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ABSTRACT
The intuition that different text classifiers behave in qualitatively
different ways has long motivated attempts to build a better meta-
classifier via some combination of classifiers. We introduce a prob-
abilistic method for combining classifiers that considers the context-
sensitive reliabilities of contributing classifiers. The method har-
nesses reliability indicators—variables that provide a valuable sig-
nal about the performance of classifiers in different situations. We
provide background, present procedures for building metaclassi-
fiers that take into consideration both reliability indicators and class-
ifier outputs, and review a set of comparative studies undertaken to
evaluate the methodology.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning; I.5.1 [Pat-
tern Recognition]: Models

General Terms
Algorithms, Experimentation.

Keywords
Text classification, classifier combination, metaclassifiers, reliabil-
ity indicators

1. INTRODUCTION
Researchers have long pursued the promise of harnessing multi-

ple text classifiers to synthesize a more accurate classification pro-
cedure via some combination of the outputs of the contributing
classifiers. The pursuit of classifier combination has been moti-
vated by the intuition that, because different classifiers work in re-
lated but qualitatively different ways, an appropriate overlaying of
classifiers might leverage the distinct strengths of each method.

Classifiers can be combined in different ways. In one approach,
a text classifier is composed from multiple distinct classifiers via
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a procedure that attempts to select the best classifier to use in dif-
ferent situations. For example, we may work to identify the most
accurate classifier in some setting, seeking to learn about accuracy
over output scores or some combination of output scores and fea-
tures considered in the text analysis. Other procedures for combin-
ing classifiers consider inputs generated by the contributing class-
ifiers. For example, in a voting analysis, a combination function
considers the final decisions made by each classifier as votes that
influence an overall decision about document classification. In a
finer-grained approach to combining multiple classifiers, the scores
generated by the contributing classifiers are taken as inputs to the
combination function. Whichever approach to combination em-
ployed, the creation of enhanced metaclassifiers from a set of text
classifiers relies on developing an understanding of how different
classifiers perform in different informational contexts.

We have pursued the development of probabilistic combination
procedures that hinge on learning and harnessing the context-sen-
sitive reliabilities of different classifiers. Rather than rely solely
on output scores or on the set of domain-level features employed
in text-classification, we introduce the use of reliability-indicator
variables—a set of features that provide a low-dimensional abstrac-
tion on context for learning about reliability. We borrow the reliabil-
ity-indicator methodology from work initially presented by Toyama
and Horvitz [26] to the automated vision community. They intro-
duced the reliability-indicator learning and inference framework
and showed how the approach could be applied in vision to inte-
grate several distinct scene analyses into an overall higher-accuracy
composite visual analysis. We have found that the reliability-indi-
cator methodology is useful in the text classification realm for pro-
viding context-sensitive signals about accuracy that can be used to
weave together multiple classifiers in a coherent probabilistic man-
ner to boost overall accuracy.

We will first review related work on the combination of text-
classification procedures. Then we introduce the use of reliability
indicators in text classification, and show how we employ these
variables to learn about the context-sensitive reliabilities of naı̈ve
Bayes, unigram, support vector machine (SVM), and decision-tree
classifiers. We describe how we integrate the indicator variables
with base-level features and scores output by classifiers to build
meta-classifiers that show enhanced performance. We highlight our
methodology and results by reviewing several sets of experiments.
Finally, we summarize our contributions and discuss future direc-
tions.

2. RELATED WORK
The overlaying of multiple methodologies or representations has

been employed in several areas of information retrieval. For ex-



ample, past research in information retrieval has demonstrated that
retrieval effectiveness can be improved by using multiple, distinct
representations [2, 11, 22], or by using multiple queries or search
strategies [3, 24]. In the arena of text classification, several re-
searchers have achieved improvements in classification accuracy
via the combination of different classifiers [9, 13, 18, 30]. Oth-
ers have reported that combined classifiers work well compared to
some particular approach [1] but have not reported results that com-
pare the accuracy of the classifier with the accuracies of the individ-
ual contributing classifiers. Similarly, systems that seek to enhance
classification performance by applying many instances of the same
classifier, such as in boosting procedures [23, 28], have compared
the overall performance of the final methodology to other systems
rather than to the weaker component learners.

