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Abstract
The recently introduced framework of Word-Phrase-Entity lan-
guage modeling is applied to Recurrent Neural Networks and
leads to similar improvements as reported for n-gram language
models. In the proposed architecture, RNN LMs do not oper-
ate in terms of lexical items (words), but consume sequences
of tokens that could be words, word phrases or classes such as
named entities, with the optimal representation for a particu-
lar input sentence determined in an iterative manner. We show
how auxiliary techniques previously described for n-gram WPE
language models, such as token-level interpolation and person-
alization, can also be realized with recurrent networks and lead
to similar perplexity improvements.
Index Terms: RNN, WPE and class-based LM, LM interpola-
tion, LM personalization

1. Introduction
During recent years, the field of Language Modeling has
been undergoing a gradual though steady shift away from n-
gram models towards more powerful feature-based, continuous-
state models such as Exponential and Neural Network LMs
[1, 2, 3]. While most industrial-scale ASR systems are still re-
lying on very large n-gram LMs due to their training simplicity,
continuous-state LMs do offer better modeling quality given the
same amount of data [4, 5, 6].

One important class of language models that received wide
acceptance are Recurrent Neural Networks (RNN) [3, 7], which
combine the advantage of longer history contexts with the abil-
ity to deal internally with word similarity. RNNs have been
successfully used in many applications and a number of open-
source toolkits are available for experimentation [8, 9, 10].

Another type of language models that achieves similar
goals while still relying on n-grams has been introduced re-
cently. Word-Phrase-Entity (WPE) language models offer a
unified probabilistic framework for joint modeling of words,
common word phrases (e.g. “i’d+like+to”) and classes (such
as named entities) [11]. For a training sentence, the WPE LM
training algorithm will consider a number of its alternative rep-
resentations (parses) in terms of tokens: words, phrases and en-
tities, and then pick the one(s) with the highest likelihood. For
example, the sentence “flight from boston to new york at three
p m” can be represented as sequence of words (trivial parse),
or it could include common word phrases “flight from+boston
to+new+york at three p+m”, or named entities “flight from
CITY[boston] to CITY[new york] at TIME[three p m]”, or various
permutations thereof. Which alternative will have the highest
likelihood depends on stable word patterns in this and other
sentences in the training set, as data parsing and model re-
estimation are carried out iteratively [11].

In this work, we unify both modeling paradigms and offer
recipes to train Word-Phrase-Entity Recurrent Neural Network

Language Models (WPE RNN). As with the n-gram WPE LMs,
training happens in an iterative fashion and can be accompanied
by optimization of the grammars that define relevant entities.
We show that, depending on scenario, WPE n-gram LMs can
achieve improvements comparable to word-level RNNs, while
WPE RNNs consistently lead to the best results in terms of per-
plexity and word error rates. In addition, we demonstrate that
other WPE modeling techniques such as personalization [13]
and (context-dependent) token-level LM interpolation [12] can
also be successfully applied to WPE RNN, while the latter can
be carried out on an arbitrary mixture of n-gram and RNN lan-
guage models.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review the concept of WPE LM and show how it can
be transferred to RNN. Section 3 explains personalization and
interpolation for WPE RNNs, and Section 4 provides additional
insights into our parsing framework. We then present our ex-
periments in Section 5 and conclude with a summary and future
work suggestions.

2. WPE RNN Language Models
WPE language models are trained via an alternating sequence
of data parses and LM re-estimations. Given a pre-trained WPE
that provides language model probabilities for token-level his-
tories, we can produce a number of alternative parses with cor-
responding posterior probabilities. A plurality of such parses
obtained from a training corpus can be used to estimate a new
WPE LM to continue the iterative training. Several heuristics
such as parameter regularization and LM initialization are re-
quired to achieve optimal modeling power [11]. Formally, the
updated probability P̄ (c|h) of token c given token history h is
computed as:

P̄ (c|h) :=
∑
www,ccc

P (www)
P (www,ccc)∑
ccc′ P (www,ccc′)

P (ccc)(c|h), (1)

where the outer summation is over training sentences www and
their parses ccc. The joint probability of a sentence and one of its
parses under the previous WPE LM is:

