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Abstract

Cloud providers have made significant strides in reducing
the cooling capital and operational costs of their datacenters,
for example, by leveraging outside air (“free”’) cooling where
possible. Despite these advances, cooling costs still repre-
sent a significant expense mainly because cloud providers
typically provision their cooling infrastructure for the worst-
case scenario (i.e., very high load and outside temperature
at the same time). Thus, in this paper, we propose to reduce
cooling costs by underprovisioning the cooling infrastruc-
ture. When the cooling is underprovisioned, there might be
(rare) periods when the cooling infrastructure cannot cool
down the IT equipment enough. During these periods, we
can either (1) reduce the processing capacity and potentially
degrade the quality of service, or (2) let the IT equipment
temperature increase in exchange for a controlled degra-
dation in reliability. To determine the ideal amount of un-
derprovisioning, we introduce CoolProvision, an optimiza-
tion and simulation framework for selecting the cheapest
provisioning within performance constraints defined by the
provider. CoolProvision leverages an abstract trace of the ex-
pected workload, as well as cooling, performance, power,
reliability, and cost models to explore the space of potential
provisionings. Using data from a real small free-cooled data-
center, our results suggest that CoolProvision can reduce the
cost of cooling by up to 55%. We extrapolate our experience
and results to larger cloud datacenters as well.

Categories and Subject Descriptors C.m [Computer Sys-
tems Organizations]: Miscellaneous; D.4.m [Operating
systems]: Miscellaneous
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1. Introduction

Cloud datacenters are expensive to build and operate. The
construction cost for large datacenters is roughly $9-13 per
Watt of critical power, and is higher for small datacenters [5].
This may translate to over $100M for a I0MW datacenter. In
addition, US datacenters collectively incur billions of dollars
in electricity cost per year [40]. These high costs provide
strong incentives for careful provisioning of datacenters and
for improving their energy efficiency.

Cloud providers, such as Microsoft and Google, have
made significant progress in improving their datacenters’ en-
ergy efficiency to reduce operational costs (OPEX). For ex-
ample, Google is reporting average Power Usage Effective-
ness (PUE) values close to 1.1 in ideal locations [20], show-
ing that it has reduced cooling OPEX significantly. Providers
have achieved these improvements by combining multiple
techniques, such as increasing the operating temperature of
the IT equipment, completely isolating the cold and hot
aisles, and leveraging outside air to cool the IT equipment.
The latter technique is commonly called “free” cooling.

Reducing capital costs (CAPEX) has also received atten-
tion. For example, Fan et al. studied power provisioning, ar-
guing that datacenters’ current power delivery infrastructure
is typically over-provisioned [17]. Govindan et al. studied
the benefits of power underprovisioning when the datacenter
uses batteries during peaks of power consumption [21].

However, to the best of our knowledge, no prior paper
has explored the provisioning of the cooling equipment of
modern datacenters, even though cooling CAPEX is still
significant. Barroso et al. estimate that power and cooling
account for approximately 80% of total construction cost [5].
Cooling CAPEX is particularly high in locations where free
cooling must be combined with conventional (chiller-based)
cooling for when the outside temperature is too high.

CAPEX costs are exacerbated by the fact that cloud
providers typically provision cooling systems for the worst-
case scenario, i.e. for periods of simultaneous high load and
outside temperature. This may significantly increase the cost
of cooling, while leaving much of the cooling capacity un-
used most of the time. Fortunately, it may be possible to
lower costs by underprovisioning the cooling system, if the
provider can tolerate some performance degradation in ex-
treme circumstances and/or trade off some hardware reliabil-



ity. For example, during periods of high outside temperature,
some of the current workload may be deferred, consolidated
into fewer machines, and/or the datacenter allowed to op-
erate at higher than ideal temperatures. Such tradeoffs may
lower both cooling CAPEX and OPEX, but may also incur
extra costs with increased hardware replacements.

Thus, we propose CoolProvision, an approach for care-
fully underprovisioning the cooling system of a datacenter.
The goal is to minimize the overall cost, including CAPEX,
OPEX, and any reliability costs, within performance con-
straints defined by the cloud provider. CoolProvision in-
cludes: (1) cost models for provisioning and operating the
cooling system, and hardware replacement; (2) cooling and
reliability models representing the thermal behaviors and
their impact on hardware failures; (3) performance and
power models representing workload scheduling and energy
management policies; and (4) an optimization and simula-
tion framework that integrates the models and policies with
weather data for the location, and the expected workload to
compute the appropriate provisioning of the cooling system.

