot be used before
the drive.
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Figure 15: Comparing the prediction error of PhRPh with variants that are
not usable for prediction.
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Figure 16: For the same trip, different factors that contribute to the fuel
consumption impact drivers differently. Our application can provide such
feedback to drivers enabling them to improve their driving habits.

5.4 Providing Feedback on Driver Behavior

Crowd-sourcing data collected from our app allows us to ob-
serve how different drivers traverse the same road segments.
This lets us compare driving behaviors across drivers. The
feedback can help highlight potential poor driving practices
or oppurtunities to reduce emissions as we show below.

To illustrate the value of such analysis, Figure 16 plots
the per-component contributions of three drivers. We only
use the portion of their trips that traversed road segments
that the other drivers also traversed. The results here and in
subsequent subsections are from the PP combination unless
otherwise noted. We see that driver #2 has high aerodynamic
losses. This is expected because his car (listed in the legend)
has larger frontal area than the others. Further, we see that
driver #2 appears to get more usefulness out of his kinetic
energy loss; that is, rather than braking hard, he may be let-
ting his car slow down by counteracting aerodrag and rolling
resistance. The other drivers can benefit by less aggressive
braking or braking less often. Rolling resistance is large for
#1 even though this car weighs the least and should corre-
spondingly have the smallest rolling resistance. Recall that
rolling resistance is mg [cos 6 v d¢ and the integral value is
essentially the same for a given sequence of road segments
since [ vdt is the sum of segment lengths. This hints that
driver #1 may be using older tires or may need to optimally
inflate her tires.

5.4.1 Long-term Driving Feedback
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Figure 17: Drivers can also use our application to build up customized long-

term driving profiles that average out trip-level dynamics such as traffic,
road, and weather conditions.

Analyzing all the data from a given car can reveal further
insights specific to driving behavior. Figure 17 plots the
per-component contributions for the eight drivers who con-
tributed the most data; we ignore the others for clarity. Con-
sider driver #6, who has a large hybrid SUV. Her daily com-
mute involves climbing a steep hill near her residence; con-
sequently she spends the most fuel in going uphill (potential
increase). We see that she is able to make more use of the
loss in kinetic energy (KE) because her car explicitly recap-
tures what would otherwise be lost as heat upon braking to
charge the battery instead. Driver #8 does not have a hybrid
but appears to be by far the gentlest user of brakes; instead
reducing his KE by making it work against the other losses.
Consider driver #7, who also has a large SUV but primarily
uses it to commute from a suburb to the city on a major high-
way. We see that rolling resistance and aerodynamic losses
dominate; this is expected because most of his driving oc-
curs at higher speeds, involves long distances and his car
has a large frontal area. Comparatively, he spends less fuel
in increasing KE (acceleration energy), hinting that most of
his drives are at relatively steady velocity. Not much change
in PE either, because his trips, in the midwest, are on flat
roads. Consider driver #4, who has a smaller wagon and
also mostly commutes on a congested highway. His com-
ponent breakdown is similar to that of driver #7 except for
a larger contribution due to increasing KE. Perhaps conges-
tion causes him to change speed often. In contrast driver #1
uses a sub-compact for a long commute and some errands
on surface streets. We see that rolling resistance is dominant
for her; aerodrag is small due to the slower speeds and small
frontal area.

5.4.2  How Much Training Data Do We Need?

To answer this question, we vary the sizes of training data.
Per size, we pick a random subset to be the training data,
learn the car-specific parameters from this set and apply
these parameters to the rest of the data to estimate per-
component contributions. We repeat this for 100 random
subsets. When training is done on enough data, we would
expect that the parameters learnt from the different training
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Variation in Energy Components vs. Amount of Modeling Data
(For Dr.#2: 2013 Subaru Outback v4 2.5L)
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Figure 18: For driver 2, to build a reliable long-term profile, we need to
collect about four hours of data and build the regression model.

subsets to be similar, i.e., they report similar per-component
contributions. However, when trained on too little data, the
per-component contributions could be very different.