P (www,ccc) =
∏
ci∈ccc

P (ci|hi)P (πi|ci), (2)

where πππ = (π1 . . . πn) is the segmentation of www induced by
ccc = (c1 . . . cn) and probabilities P (πi|ci) are either class-
instance probabilities for class tokens (such as named entities)
or 1.0 for words and word phrases. Sentence priors P (www) are
usually explicitly provided or can be ignored altogether. Fi-
nally, P (ccc)(c|h) stands for an estimator of P (c|h) based on
a single linear token sequence ccc. In the case of n-gram LMs,
its value can be obtained directly as a maximum likelihood es-
timate #ch

#h

∣∣∣
(ccc)

. However, a more practical interpretation of



Eq. (1) suggests training a token-level language model from a
set of weighted parses of all training sentences with the weights

L′(www,ccc) = P (www)
P (www,ccc)∑
ccc′ P (www,ccc′)

. (3)

For n-gram LMs, this interpretation buys the benefit of smooth-
ing (e.g. back-offs) but, more importantly, it also implies that
computation of estimates P (c|h) can be delegated to arbitrary
language model types, including RNNs that we are focusing on
in this paper.

Before we proceed, let us recap how RNNs operate. A
typical (Elman) RNN is a network with three layers: normal-
ized activations of the output layer approximate probabilities of
the next word given history. The relatively small hidden layer
underneath reflects the network’s current state. It is fed from
a concatenation of the input layer (a one-hot vector of input
words) and the network state from the previous time step. The
network is trained via Back Propagation Through Time. Since
brute force training and evaluation require the computation of
activations for all nodes of the output layer, the architecture
can be optimized by organizing the output layer as a hierarchy
of (possibly sub-optimal) word classes. Other popular ways to
speed up last layer computations include Noise Contrastive Es-
timation [14] and Importance Sampling [15]. In [19], an exten-
sion of RNN is proposed that allows for additional features in
the input layer (such as identities of the preceding words) and
direct connections between the added nodes and nodes in the
output layer.

In the sections below, the following nomenclature will be
used for brevity: “W-N-LM” for word n-gram language model;
“T-N-LM” for WPE n-gram LM (“T” as in “Token”); “W-R-
LM” for word RNN LM and “T-R-LM” for WPE RNN. In addi-
tion, subscript “p” will indicate personalized nature of the model
(e.g. T-R-LMp). T-N-LM and T-R-LM should be both viewed
as combinations of token-level language models and the corre-
sponding sets of entity defining grammars.

Assume now that the latest T-R-LM produced a number of
parses (token sequences) for each training sentence. To train
a new iteration T-R-LM according to Eq. (1), we need to in-
troduce weights L′(www,ccc) in the RNN training procedure. Un-
like n-grams, we may not pool occurrence counts for identical
training samples for RNN training, and need to present each
sentence individually, simplifying L′(www,ccc) into parse posteri-
ors with the upper bound of L′(www,ccc) ≤ 1. Next, we scale the
cross-entropy error function by L′(www,ccc) before computing gra-
dient in the back-propagation algorithm. Randomizing training
samples on each iteration (and in fact even each RNN training
epoch) produced better results than sorting all parses by their
length as a proxy for their difficulty [17], probably because it
helped avoiding repetition of partially identical parses [16].

The training diagram is shown in Figure 1. Just like the T-
N-LMs, T-R-LMs are trained in an iterative fashion by parsing
the training set, re-estimating the model from these (weighted)
parses, producing new parses of the training set, etc. Unlike T-
N-LMs, the issue of initialization is now easier to address since
the first T-R-LM can be trained from parses of the training data
with the final T-N-LM. Also note that each iteration of T-R-LM
training is also an iterative process of several epochs. The over-
all training costs are therefore substantially higher than with T-
N-LM. Finally, similarly to T-N-LMs, entity definitions can be
refined on each iteration following this formula:

P (π|c) =
∑
www,ccc

L′(www,ccc)
#(c, π)

#c

∣∣∣∣
(ccc)

(4)

Figure 1: Training of T-R-LM. We start by iteratively training
T-N-LM to convergence. The set of final parses and entity def-
initions are used to start T-R-LM training that comprises alter-
nating RNN training and parsing.