Much of the previous work on combining text classifiers has used
relatively simple policies for selecting the best classifier or for com-
bining the output of multiple classifiers. As some examples, Larkey
and Croft [13] used weighted linear combinations of system ranks
or scores; Hull et al. [9] used linear combinations of probabilities
or log odds scores; Yang et al. [30] used a linear combination of
normalized scores; and Li and Jain [18] used voting and classi-
fier selection techniques. Lam and Lai [12] use category-averaged
features to pick a (possibly different) classifier to use for each cat-
egory.

As we shall highlight below, in contrast to prior research on
classifier combination, our work centers on the use of a richer prob-
abilistic combination of inputs, using combination functions learned
with Bayesian and SVM learning methods. In this respect, our
approach is similar to work by Ting and Witten [25] in stacked
generalization, although they did not apply their approach to text
problems. We also report baseline comparisons with voting and
classifier-selection techniques.

Larkey and Croft [13] used rank-based measures of performance
because they were interested in interactive systems in which a rank
list of codes for each document would be displayed to users. Many
other applications such as automatic routing or tagging require that
binary class membership decisions be made for each document as
it is processed. We focus on classifier combination to enhance such
classification decisions. This goal appears to be more challenging
than the use of classifiers for document ranking. As an example,
Hull et al. [9] found that while combination techniques were able
to improve document ranking, they did considerably less well at
estimating probabilities.

3. PROBLEM APPROACH
Our work differs from earlier combination approaches for text

classification by (1) the use of expressive probabilistic dependency
models to combine lower-level classifiers, leveraging special sig-
naling variables, we refer to as reliability indicators, and (2) a fo-
cus on measures of classification performance rather than the more
common consideration of ranking.

3.1 Reliability Indicators
Previous approaches to classifier combination have typically lim-

ited the information considered at the metalevel to the output of the
classifiers [25].

We address the challenge of learning about the reliability of dif-
ferent classifiers in different neighborhoods of the classification do-
main at hand by introducing variables referred to as reliability in-
dicators. A reliability indicator is an evidential distinction with
states that are linked probabilistically to regions of a classification
problem where a classifier performs relatively strongly or poorly.

The reliability-indicator methodology was introduced by Toyama

and Horvitz [26] and applied initially to the task of combining sev-
eral different machine-vision analyses in a system for identifying
the head and pose of computer users. The researchers found that
different visual processing modalities had distinct context-sensitive
reliabilities that depended on dynamically changing details of light-
ing, color, and the overall configuration of the visual scene. The
authors introduced reliability indicators to capture properties of the
vision analyses, and of the scenes being analyzed, that appeared to
provide probabilistic indications of the reliability of the output of
each of the modalities. To learn probabilistic models for combining
the multiple modalities, data was collected about ground truth, the
observed states of indicator variables, and the outputs from the con-
current vision analyses. The data was used to construct a Bayesian
network model with the ability to appropriately integrate the out-
puts from each of the visual modalities in real time, providing an
overall higher-accuracy composite visual analysis.

The value of the indicator-variable methodology in machine vi-
sion stimulated us to explore the analogous application of the ap-
proach for representing and learning about reliability-dependent
classifier contexts. For the task of combining classifiers, we formu-
late and include sets of variables that hold promise as being related
to the performance of the underlying classifiers. We consider the
states of reliability indicators and the scores of classifiers directly,
and, thus, bypass the need to make ad hoc modifications to the base
classifiers. This allows the metaclassifier to harness the reliability
variables if they contain useful discriminatory information, and, if
they do not, to fall back to using the output of the base classifiers.

As an example, consider three types of documents where: (1)
the words in the document are either uninformative or strongly as-
sociated with one class; (2) the words in the document are weakly
associated with several disjoint classes; or (3) the words in the doc-
ument are strongly associated with several disjoint classes. Classi-
fiers (e.g., a unigram model) will sometimes demonstrate different
patterns of error on these different document types. We have pur-
sued the formulation of reliability indicators that capture different
association patterns among words in documents and the structure of
classes under consideration. We seek indicator variables that would
allow us to learn context-sensitive reliabilities of classifiers, condi-
tioned on the observed states of the variable in different settings.