CoolProvision can lower costs through the use of cheaper
cooling technologies (e.g., free cooling even in hot and hu-
mid locations), as well as reducing the maximum cooling ca-
pacity required. Significant CAPEX savings also arise from
the reduced peak power required by the datacenter’s power
delivery infrastructure (e.g., UPS, generators, distribution
capacity), but we do not address these savings in this paper.

As areal case study, we apply CoolProvision to the Para-
sol datacenter prototype [18]. Parasol comprises a small con-
tainer that isolates cold and hot aisles, and combines a free
cooling unit with a direct-expansion air conditioner (AC).
Parasol has already been built so our study considers what
the infrastructure provisioning could have been for it. Our
results show that Parasol’s cooling could have been under-
provisioned for up to 55% cooling-related cost savings.

Though Parasol is obviously not a cloud datacenter, it
does provide us the ability to create accurate thermal and
cooling models, which we do not have for a real cloud dat-
acenter, and experiment with free cooling and the workload
and energy management techniques we consider. Neverthe-
less, we explore how CoolProvision and its models can be
used or extrapolated for cloud datacenters as well.

2. Datacenter Cooling

In this section, we describe the main cooling approaches
used in cloud datacenters: (1) chiller-based cooling, (2)
water-side economized cooling, and (3) direct evaporative
cooling (or simply free cooling). Table 1 summarizes the
main characteristics of the approaches. At the end of the
section, we also discuss the approaches used in small- and
medium-scale datacenters, which are similar.

Chiller-based cooling. In this setup, datacenters use wa-

ter chillers, cooling towers, and computer room air handlers
(CRAHSs). The CRAHS circulate the air carrying heat from

Technology ‘ Temp./Hum. Control ‘ CAPEX ‘ PUE
Chiller Precise / Precise $2.0/w | 1.7

Water-side Precise / Precise $2.8/w | 1.19
Direct evap./free Medium / Low $0.7/wW | 1.12

Table 1. Typical temperature and RH control, CAPEX costs [13,
31], and PUEs of the cooling technologies [16, 39].

the servers to cooling coils carrying chilled water. The heat
is then transferred via the water back to the chillers, which
transfer some of the heat to another water loop directed to the
cooling towers. The towers cool the water down via evapo-
ration. The chillers then remove the remaining heat from the
water, and the chilled water is returned to the cooling coils.
Chillers are expensive and consume a significant amount of
energy. However, they allow precise control of the environ-
mental conditions inside the datacenter (except for hot spots
that may develop due to poor air flow design).

Water-side economized cooling. An improvement over
chiller-based cooling allows the chillers to be bypassed (and
turned off) when the cooling towers alone are sufficient to
cool the water. Turning the chillers off significantly reduces
energy consumption. When the cooling towers cannot lower
the temperature enough, the chillers come back on. Water-
size economized cooling preserves the ability to precisely
control the environmental conditions inside the datacenter.
It also does not mix outside and inside air.

Direct evaporative (free) cooling. A more recent advance
has been to use large fans to blow cool outside air into the
datacenter, and guide the warm return air back out of it.
When the outside temperature is high, an evaporative pro-
cess can be applied [15], where water is sprayed on the out-
side air while it passes through a washer system. This pro-
cess lowers the air temperature before letting it reach the
servers. To increase temperature (during excessively cold
periods) and/or reduce relative humidity, these datacenters
intentionally recirculate some of the warm return air. Free
cooling obviates the need for chillers and cooling towers,
and thus is the least expensive to build and operate. However,
it may also expose servers to warmer and more variable tem-
peratures, and higher and more variable relative humidities
than the other cooling approaches.

Small- and medium-scale datacenters. Cooling approaches
for smaller datacenters are similar, although their free cool-
ing systems may [14] or may not [18] include evaporative
cooling. In addition, technologies such as direct-expansion
air conditioning may be used instead of chillers and cooling
towers. In fact, some smaller datacenters use a combination
of free and direct-expansion cooling. Using such a combina-
tion, Parasol achieves a PUE of 1.13, which is comparable
to that of free-cooled cloud datacenters.