Figure 18 plots the quartiles, min and max of the
per-component contributions for driver #2 given different
amounts of training data. We report results for this driver
because he had the most data; however other drivers yielded
similar results. We see that some components can be esti-
mated correcly with fewer data than others. When too little
data is used, most components exhibit variability. Because,
the model may be influenced by the specific roads and traf-
fic conditions present in the training data. Such models are
likely to have little predictive value. However when more
than four hours of data is used for training we find that most
components are stable. These training sets are perhaps large
enough to be representative of typical driving conditions.
This leads us to conclude that about four hours of training
data should suffice for most drivers.

6. RELATED WORK

A driver cares about two aspects of vehicular fuel use: (1)
how much fuel would a trip use and (2) what factors impact
fuel efficiency?

The conventional metric for fuel efficiency in the United
States (US) is miles per gallon (MPG). While MPG is ade-
quate to compare vehicles, we saw that it neither helps pre-
dict fuel use on a trip nor explains the factors impacting fuel
efficiency [21]. The environmental protection agency (EPA)
is tasked with determining MPG estimates and publishes an
annual document outlining its methodology [5]. In response
to widespread criticism— estimates lacked real-world test-
ing, and were of very limited scale i.e., city or highway —
EPA updated its rating system in 2008. The new system
considers things like faster speeds, acceleration, air condi-
tioner use, and colder outer temperatures [13]. While an
improvement, they still do not suffice for the above goals.
In particular, MPG estimates are inadequate at capturing the
variable traffic and road conditions [2, 14, 4]. To remedy
this, much focus has gone into gathering and collecting real-
world user data re: fuel efficiency [12, 27]. Unfortunately,
the user-reported numbers exhibit substantial variability [12]



and lack the context that may help explain the variability.

Concluding that static MPG estimates are unreliable, fo-
cus has shifted towards dynamic models of fuel efficiency.
One class of work empirically determines an MPG esti-
mate per driving regime such as constant speed, high ac-
celeration, peak-traffic times, highway or city efc. [9, 7,
17]. While more accurate, these estimates do not explain
factors that impact fuel economy nor can they predict fuel
consumption accurately. Another class of work develops
dynamic fuel-estimation models using several parameters.
Some of these approaches require elaborate instrumenta-
tion to measure parameters such as exhaust-gas composi-
tion and engine-cylinder displacement [1]. The more prac-
tical approaches use OBD information available in modern
automobiles [3, 16, 15]. These methods collect OBD-data
from individual drivers and build fuel-estimation models.
GreenGPS [16] is the best example here.

However, these approaches still have a few drawbacks.
First, they can analyze fuel use post-facto but cannot predict
fuel use before a trip, especially if the road segments have
not been driven on before. Second, lacking the ability to ex-
trapolate, they require drivers to continually use an OBD de-
vice. Third, when using the models to extract per-component
contributions, we find that errors in the models (e.g., using
average values, not separating loss of energy terms) leads
to mis-attributions. The approach presented here addresses
these shortcomings. It allows users with a smartphone de-
vice to obtain accurate estimates of MPG values and offers
insight into the factors affecting fuel economy. And, it can
predict fuel use before a trip occurs; fuel-prediction also dis-
tinguishes us from other mobile participatory sensing sys-
tems that use smartphone devices to generate traffic advi-
sories [20, 19] or manage parking [11].

7. CONCLUSION

We describe a phone+car+cloud system that has the po-
tential to transform many vehicular use cases. Our core
technical contribution is the concept of inference remapping
which allows us to compute inferences even when the ideal
inputs are missing or impossible to obtain apriori. For e.g.,
given readings from a smartphone, we can estimate fuel used
by a vehicle. Further, given some crowd-sourced data, we
can predict fuel used along a route for whom no data read-
ings have been collected. At first blush, both seem impos-
sible. Yet, remapping makes this possible. Because, we
are able to exploit underlying correlations between readily
available information (e.g., maps), training data, and the de-
sired information that captures vehicular fuel use (e.g., dy-
namic changes in speed, stop durations, car parameters etc.)
Careful engineering was required to compose disparate time-
series and to not overwhelm phone battery. Much work re-
mains, in particular, Sparc’s predictions remain 1.8X away
from the post facto estimates. Also, whether remapping is
broadly applicable remains an open question.
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