As a concrete example, Figure 1 shows a portion of the type of
combination function we can capture with the reliability-indicator
methodology. The nodes on different branches of a decision tree
include the values output by base classifiers as well as the val-
ues of reliability indicators for the document being classified. The
decision tree provides a probabilistic context-sensitive combina-
tion rule indicated by the particular relevant branching of values
of classifier scores and indicator variables. In this case, the por-
tion of the tree displayed shows a classifier-combination function
that considers thresholds on scores provided by a base-level linear
SVM (OutputOfSmox) classifier and a base-level unigram classi-
fier (OutputOfUnigram), and then uses the context established by
reliability-indicator variables (UnigramVariance and %Favoring-
InClassAfterFS) to make a final decision about a classification. The
annotations in the figure show the threshold tests that are being per-
formed, the number of examples in the training set that satisfied the
test, and a graphical representation of the probability distribution at
the leaves. The likelihood of class membership is indicated by the
length of the rectangle at the leaves of the tree.

The variable UnigramVariance represents the variance of uni-
gram weights for words present in the current document. The in-
tuition is that the unigram classifier would be accurate when there
is low variance in weights. The variable %FavoringInClassAfter-
FS is the percentage of words (after feature selection) that occur



more often in documents within a target class than in other classes.
Classifiers that weight positive and negative evidence differently
should be distinguished by this variable. For the Strive-D (norm)
classifier excerpt shown in Figure 1 we have further normalized the
metafeatures to have zero mean and unit standard deviation so most
values fall between -1 and 1 as a result.

The indicator variables used in our studies are an intuitive at-
tempt at formulating states to represent influential contexts. We
defined variables to represent a variety of contexts that showed
promise as being predictive of accuracy—e.g., the number of fea-
tures present in a document before and after feature selection, the
distribution of features across the positive vs. negative classes, and
the mean and variance of classifier-specific weights.

Currently, our indicator variables roughly fall into of four types.
Different indicator variables measure (1) the amount of informa-
tion present in the original document, (2) the information lost or
mismatch between the representation the classifier used and the
original document, (3) the sensitivity of decision to evidence shift,
and (4) some basic voting statistics. DocumentLength is an exam-
ple of type 1. The performance of classifiers is sometimes corre-
lated with document length, because longer documents give more
information to use in making a classification. DocumentLength can
also be informative since some classifiers will perform poorly over
longer documents because they do not model length (e.g. they dou-
ble count evidence and longer documents are more likely to devi-
ate from a correct determination). PercentRemoved is an example
of type 2. This represents the percent of features removed by fea-
ture selection. If most of the document was not represented by the
feature set used in a classifier, then some classifiers may be unreli-
able. Others (e.g. decision trees that model missing attributes) may
continue to be reliable. When the base classifiers are allowed to
use different representations, then these features can play an even
more important role. An example of type 3 is the UnigramVari-
ance variable. Low variance means the decision of the classifier is
unlikely to change with a small change in the document content;
high variance increases the chances that the decision would change
with only a small change in document content. Finally, NumVot-
ingForClass or PercentAgreement are examples of the last type.
These simple voting statistics improve the metaclassifier search
space (since the metaclassifier is given the base classifier decisions
as input as well). For a 2-class case the PercentAgreement vari-
able may provide little extra information but for n-classes it can be
used to determine if the base classifiers have fractured their votes
among a small number of classes or across a wide array. We found
all of these types to be useful in the final combination scheme, and
the early analysis has not found that any one type dominates the
combination models.

Reliability-indicator variables are qualitatively different than vari-
ables representing the output of classifiers because we do not as-
sume that the reliability indicators have some threshold point that
classifies the examples better than random, nor do we assume that
classification confidence shows monotonicity trends as in classi-
fiers. We currently do not exploit these underlying assumptions for
the classifiers, but we hope to do so in the future. At a more prac-
tical level, the reliability indicators are usually much simpler than
typical classification algorithms.

3.2 Strive: Metaclassifier with Reliability In-
dicators

We refer to our classifier combination learning and inference
framework as Strive for Stacked Reliability Indicator Variable En-
semble. We select this name because the approach can be viewed as
essentially extending the stacking framework by introducing relia-
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Figure 2: The basic architecture of Strive.

bility indicators at the metalevel. The Strive architecture is depicted
in Figure 2.