3. Provisioning Cloud Datacenter Cooling

Traditional provisioning. Traditionally, the provisioning of
a datacenter’s cooling system starts with determining the
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Figure 1. Inlet air temperature for a direct evaporative cooler.
Red and brown areas show infeasible locations for free-cooled dat-
acenters under ASHRAE’s guidelines and traditional provisioning.

maximum desired cold aisle server inlet temperature and rel-
ative humidity, taking into consideration the servers’ ther-
mal limits, the reliability effects on server components, and
the desired temperature differential between the cold and hot
aisles. For example, the current ASHRAE guidelines allow
inlet temperatures in the range of 15 —32°C and relative hu-
midity in the range of 20 — 80% [23]. Next, the cooling ap-
proach (chiller-based vs. free cooling vs. hybrid) is selected
based on a study of the historical weather data for the se-
lected datacenter site. This process ensures that the cooling
approach will always be able to meet the inlet temperature
and humidity design requirements. Finally, the cooling ca-
pacity is determined, ensuring at least a 1:1 relationship to
the peak IT power consumption under the worst-case oper-
ating scenario. For example, a 10 MW datacenter needs to
be provisioned with at least 10 MW of cooling capacity to
maintain a target inlet temperature.

Our provisioning approach. The traditional provisioning
approach guarantees that the datacenter will always be able
to support the peak IT power consumption, regardless of out-
side conditions. This approach makes it impossible to use
free cooling in many parts of the world. To see this, Figure 1
shows threshold temperatures around the world, where there
is a 2% chance of the threshold or higher temperatures oc-
curring in a year, after the outside air has passed through the
evaporative cooling process. We compute these temperatures
using ASHRAE's historical temperature distribution data for
each location [2], together with a simple well-known thermal
model for the evaporative process (described in Section 5).
Thus, if one were to target a maximum inlet temperature of
32°C in the datacenter at all times, it would be impossible
to use free cooling in many parts of the world. Critically,
it is important to site datacenters in these geographic areas
to provide low response times, since a large fraction of the
global population resides in these areas. To reduce costs, we
would like to use free cooling there as well.

Several observations suggest that the traditional provi-
sioning approach is overly conservative, and so unnecessar-
ily expensive. First, it is rare for cloud datacenters to operate
at (or even near) peak processing capacity [5, 9, 27]. Second,
extreme outside temperatures are also rare. As Figure 1 sug-
gests, most locations in the world experience dry-bulb tem-

peratures of 32°C or higher less than 2% of the time. Third,
many cloud workloads (e.g., data analytics, scientific com-
puting, interactive workloads other than Web search) may
be amenable to a small amount of temporal delay and/or de-
graded quality of service during the rare times when peak
load occurs during overly harsh outside conditions. Finally,
even if the workload cannot be appropriately shaped, the
IT equipment can operate at higher-than-target temperatures
without failing (e.g., [24]), although exposure to high tem-
peratures may increase failure rates over time (e.g., [35]).
Given the above observations, we propose to underpro-
vision the cooling system based on total cost of ownership
(TCO), subject to required performance constraints, rather
than provision for handling peak load under worst-case out-
side conditions. In our provisioning approach, the datacenter
may experience short excursions into temperatures higher
than ASHRAE’s limits. From the world-wide temperature
data, we estimate that allowing temporary excursions of 3°C
beyond ASHRAE’s allowable limits for cloud datacenters
is sufficient to allow free cooling with evaporative coolers
virtually everywhere on Earth, including most of India and
China. With climate change, a few regions eventually may
require larger excursions. (If allowed by performance con-
straints, workload scheduling and power management tech-
niques can significantly reduce these excursions, as we men-
tion below.) We express the cost of these excursions as the
additional cost of replacing failed components due to higher
temperature. As shall be seen in Section 6, the expected in-
crease in failure rate is small; thus, we expect that current
datacenter fault-tolerant software and existing levels of data
replication can easily cope with the increased failure rate.
Our approach uses an expected power profile and out-
side conditions over the course of the datacenter’s lifetime.
Since it is difficult to predict a detailed power profile so far
(e.g., one year or more) in advance, the approach can use a
simple abstract expected workload when a detailed profile
is not available. Such an abstract profile needs to include a
rough estimate of the peaks and valleys of the power con-
sumption over some representative time interval (e.g., one
week). This power profile should include the highest ex-
pected peak in power consumption that the datacenter will
likely experience. The daily peaks of the power profile can
be predicted based on the expected peak loads for each day,
running on the IT hardware that will be used at the de-
sired level of hardware utilization, whereas the valleys of the
power profile can be cast as a percentage (e.g., 33%) of the
peaks. We can then connect the daily peaks and valleys us-
ing sine waves, and replicate the connected power profile for
the planned lifetime of the datacenter. As the cloud provider
must forecast its needs (e.g., its expected workload) before
building the datacenter, it can be reasonably expected to pro-
duce such a simple workload representation. For the outside
conditions profile, we use past temperatures and humidities
at the datacenter’s location, going back as many years as the
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Figure 2. Different provisioning approaches.