3. Language Model Interpolation and
Personalization

In [12] it was shown how several class-based n-gram LMs,
and T-N-LMs in particular, can be interpolated using context-
dependent interpolation weights λm(h). The basic idea is to
update weight of the mth component in token context h as
the normalized cumulative of the relative contributions of this
component to probabilities of all training parses that contain
h. Parse posteriors are used to weight these contributions. For-
mally, if we express probability of token c given token history h
as a linear interpolation of probabilities in the component LMs:

P (c|h) =
∑
m

λm(h)Pm(c|h), (5)

The context-dependent interpolation weights λ(h) can be itera-
tively updated via:

λ̄m(h) := − 1

γ(h)

∑
www,ccc

L′(www,ccc)
∑

c:h(c)=h

Sm(c, h)

 (6)

with sufficient statistics

Sm(c, h) =
Pm(c|h)λm(h)∑

m′ Pm′(c|h)λm′(h)
(7)

and normalization factor γ(h). Summation index h(c) = h
means that we only consider those tokens in parse ccc whose his-
tory is h. For more information, see [12].

Observe that the above formulations do not make any as-
sumptions about the nature of the participating LM components,
and can therefore be applied to T-R-LMs and T-N-LMs alike
and in any combination. It is worth noticing, however, that con-
text for interpolation weights can be different from context for
language model probabilities, and could in fact end up being
the only explicit fixed-length context if only T-R-LMs (and W-
R-LMs) are interpolated.



As training progresses, some class definitions can be up-
dated using Eq. (4) while others can be defined on a per-user
basis. We call this scenario personalized WPE training [13].
For user u, this amounts to turning Eq. (2) into

P (www,ccc, u) =
∏
ci∈ccc

P (ci|hi)P (πi|ci, u) (8)

and then adjusting L′(www,ccc, u) accordingly. Again, these modi-
fications can be used with T-R-LMp in a similar fashion as they
were used with T-N-LMp.

4. Parser Implementation
In this section, we provide more insights into how our parser
is implemented. At each point in time, our trellis parser main-
tains a number of competing states, and decoding is done using
Dynamic Programming algorithm. For WPE language models,
such a “state” incorporates the state of the token-level language
model (n-gram or RNN) and, for non-trivial tokens, also cur-
rent word position within the active token (defined as a word
trie or FSM). Some auxiliary bookkeeping information needs to
be included as well. For n-grams, the state in a token-level LM
is given by the n-gram token history. For RNNs, we store the
activations of the hidden layer. If direct connections are used
[19] (we found them to be crucial for modeling success), the
identities of the preceding tokens are also saved1. In this setup,
consuming the next word of an input sentence means either ad-
vancing within a token definition, or switching to the next token,
or both. For a typical RNN implementation this approach calls
for separation between RNN advancement step (read the next
token and update the hidden state as well as features for direct
connections) and evaluation step (given hidden state activations
and features, compute token output probabilities). Furthermore,
we found it useful to make a number of other adjustments such
as separating begin- and end-of-sentence symbols. This formu-
lation makes parser LM-agnostic and available for any types of
language models, including interpolations.

5. Experiments and Results
5.1. Domain, Data and Tools

Like our previously reported experiments, the latest investiga-
tions are centered around audio interactions of Windows Phone
users with an automated conversational agent (Cortana) and
cover a wide variety of topics and styles, such as voice search,
command-and-control, chit-chat, message dictation and others.
All class definitions remain unchanged since our last investi-
gations and include 21 shared named entities such as ACTOR,
TIME etc. and two personalizable entities CONTACT NAME
and PLACE [13]. However, for various reasons including user
privacy concerns, new data sets had to be assembled. Transi-
tioning to case-sensitive language models is another difference
from our previous experiments. There are two scenarios that we
are focusing on:

• C1: command-and-control and message dictation

• C2: voice search and chit-chat (complement of C1).