We map the original stacking learning problem to a new learn-
ing problem. Originally, we have some document,

�
, with words,�����������	�
��� and class, 
�� . Our classifiers, ��� , predict 
�� from the

words. We denote their predictions by 
 � . Then, our set of reli-
ability indicators, � � , use the words and the classifier outputs to
generate their values, ��� . We now have a new document,

�������
� � �������	� ��� � 
 � ��������� 
�� � with class 
 � which we will give to the
metaclassifier as the learning problem.

We require the outputs of the classifiers to train the metaclassi-
fier. Thus, we perform cross-validation over the training data, and
use the values obtained while an example serves as a validation
item as the input to the metaclassifier.

3.3 BestSelect Classifier
When classifier combination is formulated as the process of se-

lecting on a per-example basis the best base classifier, we can intro-
duce a natural upper bound on combination. Such an upper bound
can be useful as a benchmark in experiments with classifier combi-
nation procedures.

To classify a given document, if any of the classifiers correctly
predict that document, the best combination would select any of
the correct classifiers. Thus, such a classification combination errs
only when all of the base classifiers are incorrect. We refer to this
classifier as the BestSelect classifier. If all of the base classifiers
are better than random, the BestSelect gives us a rough idea of the
best we can do combining them in a selection framework.

We note that we are not using a pure selection approach, as our
framework allows the possibility of choosing a class that none of
the base classifiers predicted. In cases where the classifiers are
not better than random (or are logically dependent), such an up-
per bound may be uninformative. If we simply seek an answer to
the question, “How much of what we could optimistically expect
to gain with this set of base classifiers have we gained?”, then this
loose bound provides a more pessimistic view of the results than is
actually the case. Therefore, we evaluate the scores of the BestSe-
lect classifier as a useful point of reference in our experiments.



Not < 0.0551 (205)
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Figure 1: Portion of decision tree, learned by Strive-D (norm) for the Travel & Vacations class in the MSN Web Directory corpus,
representing a combination policy at the metalevel that considers scores output by classifiers (dark nodes) and values of indicator
variables (lighter nodes).

4. EXPERIMENTAL ANALYSIS
We engaged in a large number of experiments to test the value of

probabilistic classifier combination with reliability indicator vari-
ables. We shall describe the corpora, methodology, and results.

4.1 Data
We examined several corpora, including the MSN Web Directory,

Reuters, and TREC-AP.

4.1.1 MSN Web Directory
The MSN Web Directory is a large collection of heterogeneous

web pages (from a May 1999 web snapshot) that have been hierar-
chically classified. We used the same train/test split of 50078/10024
documents as that reported in [6].

The MSN Web hierarchy is a 7-level hierarchy; we used all 13
of the top-level categories. The class proportions in the training set
vary from

� � ����� to ��� � ��� � . In the testing set, they range from� � �	�
� to � � � ����� . The classes are general subject categories such
as Health & Fitness and Travel & Vacation. Human indexers assign
the documents to zero or more categories.

For the experiments below, we used only the top 1000 words with
highest mutual information for each class; approximately 195K
words appear in at least 3 training documents.

4.1.2 Reuters
The Reuters 21578 corpus [15] contains Reuters news articles

from 1987. For this data set, we used the ModApte standard train/
test split of 9603/3299 documents (8676 unused documents). The
classes are economic subjects (e.g., “acq” for acquisitions, “earn”
for earnings, etc.) that human indexers decided applied to the doc-
ument; a document may have multiple subjects. There are actually
135 classes in this domain (only 90 of which occur in the training
and testing set); however, we only examined the 10 most frequent
classes since small numbers of training examples makes estimating
some performance measures unreliable due to high variance. Lim-
iting to the 10 largest classes allows us to compare our results to
previously published results [7, 10, 19, 20].

The class proportions in the training set vary from
� � 
�
 � to

��� � ��� � . In the testing set, they range from
� � � � to ��� � � ��� .

For the experiments below we used only the top 300 words with
highest mutual information for each class; approximately 15K words
appear in at least 3 training documents.

4.1.3 TREC-AP
The TREC-AP corpus is a collection of AP news stories from

1988 to 1990. We used the same train/test split of 142791/66992
documents that was used in [17]. As described in [16] (see also
[14]), the categories are defined by keywords in a keyword field.