planned lifetime of the datacenter. We discuss performance
constraints in detail in Section 4.6. Our approach computes
the required cooling capacity (in Watts) over time from this
resulting power plus outside conditions lifetime profile, and
operates on it to provision the cooling infrastructure. The
outcome of our approach is the set of cooling technologies
(e.g., chillers, free cooling, air conditioning) and respective
capacities that should be used to minimize the TCO within
the performance constraints.

Figure 2 illustrates three days of a lifetime profile. The
left graph in the figure shows the expected daily peak power
profile (Y-axis on the right) of the datacenter to be built, as
well as the corresponding highest outside temperature (Y-
axis on the left) over the last year at the datacenter loca-
tion, as a function of time (3 days in the X-axis). We do
not show humidities for simplicity. The right graph shows
the required cooling capacity corresponding to each day de-
picted in the left graph. This graph also includes two hori-
zontal lines for traditional provisioning (top) and underpro-
visioning (bottom). As the graph illustrates, traditional pro-
visioning is expensive since peaks of power consumption are
rare and they overlap with extreme outside conditions even
more rarely. Underprovisioning reduces costs significantly,
but may involve rare periods in which there is not enough
cooling capacity, i.e. the red area in the figure.

In essence, our approach carefully selects where to place
the provisioning line, so that the red areas are just large
enough to maximize the cost reduction without violating the
performance constraints set by the cloud provider. The work-
load and energy management techniques that our approach
prescribes either reduce or eliminate the red areas by low-
ering power consumption (via consolidation or DVES) or
moving the corresponding load under the line slightly later
in time (via deferring the load, if that is acceptable to the
provider). The cloud provider can provide information on the
techniques’ impacts on power and performance, essentially
specifying how the techniques impact the required cooling
capacity over time. For best results, the datacenter must use
these or equivalent techniques when in operation, and can
rely on online real-time weather data, e.g. weather.com. To
compensate for any underprediction of load or power draw,
the provider can add slack to the provisioning. If, during op-
eration, the load or power is even higher, the management
techniques can control temperature. When such techniques
cannot be used, our approach may decide to “rightsize” the
cooling, like in the traditional approach.
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Figure 3. CoolProvision architecture.

Interestingly, our approach may actually leave some
amount of red area by design, when the corresponding re-
duction in cooling CAPEX and OPEX costs exceeds the
cost of the additional hardware replacements. Clearly, our
approach can lower costs significantly, but it needs to model
and quantify these tradeoffs carefully using the lifetime pro-
file described above as its input. CoolProvision embodies
these smarts with a default set of models, which the provider
can easily replace with more sophisticated ones.

4. CoolProvision
4.1 Overview

CoolProvision proposes a provisioning for the cooling in-
frastructure that will minimize the cooling-related costs un-
der a set of runtime constraints (inlet air properties and
workload performance) by trading off cooling CAPEX and
OPEX, IT performance, and IT component reliability. The
input to CoolProvision is the power and environmental con-
ditions lifetime profile we introduced above.