The separation is justified by different interaction styles and
personalization opportunities (medium in C1, low in C2). Ta-
ble 1 shows separation of the corresponding corpora into train-
ing, validation and test sets. We train our language models on

1In reality, trellis states are expressed as integer arrays, so certain
type conversions are necessary.

Figure 2: Perplexity on C2 vali1 set for 4-gram W-N-LM, W-R-
LM, T-N-LM (iterations n1–n6) and subsequently trained T-R-
LM (r1–r4); perplexity numbers of the intermediate token-level
RNNs trained on alternative parses are also included on the
right y-axis.

TRAIN, employ perplexity change on VALI1 as a stopping crite-
rion, optimize interpolation weights on VALI2 and measure final
perplexity/WER numbers on TEST-TEXT and TEST-AUDIO re-
spectively. The average sentence length is close to five words.

Table 1: Sizes of data sets for the covered scenarios.

scenario TRAIN VALI1 VALI2 TEST-TEXT TEST-AUDIO

C1 360K 25K 23K 10K 2.4K
C2 1M 45K 45K 10K 4K

To train n-gram language models we use SRILM toolkit
[18]; we also borrow the core trellis decoder from it. Our RNN
implementation is based on [8] with modifications as outlined in
Section 4. We use 4-gram token history for direct connections to
the output layer, the number of classes and size of hidden layer
is set to 100 as we saw that larger networks did not provide any
significant improvement.

5.2. Experiments

As illustrated in Figure 1, the first stage of our training pro-
cess is estimating a T-N-LM. The observed improvements due
to this stage are in-line with our previous reports (about 5%
relative perplexity reduction). Once T-N-LM convergence has
been reached, we continue iterations, but instead of token-level
n-gram LMs, token-level RNN LMs are trained and used to gen-
erate parsing alternatives for each training sentence. The pro-
cess continues till convergence. Figure 2 shows how this pro-
cess changes perplexity on the validation set VALI1 in C2. It
takes T-N-LM training six iterations (n1–n6) to converge, and
the consecutive T-R-LM training takes another 4 iterations (r1–
r4) yielding additional significant improvements. The token-
level perplexity results along the right y-axis illustrate token-
level RNN training progress for consecutive epochs within each
WPE iteration. These numbers are not directly comparable to
the word-level perplexity because they do not take into account
probabilities of particular token realizations, but also because a
single token replaces many words. Even though in the present
setup entities do not impact the OOV rate significantly, in what
follows, we set P(OOV)=1e-7 to enable direct perplexity com-



parison. The final perplexities on the test sets for both scenarios
are shown2 in Table 2. The table shows that while W-R-LM out-
performs 4-gram W-N-LM, it only beats 4-gram T-N-LM in the
C2 scenario, but not in C1 that is heavy on named entities such
as TIME and (in the absence of personalized grammars) FIRST-
NAME. Furthermore, combining the two techniques leads to the
best perplexity numbers for both scenarios (10-15% relative to
W-N-LM and 4-8% relative to W-R-LM).

Table 2: Perplexities of different language models on the test
sets.

scenario W-N-LM T-N-LM W-R-LM T-R-LM
C1 69.7 65.9 62.0 59.3
C2 42.6 40.6 41.0 38.0

For speech recognition experiments, W-N-LMs can be used
just like regular class-based language models [11], but rescoring
is required when RNNs get involved. For each scenario/WPE
combination, we therefore run first pass recognition with the
corresponding n-gram LM (W-N-LM or T-N-LM) and then
rescore the resulting 10-best hypotheses, sending each of them
through the WPE parser to compute lattice probabilities for all
alternative parses of this hypothesis and substituting the first
pass language model probability with it. The oracle WER on
10-best is measured at about half the corresponding 1-best mea-
sure. Table 3 shows the obtained WERs for both scenarios. We
suspect that the relatively modest WER improvements due to
WPE for both n-grams and RNN (≈2%) are caused, in part, by
the somewhat non-random nature of the pre-existing set TEST-
AUDIO and transcriber bias whose effect we described in [20].