The title and body fields are used in the experiments below. There
are 20 categories total.

The frequencies of the 20 classes are the same as those reported
in [17]. The class proportions in the training set vary from � � ��� �
to � � ��� � . In the testing set, they range from � � ��� � to

� � ��� � .
For the experiments described below, we use only the top 1000

words with the highest mutual information for each class; approxi-
mately 123K words appear in at least 3 training documents.

4.2 Classifiers
We employed several base-level classifiers and classifier combi-

nation methods in our comparative studies. We review the classi-
fiers and combination methods here.

4.2.1 Base Classifiers
We worked to keep the representations for the base classifiers

analyzed in our experiments nearly identical so as to isolate the
benefits gained solely from the probabilistic combination of classi-
fiers with reliability indicators. We would expect that varying the
representations (i.e., using different feature selection methods or
document representations) would only improve the performance as
this would likely decorrelate the performance of the base classifiers.

We selected four classifiers that have been used traditionally for
text classification: decision trees, linear SVMs, naı̈ve Bayes, and a
unigram classifier.

For the decision-tree implementation, we employed the Win-
Mine decision networks toolkit and refer to this as Dnet below [5].
Dnet builds decision trees using a Bayesian machine learning al-
gorithm [4, 8]. While this toolkit is targeted primarily at building
models that provide probability estimates, we found that Dnet mod-
els usually perform acceptably on error rate. However, we found
that the performance of Dnet with regard to other measures is some-
times poor.

For linear SVMs, we use the Smox toolkit which is based on
Platt’s Sequential Minimal Optimization algorithm. After exper-
imenting with a binary and a continuous model, we used a con-
tinuous model as it seemed to perform at approximately the same
level.

The naı̈ve Bayes classifier has also been referred to as a multi-
variate Bernoulli model. In using this classifier, we smoothed word
and class probabilities using a Bayesian estimate (with the word
prior) and a Laplace m-estimate, respectively.

The unigram classifier uses probability estimates from a unigram
language model. This classifier has also been referred to as a multi-
nomial naı̈ve Bayes classifier. Probability estimates are smoothed
in a similar fashion to smoothing in naı̈ve Bayes classifier.



4.2.2 Basic Combination Methods
We performed experiments to explore a variety of combination

methods. We considered several different combination procedures.
The first combination method is based on selecting one classifier
for each binary class problem, based on the one that performed best
for a validation set. We refer to this method as the Best By Class
method.

Another combination method is based on taking a majority vote
of the base classifiers. This approach is perhaps the most popular
combination methodology. When performing a majority vote, ties
can be broken in a variety of ways (e.g., breaking ties by always
voting for in class). We experimented with several variants of this
method, but we only present results here for the method which re-
lies on breaking ties by voting with the Best By Class classifier be-
cause it nearly always outperformed the other majority vote meth-
ods. We refer to this method as Majority BBC.

4.2.3 Hierarchical Combination Methods

Stacking
Finally, we investigate several variants of the hierarchical models
described earlier. As mentioned above, omitting the reliability-
indicator variables is equivalent to stacking [25, 29]. We refer
to these classifiers below as Stack-X where X is replaced by the
first letter of the classifier that is performing the metaclassification.
Therefore, Stack-D uses a decision tree as the metaclassifier, and
Stack-S uses a linear SVM as the metaclassifier. It should be noted
that Stack-S is also a weighted linear combination method since it
is based on a linear SVM and uses only the classifier outputs.

It can be problematic to learn the weights for an SVM when the
inputs have vastly different scales (in addition it may not be possi-
ble to pick good weights); therefore, we normalize the inputs to the
metaclassifiers to zero mean and unit standard deviation. In order
to perform consistent comparisons, we perform the same alteration
for the metaclassifiers using Dnet. We also give for one of the Dnet
variants the results without performing normalization; as would be
expected the impact of normalization for decision-tree learners is
relatively minimal (and has both positive and negative influences).

Strive
Similar to the notation described above, we add a letter to Strive
to denote the metaclassifier being used. So, Strive-D is the Strive
framework using Dnet as a metaclassifier. For comparison to the
stacking methods, we evaluate Strive-D and Strive-S. Normaliza-
tion is noted in the same way.