Figure 3 illustrates CoolProvision’s architecture. It has
two main components: a datacenter simulator and a TCO op-
timizer. The components interact to simulate the entire life-
time of the datacenter, one time horizon (6 hours by default)
at a time. For finer granularity decisions, we split the hori-
zon into epochs (1 hour each by default). (Large datacenters
are typically split into many smaller areas, sometimes called
“Colos”, so we can simulate just one of these areas and ex-
trapolate from it.) Based on a default starting cooling capac-
ity, configuration, and the input profile, the optimizer decides
on the cooling and workload (represented by its power con-
sumption) settings for each epoch in the first horizon. Given
these settings, the simulator then simulates the cooling be-
havior, thermals, power, and workload (represented by the
power consumption and CPU utilization). The status of these
characteristics after the first horizon is then communicated
to the cooling size controller (part of the simulator), which
may decide to increase the cooling capacity for the rest of the
simulation. This decision impacts the CAPEX of the cool-
ing. The TCO optimizer also receives the status information,
selects the settings for each epoch of the next horizon, and



invokes the simulator again. This process repeats until all
horizons have elapsed and the needed cooling provisioning
(technologies and capacities) has been determined. Finally,
we rerun the simulation with the produced cooling capacity
to obtain accurate energy and reliability results.

The optimizer relies on the power and outside conditions
lifetime profile, as well as models to quantify the trade-
offs between cooling capital costs, cooling operational costs,
and component reliability. Specifically, the optimizer utilizes
four classes of models: (1) capital and operating costs, (2)
cooling and temperature, (3) power and performance, and
(4) IT component reliability. Besides the lifetime profile, the
optimizer needs information on the expected impact of the
workload and energy management techniques it embodies
— workload throttling (via DVFS), workload consolidation
onto fewer active servers, and workload deferral (when the
latter is allowed) — and how extensively these techniques can
be used (i.e., the performance constraints). The techniques’
impact is expressed as (1) the change in IT power consump-
tion when the techniques are used, and (2) the change in
future IT power. For example, workload deferral can shift
power from a load peak to a later time when the underprovi-
sioned cooling infrastructure can handle it. In this case, the
performance constraint would specify the maximum number
of epochs by which the load peak can be deferred.

With the above inputs and models, the optimizer uses nu-
merical methods, namely sequential quadratic programming
(SQP), to minimize the total cooling-related costs within the
temperature, relative humidity, and performance constraints
defined by the cloud provider. The optimizer’s output in-
cludes the best cooling speed (amount of airflow and com-
pressor speed), number of servers to keep active, and work-
load management technique to use for the epochs in the hori-
zon. We define fairly short horizons because solving larger
SQP problems can take very long. With shorter horizons,
the solver has less future knowledge, which primarily affects
load deferring. In practice, providers can define longer hori-
zons and apply more computing power to solve the problem.

4.2 Optimization and Problem Formulation

Table 2 summarizes the input, output, intermediate variables
and constants in our framework, whereas Equation 1 states
the optimization problem. The framework inputs are: (1)
the cooling-related costs (CAPEX, power consumption, and
efficiency), (2) the current and future outside conditions, (3)
the current conditions inside the datacenter, (4) the IT-related
parameters (number of servers, hardware component failure
rates), and (5) the optimization-related parameters (e.g., the
length of the datacenter lifetime, horizon, and epoch). The
outputs are the type and size of the cooling, as well as the
settings for each epoch. The settings are: (1) the speed of the
cooling (i.e., amount of air flow), (2) the duty cycle of the
cooling (on/off time during each epoch), (3) the number of
active servers and their corresponding power (DVFES, on/off)
state, and (4) an execution plan for the incoming workload in

Symbol Name  Description Value Units
Costs

TCCost Total Cooling-Related Cost Output $
CoolCapex Cooling Capex Output $
CostPerKw Cooling Capex Cost/kW Input* $'w
CCost; Cooling Opex Output $
Costpoyer Energy Price/kWh 0.08 $
RCost Reliability Cost Output $
Cooling

CoolCapacity Cooling Capacity Int. Var. kW
PCool; Cooling Power Draw Int. Var. kW
PComp; Compressor Power Int. Var. kW
PCompMax Max Compressor/Chiller Power {1.6,5849} kW
PFan, Fan Power Int. Var. kW
PFanMax Max Fan Power {0.55,2025} kW
Cool; Cooling Speed Output %
E Evap. Efficiency 90 %
Environmentals

