

PUTTING CONTEXT INTO SEARCH AND SEARCH INTO CONTEXT

Overview

- Importance of context in IR
- Potential for personalization framework
- Examples
 - Personal navigation
 - Client-side personalization
 - Short- and long-term models
 - Time as metadata
- Challenges and new directions

Securic Froms Context

Dumais - SIGIR 2012 Industry Keynote

Context Improves Query Understanding

Queries are difficult to interpret in isolation

□ Easier if we can model: who is asking, what they have done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)

vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)

Previous actions: (SIGIR | information retrieval)

vs. (SIGIR | U.S. coalitional provisional authority)

Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

Time: (SIGIR | Jan. submission) vs. (SIGIR | Aug. conference)

 Using a <u>single ranking</u> for everyone, in every context, at every point in time, <u>limits how well a search engine can do</u>

SIGIR 2012?

- □ Have you searched for SIGIR 2012 recently?
- What were you looking for?

SIGIR Quarterly Report: July 2012 « The Currency Newshound

thecurrencynewshound.com/2012/08/02/sigir-quarterly-report-july-2012 *

I am pleased Secretaries o

SIGIR Portland Oregon 2012 - ACM SIGIR Special Interest Group ...

www.sigir.org/sigir2012 *

SIGIR 2012. Online registration for SIGIR 2012 is now closed. On-site registration will be

SIGIR 2012 Workshop on Open Source Information Retrieval

opensearchlab.otago.ac.nz *

Introduction. The open source IR community has be search engines (such as MG) continue to be used i

SIGIR 2012 Workshop on Time-aware Information Access ...

research.microsoft.com/en-us/people/milads/taia2012.aspx

SIGIR 2012 Workshop on Time-aware Information Access (#TAIA2012). Web content

hysical and social world, ...

SIGIR 2012: The 35th International ACM SIGIR Conference on ...

www.wikicfp.com/cfp/servlet/event_showcfp?eventid=18172&convowner *

SIGIR 2012 : The 35th Internation Development in Information Retrie

ACM SIGIR Special Interest Group on Information Retrieval ...

www.sigir.org *

SIGIR invites applications for student travel grants to help cover the cost of travel, living

SIGIR 2012

sigir2012.confmaster.net *

Welcome to the paper submission and reviewing site for the SIGIR2012 conference! The abstract submission deadline is 6 February, 2012. If you submitted an abstract ...

Potential For Personalization

- A single ranking for everyone limits search quality
- Quantify the variation in individual relevance for

the same query

- □ Different ways to measure indiv
 - Explicit judgments from different peo
 - Implicit judgments (search result clicks

Potential for Personalization

- Personalization can lead to large improvements
 - Small study with explicit judgments
 - 46% improvements for core ranking
 - 70% improvements with personalization

Potential For Personalization

- Not all queries have high potential for personalization
 - E.g., facebook vs. sigir
 - E.g., * maps

Learn when to personalize

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term
 - Who: Individual, group
- Using user models
 - Where resides: Client, server
 - How used: Ranking, query support, presentation
 - When used: Always, sometimes, context learned

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term

PNav

Who: Individual, group

PSearch

- Using user models
 - Where resides: Client, server

Short/Long

- How used: Ranking, query support, presentation
- When used: Always, sometimes, context learned

Time

Example 1: Personal Navigation

- □ Re-finding is common in Web search
 - 33% of queries are repeat queries
 - 39% of clicks are repeat clicks
- Many of these are navigational queries
 - E.g., microsoft -> <u>www.microsoft.com</u>
 - Consistent intent across individuals
 - Identified via low click entropy
- "Personal navigational" queries
 - Different intents across individuals, but consistently the same intent for an individua
 - SIGIR (for Dumais) -> <u>www.sigir.org/sigir2012</u>
 - SIGIR (for Bowen Jr.) -> www.sigir.mil

		Repeat Click	New Click
Repeat Query	33%	29%	4%
New Query	67 %	10%	57%
		39%	61%

Dumais - SIGIR 2012 Industry Keynote

Personal Navigation Details

- □ Large-scale log analysis
- Identifying personal navigation queries
 - Use consistency of clicks within an individual
 - Specifically, the last two times a person issued the query, did they have a unique click on same result?
- Coverage and prediction
 - \blacksquare Many such queries: $\sim 15\%$ of queries
 - □ Prediction accuracy high: ~95% accuracy
 - High coverage, low risk type of personalization
- Predictions consistent over time
- Can be used to re-rank, or augment presentation

Example 2: PSearch

- Rich client-side model of a user's interests
 - Model: Content from desktop search index & Interaction history Rich and constantly evolving user model
 - Client-side re-ranking of (lots of) web search results using model
 - Good privacy (only the query is sent to server)
 - But, limited portability, and use of community

Dumais - SIGIR 2012 Industry Keynote

PSearch Details

Ranking Model

- Score: Weighted combination of personal and global web features
 - $Score(result_i) = \alpha PersonalScore(result_i) + (1 \alpha) WebScore(result_i)$
- Personal score: Content and interaction history features
 - Content score log odds of term in personal vs. web content
 - Interaction history score visits to the specific URL, and backoff to site

Evaluation

- Offline evaluation, using explicit judgments
- In situ evaluation, using PSearch prototype
 - Internal deployment; 225+ people for several months
 - Coverage: Results personalized for 64% of queries
 - Effectiveness:
 - CTR 28% higher, for personalized results
 - CTR 74% higher, when personal evidence is strong
 - Learned model for when to personalize