The experiments reported here use a total of 49 reliability in-
dicators (including those specific examples given in Section 3.1).
These variables were simply our initial pass at representing appro-
priate information. In the future, we intend to publish an analysis
of which variables are most useful, in addition to extending the set
of variables currently employed.

4.3 Performance Measures
To compare the performance of the classification methods we

look at a set of standard performance measures. The F1 mea-
sure [27, 31] is the harmonic mean of precision and recall where���������
	�����
 ��������������������� � � ��� �������� � � ���
� � ����� � � � � ��� and ! ����"$#%# �&���������'���(����� � � ��� ���) ���
*�+-,.���/� � � ��� ��� .
We can often assess a cost function in classification settings that
can be described as �10�243 � 24576 � 24398:3;0�2=<(>@?BA�3=C$?D6�EF245G8
3;0�2=<(>@?BAD5HA-I�6 where 243 is the cost of a false positive classifica-
tion and 245 is the cost of a false negative classification. The most
commonly used function in the literature is the error rate which
is 243 � 245 � �

. However, the importance of varying cost

functions has been recognized by many researchers because appli-
cations rarely have equal costs for different types of errors [21]. In
order to assess how sensitive performance is to the utility measure,
we considered results for �10 � � � � 6 and �10 � � � �$6 .

In addition, we computed and displayed a receiver operating
characteristic (ROC) curve, which represents the performance of
a classifier under any linear utility function [21]. We report results
on the area under the ROC curve as an attempt to summarize1 the
linear utility space of functions.

For each performance measure, we can either macro-average or
micro-average. Macro-averaging, which we present here, is com-
puted separately for each class and then arithmetically averaged;
this tends to weight rare classes more heavily. Micro-averaged
values are computed directly from the binary decisions over all
classes; this places more weight on the common classes. We evalu-
ated the systems with both macro and micro averaging, but because
of space limitations, we simply note that our analysis is consistent
with the micro results and omit presentation of the full analysis.

4.4 Experimental Methodology
As the categories under consideration in the experiments are not

mutually exclusive, the classification was done by training J binary
classifiers, where J is the number of classes.

Decision thresholds for each classifier were set by optimizing
them for each performance measure over the validation data; that is,
a classifier could have different thresholds for each of the separate
performance measures (and for each class). This ensures that the
base classifiers are as competitive as possible across the various
measures.

To generate the data for training the metaclassifier, (i.e., reliabil-
ity indicators, classifier outputs, and class labels), we used five-fold
cross-validation on the training data from each of the corpora. The
data set obtained through this process was then used to train the
metaclassifiers. Finally, the resulting metaclassifiers were applied
to the separate testing data described above.

4.5 Results
Tables 1, 2, and 3, present the performance results over the three

corpora. In terms of the various performance measures, better per-
formance is indicated by larger F1 or ROC area values or by smaller
�10�243 � 24576 values. The best performance (ignoring BestSelect)
in each column is given in bold.

To determine statistical significance for the macro-averaged mea-
sures, a one-sided macro sign test and macro t-test was performed
[31]. Differences with a p-level above 0.05 were not considered
statistically significant.

We do not explicitly report significance results for the t-test com-
parisons; instead, our analysis follows the macro sign test which
yielded more conservative comparisons (i.e., the t-test primarily
just increased the number of differences found to be significant in
the tables).

The classifier combinations are annotated to indicate the results
of a macro sign test. A K indicates the method significantly outper-
forms (at the 0.05 level) the best base classifier. In addition, on the
variants of Stack and Strive, a L indicates the method outperforms
the basic combination methods. Results for the remaining sign test
comparisons are omitted.

4.6 Discussion
First, we note that the base classifiers are competitive and con-

sistent with the previously reported results over these corpora [6,�
We note that the area under the curve is not a precise summary of

the linear utility space.