Tout, Outside Dry Bulb Temp. Input °C
ToutW B; Outside Wet Bulb Temp. Input °C
Tiny Inlet Temp. Int. Var. °C
RH, Inlet RH Int. Var. %
TinVar; Inlet Temp. Variation/hour Int. Var. °C
RHinVar, Inlet RH Variation/hour Int. Var. %
Ting oy Inlet Temp. Low Bound 5 °C
Tinse Inlet Temp. Setpoint 30 °C
Tingy; Inlet Temp. Tolerance 5 °C
RHyign RH High Bound 80 %
RH;,,, RH Low Bound 20 %
RHVargign Max RH Variation/hour 20 %
TVaryg Max Temp. Variation/hour 20 °C
TCase; Disk Temp. Int. Var. °C
Servers

Maxg,, Total Servers {64,40000} N/A
fi CPU Frequency Output %
L IT Power as % of Max Power ~ Output %
PDyn, Dynamic Power Int. Var. w
PLeak; Leakage Power Int. Var. w
Preak nominal Leakage at 40°C {7, 80} w
TCPU, CPU Temperature Int. Var. °C
PMax Server Max Power {35,250} W
PBack Server Background Power {13, 45} W
NodePower! Server Power Int. Var. W
Disks

Diskcy Disk Count {64, 160000} N/A
Diskeos Disk Cost 100 $
AFR Disk AFR at 40°C 1.5 %
Pfail, Disk Fail Rate/epoch Int. Var. N/A
Ppail_nominal Disk Fail Rate/epoch at 40°C Int. Var. %
CoolProvision

l Epochs in Lifetime 158760 N/A
h Horizon 6 N/A
t Current Epoch 0—1 N/A
|t] Epoch Length 60 Mins

Table 2. Summary of the framework. Each symbol is categorized
as an input, output, or intermediate variable for the optimization.
Default values are shown whenever possible and should be re-
garded as inputs. Wherever there are two input values, the one on
the left is used in our study of small datacenters and the one on the
right is for large datacenters. *For CostPerKw we use values from
Parasol for small datacenters (3.2 $/W for the direct expansion AC
and 0.96 $/W for the direct evaporative cooler), and values from
Table 1 for large datacenters.



case it is deferrable. Note that, for simplicity, we focus solely
on the reliability of disk drives, since these components are
the most likely to be affected by a harsh environment [34].

l

min: TCCost =Vt € {O,h,Zh,...,E}

h t+h
Z(CoolCapex- 7 + Z(CCost, + RCost;))
t

t
5. t.: Tingoy < Tiny < Tinge + Tingy M

RHL{)W S RHI S RHHigh
TinVar, < TVargig,
RHinVar; < RHVaryg,

CoolProvision’s optimization goal is to minimize the cost of
purchasing (CoolCapex) and operating (CCost) the cooling
infrastructure, and replacing failed hardware (RCost) over
the horizon. CoolCapex includes the capital cost of the cool-
ing equipment, installation, and piping, whereas CCost rep-
resents the energy cost of operating this equipment.

The constraints relate to environmental conditions within
the datacenter. Specifically, the first constraint in Equation 1
refers to keeping inlet air temperature (7'in) between a mini-
mum (TinLow) and a setpoint (Ts,;), while allowing a toler-
ance (T7,;) if keeping the temperature at the setpoint is not
feasible. The redline temperature we absolutely do not want
to exceed is Tinge + Ting,;. The second constraint limits the
inlet air relative humidity within a range (RHyow—RHgigh).
The third and fourth constraints limit the amount of inlet
temperature and relative humidity variation.

CoolProvision solves the optimization problem as many
times as there are horizons in the projected lifetime of the
datacenter. If any of these solutions is infeasible, CoolPro-
vision applies one of the workload and energy management
techniques to the abstract power profile, and re-starts the pro-
cedure for that horizon. The techniques modify the power
profile based on the performance constraints specified by
the cloud provider (discussed below). As performance con-
straints, the provider can specify the acceptable amount of
DVFS during a year (i.e., the percentage of time DVES can
be used), the amount of consolidation (i.e., the ratio between
the number of active servers with and without consolida-
tion), and the amount of workload deferral (i.e., the number
of epochs by which the load can be deferred) that is allowed.

4.3 Cost Modeling

Cooling capital cost. We model this cost as: CoolCapex =
CoolCapacity - CostPerKW, where CoolCapacity is the ca-

pacity of the cooling system measured in KW, and Cost PerKW

is the capital cost of the cooling infrastructure per KW.