Dumais - SIGIR 2012 Industry Keynote

Example 3: Short + Long

- □ Short-term context
 - Previous actions (queries, clicks) within current session
 - (Q=sigir | information retrieval vs. iraq reconstruction)
 - (Q=ego | id
 - (Q=acl | computational linguistics
- Long-term preferences and interests
 - Behavior: Specific queries/URLs
 - (Q=weather) -> weather.com vs. weather.gov vs. intellicast.com
 - Content: Language models, topic models, etc.
- Develop unified model for both

Short + Long Details

- User model (content)
 - Specific queries/URLs
 - Topic distributions, using ODP
- Log-based evaluation, MAP
- Which sources are important?
 - Session (short-term): +25%
 - □ Historic (long-term): +45%
 - □ Combinations: +65-75%
- What happens within a session?
 - 60% of sessions involve multiple queries
 - By 3rd query in session, short-term features more important than long-term
 - First queries in session are different

- User model (temporal extent)
 - Session, Historical, Combinations
 - Temporal weighting

Example 4: Temporal Dynamics

- Queries are not uniformly distributed over time
 - Often triggered by events in the world
- Relevance is influenced by time
 - Explicit time (e.g., US Open 2012)
 - Implicit time (e.g., Olympic results; implicit
 - □ What's relevant to the same query changes 10-3/25 4/1 4/8 4/15
 - E.g., US Open ... in 2012 vs. in 2011
 - E.g., US Open 2012 ... in May (golf) vs. in Sept (tennis)
 - E.g., US Tennis Open 2012 ...
 - Before event: Schedules and tickets, e.g., stubhub
 - During event: Real-time scores or broadcast, e.g., espn, cbssports
 - After event: General sites, e.g., wikipedia, usta

Temporal Dynamics Details

- Develop time-aware retrieval models
- Leverage <u>content</u> change on a page
 - Pages have different rates of change (influences document priors, P(D))
 - Terms have different *longevity* on a page (influences term weights, *P(Q/D)*)
 - 15% improvement vs. LM baseline

- Leverage time-series modeling of <u>user interactions</u>
 - Model Query and URL clicks as time-series
 - Enables appropriate weighting of historical interaction data
 - Useful for queries with local or global trends

Challenges in Personalization

- User-centered
 - Privacy
 - Transparency and control
 - Consistency
 - Serendipity
- Systems-centered
 - System optimization
 - Storage, run-time, caching, etc.
 - Evaluation

Privacy

- Need user profile and content to be in the same place
- Profile on client (e.g., PSearch)
 - Profile is private
 - Query to server, many documents returned, local computations
- Profile in cloud
 - Transparency about what's stored
 - Control over what's stored ... including nothing
- Other possible approaches
 - Light weight profiles (e.g., queries in a session)
 - Public or semi-public profiles (e.g., Tweets, Facebook status)
 - Matching an individual to group

Serendipity

- Does personalization mean the end of serendipity?
- □ Actually ... it can improve it!
- Judgments of Relevance vs. Interestingness
 - Personalization finds more relevant results
 - Personalization finds more interesting results
 - Even when interesting results were not relevant
- Need to be ready for serendipity
 - Zone of proximal learning
 - Walpole's Three Princes of Serendip heroes made discoveries by accident and sagacity, of things they were not in quest of

Evaluation

- External judges
 - Query Lack diversity of intents and backgrounds
 - Query + user profile (e.g., session data) Better, but where do the profiles come from and how do we summarize them?
- Actual searchers
 - Offline
 - Allows exploration of many different alternatives
 - But ... Difficult to collect at scale
 - Online (In Situ)
 - Explicit judgments Great, but annoying and may change behavior
 - Implicit judgments Nice, but can be noisy
 - But ... Limited set of alternatives; presentation and relevance coupled
- Diversity of methods: User studies; user panels; large-scale log analysis and A/B testing

Summary

- Queries difficult to interpret in isolation
- Augmenting query with context can help
 - Who, what, where, when?
- Potential for improving search using context is large
- Examples
- Challenges and new directions

Thanks!

- □ Questions?
- More info:

http://research.microsoft.com/~sdumais

□ Collaborators:

Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White, Kevyn Collins-Thompson, Peter Bailey, Eugene Agichtein, Krysta Svore, Kira Radinski, Jon Elsas, Sarah Tyler, Alex Kotov, Anagha Kulkarni

References

Short-term models

- □ White et al., CIKM 2010. Predicting short-term interests using activity based contexts.
- □ Kotov et al., SIGIR 2011. Models and analyses of multi-session search tasks.
- □ Agichtein et al., SIGIR 2012. Search interrupted: Understanding and predicting search task continuation.

Long-term models

- □ Teevan et al., SIGIR 2005. Personalizing search via automated analysis of interests and activities. *
- □ Teevan et al. SIGIR 2008. *
- □ Teevan et al., TOCHI 2010. Potential for personalization. *
- □ Bennett et al., SIGIR 2012. Modeling the impact of short- and long-term behavior on search personalization. *
- □ Tyler et al., WSDM 2010. Large Scale Query Log Analysis of Re-Finding.
- □ Teevan et al., WSDM 2011. Understanding and Predicting Personal Navigation. *

□ Time

- Elsas and Dumais, WSDM 2010. Leveraging temporal dynamics of document content in relevance ranking.*
- Kulkarni et al., WSDM 2011. Understanding temporal query dynamics.
- □ Radinsky et al., WWW 2012. Modeling and predicting behavioral dynamics on the Web. *