Method Macro F1 Error C(1,10) C(10,1) ROC Area

Dnet 0.5502 0.0583 0.3023 0.0771 0.8812
Smox 0.6705 0.0455 0.2239 0.0799 0.9125
Naı̈ve Bayes 0.5527 0.0649 0.2853 0.0798 0.8915
Unigram 0.5982 0.0594 0.2589 0.0812 0.9003

Best By Class 0.6705 0.0455 0.2236 0.0783 N/A
Majority BBC 0.6668 0.0476 0.2173

�

0.0761 N/A

Stack-D (norm) 0.6775 0.0446
���

0.2118
�

0.0784 0.9292
�

Stack-S (norm) 0.6732 0.0450 0.2174
�

0.0757 0.9210
�

Strive-D 0.6877
���

0.0429
���

0.1939
���

0.0742 0.9383
�

Strive-D (norm) 0.6908
���

0.0434 0.1949
���

0.0742 0.9398
�

Strive-S (norm) 0.6948
���

0.0430
���

0.2037
�

0.0712 0.9114
Strive-D (norm, omit Smox) 0.6670 0.0464 0.2062

���

0.0754 0.9361
�

BestSelect 0.8365 0.0270 0.0905 0.0616 N/A

Table 1: Performance on MSN Web Directory Corpus

Method Macro F1 Error C(1,10) C(10,1) ROC

Dnet 0.7846 0.0242 0.0799 0.0537 0.9804
Smox 0.8480 0.0157 0.0580 0.0390 0.9815
Naı̈ve Bayes 0.6574 0.0320 0.1423 0.0527 0.9703
Unigram 0.7645 0.0234 0.0713 0.0476 0.9877

Best By Class 0.8592 0.0153 0.0518 0.0409 N/A
Majority BBC 0.8524 0.0160 0.0448

�

0.0446 N/A

Stack-D (norm) 0.8636
�

0.0153 0.0449 0.0392 0.9893
Stack-S (norm) 0.8720

���

0.0143
�

0.0445
�

0.0365 0.9930
�

Strive-D 0.8547 0.0154 0.0472 0.0358 0.9903
Strive-D (norm) 0.8526 0.0157 0.0468 0.0359 0.9897
Strive-S (norm) 0.8749

�

0.0125
���

0.0382
�

0.0353 0.9939
Strive-D (norm, omit Smox) 0.8433 0.0168 0.0484 0.0425 0.9900

BestSelect 0.9529 0.0050 0.0100 0.0202 N/A

Table 2: Performance on Reuters Corpus

7, 10, 14, 16, 19]. The results reported for Reuters are not directly
comparable to those reported by Yang & Liu [31] as they report
results over all 90 classes and do not give a breakdown for the 10
most frequent categories. Furthermore, the fact that the linear SVM
Smox tends to be the best base classifier is consistent with the lit-
erature [7, 10, 31].

MSN Web Directory
Examining the results for the MSN Web Directory corpus in table 1
reveals several points. First, the basic combiners have only one sig-
nificant win, C(1,10) for the Majority BBC approach. The results
directly support the idea that a very good learner (Smox) tends to
be brought down when combined via a majority vote scheme with
weak learners; in addition, the win most likely results from the fact
that the base learners (other than Smox) have a tendency to pre-
dict positive. When false negatives are weighed more heavily, the
shift toward predicting positive helps reduce the number of false
negatives.

Next, we see that Stacking posts several significant wins and ap-
pears to have some advantages over the base classifiers. However,
the Stacking combination shows little significant improvement over
the basic combination methods.

Strive-D and Strive-S (norm) show advantages that are robust

across a variety of performance measures. Each shows a small
(about 5% error reduction) but consistent improvement across a
variety of performance measures. When viewed in terms of the ap-
proximate ceiling as established by the BestSelect model, the error
reduction provided by the Strive combination methods is an even
greater portion of the total possible reduction.

As can be inferred from the sign tests, these results are very con-
sistent across classes. For example, on ROC area, Strive-D beats
the base classifiers and basic combiners on 13/13 classes, and it
beats the stacking methods on 12/13 classes. The notable excep-
tion is the performance of Strive-S (norm) on ROC area; graphical
inspection of the ROC curves suggests this result is likely based on
too much weight being placed on the strong classifier for a curve.

Often, there is a crossover in the ROC curve between two of the
base classifiers further out on the false-positives axis. Most utility
measures in practice correspond to the early part of the curve (this
depends on the particular features of the given curve). Smox as a
metaclassifier sometimes seems to lock onto the classifier that is
strong in the early portion of the curve and loses out on the later
part of the curve. Since this portion of the curve rarely matters, one
could consider using an abbreviated version of curve area to assess
systems.