Table 3: Word error rates (%) on the test sets.

scenario W-N-LM T-N-LM W-R-LM T-R-LM
C1 15.10 14.76 13.96 13.59
C2 11.58 11.21 10.58 10.38

Next, for the C1 scenario, Table 4 summarizes the effect
of entity personalization as described in Section 3. It shows
that two additional entities CONTACT NAME and PLACE de-
fined on a per-sentence basis, can lead to significant perplexity
improvements (7-9% relative), even though just about 10% of
all test sentences actually had a matching entry in their person-
alized grammars. The corresponding WERs for the recognition
experiments drop to 14.5% and 13.3% for n-grams and RNNs
respectively.

Table 4: Personalization improves perplexities for RNN WPE
LMs, just like it does for n-gram WPE LMs.

personalization n-grams RNN
no T-N-LM⇒65.9 T-R-LM⇒59.3

yes T-N-LMp ⇒61.2 T-R-LMp ⇒53.9

To measure effect of language model interpolation from
Section 3, we separately consider word-level, WPE and person-
alized WPE setups for both scenarios. Table 5 summarizes these

2The relatively low perplexity of C2 is due to a high proportion of
chit-chat.

results. It shows that context-dependent token-level interpola-
tion of n-gram and RNN language models achieves between 6%
and 11% improvement relative to RNN language models alone,
and up to 17% improvement relative to n-grams. WPE language
models benefit from the interpolation just as much as the word-
level LMs do, and the same holds for personalized scenarios.

Table 5: Token-level interpolation of n-gram and RNN language
models.

C1 C2
LM words WPE WPE-pers. words WPE

n-gram 69.7 65.9 61.2 42.6 40.6
RNN 62.0 59.3 53.9 41.0 38.0

interp. 57.9 54.8 50.7 36.5 34.7

On average, the estimated optimal weights assigned to the
RNN ended up between 0.65 (word-level) and 0.75 (WPE). We
discovered that the space of interpolation weights for RNNs is
fairly flat and, on unseen data, the optimized weights contribute
no more than additional 1% in comparison to the context-
independent and equal weights. We believe that it is RNN’s
inherent ability to impose similarity metric on words that ren-
ders context-dependent interpolation weights superfluous. Still,
additional small improvements could be achieved by interpo-
lating all four types of language models (W-N-LM, W-R-LM,
T-N-LM and T-R-LM).

In terms of word error rates, we saw no consistent improve-
ment due to interpolation w.r.t. rescoring with RNNs alone, de-
spite strong indications to the contrary from the perplexity num-
bers. The WER improvements were on the order of at most 1%.
We then ran a parameter sweep for sentence-level interpolation
and saw an almost monotonic increase in WER as more proba-
bility mass was moved from RNNs to n-grams. Having inves-
tigated connections between changes in language model score
and changes in WER as we transition from RNN LMs to the
corresponding interpolated versions, we have noticed that there
was a large number of sentences that experienced a substantial
increase in LM score due to interpolation while the n-best order
remained unaffected. On the other hand, the range of small LM-
score changes had no visible correlation with WER moves. We
did see, however, that small improvements could be achieved
when rescoring was accompanied by increase in the language
model scale (relative to acoustic model’s contributions).

6. Future Work and Conclusions
We have demonstrated that the Word-Phrase-Entity language
modeling technique can be successfully applied to other types
of language models, such as popular Recurrent Language Mod-
els. The RNNs turned out to benefit from the joint modeling
of words phrases and entities, just as n-grams did, achieving
up to 7% perplexity improvements. We also ported two other
previously introduced WPE techniques to RNNs: personaliza-
tion and token-level interpolation. On the corpus with per-
sonal entity definitions another 9% reduction in perplexity was
achieved, and token-level context-dependent interpolation ac-
counted for an additional 6-8% drop. The improvements were
accompanied by modest decreases in word error rates, except
for token-level interpolation where no consistent sizable im-
provements were observed. Our next goals are to scale the ex-
periments to larger data sets and to extend the concept of classes
to data-driven word clusters and thus obtain much higher cov-
erage compared to the opportunistically defined entities.
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