In Figure 3, we can see that the two Strive variants dominate the



Method Macro F1 Error C(1,10) C(10,1) ROC

Dnet 0.6015 0.0065 0.0342 0.0079 0.9768
Smox 0.7335 0.0049 0.0294 0.0077 0.9691
Naı̈ve Bayes 0.5676 0.0065 0.0455 0.0078 0.9755
Unigram 0.6001 0.0064 0.0347 0.0079 0.9819

Best By Class 0.7335 0.0049 0.0294 0.0077 N/A
Majority BBC 0.7145 0.0056 0.0292 0.0075 N/A

Stack-D (norm) 0.7357 0.0049 0.0241
���

0.0086 0.9856
Stack-S (norm) 0.7351 0.0049 0.0288 0.0075 0.9656

Strive-D 0.7325 0.0048 0.0276 0.0078 0.9858
Strive-D (norm) 0.7280 0.0049 0.0271 0.0077 0.9855
Strive-S (norm) 0.7431 0.0048 0.0295 0.0076 0.9634
Strive-D (norm, omit Smox) 0.6938 0.0055 0.0313 0.0077 0.9858
BestSelect 0.8763 0.0034 0.0149 0.0062 N/A

Table 3: Performance on TREC-AP Corpus
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Figure 3: The ROC curve for the Health & Fitness class in the MSN Web Directory corpus

four base classifiers. In fact, Strive-D dominates (i.e., its quality is
greater than any other curve at every point) most of the MSN Web
Directory corpus. We also can see (note the truncated scale) the
base classifiers catching up with Strive-S (norm) on the right side
of the curve. They, in fact, do surpass it. As a result, Strive-D is
usually a more appropriate choice if the utility function penalizes
false negatives significantly more heavily than false positives.

Referring back to Figure 1, we can understand why the decision
tree is more appropriate for tracking crossovers in some cases. In
this case, it is establishing a score region for Smox and a score
region for Dnet where the reliability indicators give further infor-
mation about how to classify an example.

Finally, we note that when we omit the base classifier Smox in
Strive-D (norm, omit Smox), the resulting combination improves by
a large margin over the base methods; however, the resulting class-
ifier generally still fails to beat Smox. This suggests that there are
not enough indicator variables tied to Smox’s behavior, or alterna-
tively, that the other classifiers as a group behave like Smox, rather
than classify in a complementary fashion.

Reuters and TREC-AP
The results for Reuters and TREC-AP in Tables 2 and 3 are consis-
tent with the above analysis. We note that the level of improvement
tends to be less pronounced for these corpora.

5. FUTURE WORK
We are excited about the opportunities for probabilistic combi-

nation of multiple classifiers with reliability indicators. We are pur-
suing several research directions. Foremost, we believe that a func-
tional search that generates and tests a larger number of reliability
indicators could provide valuable sets of informative reliability in-
dicators.

In the experiments above, the classifiers were specifically held
constant in order to distill the effect of indicator variables. In fu-
ture studies, we will allow representations to vary to induce more
variety among the base classifiers.

We are also interested in exploring the use of other classifiers as
metaclassifiers. The metaclassifier should be a classifier that han-
dles correlated input well (e.g., use of maximum entropy) as classi-
fiers performing better than random will be necessarily correlated.



6. SUMMARY AND CONCLUSIONS
We reviewed a methodology for building a metaclassifier for text

documents that centers on combining multiple distinct classifiers
with probabilistic learning and inference that leverages reliability-
indicator variables. Reliability indicators provide information about
the context-sensitive nature of classifier reliability. We reviewed
several popular text classification methods, and described several
combination schemes. We introduced the Strive methodology that
uses reliability indicators in a hierarchical combination model and
reviewed comparative studies comparing Strive with other combi-
nation mechanisms. The empirical evaluations support the con-
clusion that a simple majority vote in situations where one of the
classifiers performs strongly can “water down” that classifier’s per-
formance. The experiments also show that stacking and Strive seem
to provide robust combination schemes across a variety of perfor-
mance measures.
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