We assume that the cooling capacity/size has a linear im-
pact on the peak cooling power. To characterize this rela-
tionship, we have collected data (cooling capacity-to-power
ratio) from several vendors for four air and water-cooled
chillers and one air-side economizer with backup chiller (75

models in total). Our collected data suggest that the ratio
remains approximately constant as each technology scales
towards larger sizes, and justify our assumption.

We also assume that the capacity/size of the cooling
equipment (fans, compressors, pipes, sensors, and ducts)
scales linearly with their price, including deployment, in-
stallation, and maintenance. We verified the accuracy of this
assumption with data from several vendors.

Cooling operational cost. The cooling OPEX cost during
epoch ¢ depends on the average power consumption of the
cooling equipment PCool; and the energy price Costpoyer:
CCost; = PCool; - Costpoper.

Reliability cost. Disks account for a large fraction (e.g.,
75%) of failures in datacenters, while CPU and memory each
accounts for less than 5% [32, 34, 37]. Thus, we model the
reliability cost as that for replacing disks that will likely fail
due to higher temperature; our model can be easily extended
to account for other component failures as well. Specifically:

RCost; = |t‘ : (Pfailt _Pfailﬂz)minal) - Diskosy - Diskens  (2)

where [ is the duration of epoch ¢, Pfail; is the disk fail-
ure rate during the epoch, Pyuii_nominai 18 the fraction of the
Annualized Failure Rate (AFR) during the epoch, Disk s is
the disk price, and Disk,,; is the number of disks.

To compute Pfail;, we use the Arrhenius model to cal-
culate an acceleration factor (AF;) for the disk lifetime as a
function of temperature. This model has been used for the
same purpose in prior works, e.g. [11, 34]. AF; determines
how fast temperature accelerates the disks’ failure:

Eq _

AF, = T'(ralm %) 3
r=e€ ' 3)

where E, is the activation energy (in eV) for the device, k
is Boltzmann’s constant (1.1 - 107° eV/K), T is the baseline
operating temperature (in K) of the device, and T Case; is the
average elevated temperature (in K) of the device. Note that
this model makes the reliability cost become a non-linear
function of temperature. We then compute P fail, as:

Pfail, = AF; - Pfailjmminal 4)

For example, for a temperature of 60°C, Equations 3 and 4
predict a two-fold increase in the failure probability.

4.4 Thermal and Cooling Modeling

Inlet air temperature and relative humidity. CoolProvi-
sion requires models that can predict the inlet air tempera-
ture and relative humidity at each server. These models are
typically functions of the following inputs: (1) the current
inlet temperature and humidity, (2) the outside temperature
and humidity, (3) the current IT load (power consumption),
(4) the cooling unit that is operating, and (5) the speed at
which it is operating (e.g., fan, compressor).



These models should be provided by the cloud provider
for each cooling technology. In Section 5, we describe the
specific models we use in our Parasol case study.

Disk case temperature. This temperature can be approx-
imated as a linear function of the inlet temperature, CPU
utilization, and disk utilization. For simplicity, we conserva-
tively set it to the worst-case hot aisle temperature.

4.5 Power Modeling

Server power model. We model the power consumption
NodePower of the k' server as a function of the CPU uti-
lization (which we estimate from the workload simulation),
temperature, and frequency. We split the server power into:
(1) dynamic CPU power PDyn,, (2) CPU leakage power
PLeak; and (3) background power from the other compo-
nents PBack. As in [36], we model dynamic power as a lin-
ear function of frequency and utilization (assuming that the
power draw of the other components varies little). We also
assume that all cores share the same voltage and frequency.
A sleeping server (e.g., ACPI S3) consumes near-zero Watts.

NodePower; = PLeak; + PDyn; + PBack (®))
PDyn; = a- f; - CPUutil, - PMax (6)

For the leakage power, we use a model from Biswas
et al. [8] that relates temperature and leakage. Assuming
an operating temperature of TCPU; that matches the inlet
air temperature, we estimate the leakage as a function of a
known base leakage Pieqk_nominai &t TCPU = 40°C.

PLeak, = (a-TCPU;” +b-TCPU, +¢) - Preatnominat (7)

Cooling power model. CoolProvision requires models relat-
ing the speed of operation of each cooling unit to its power
consumption. The cloud provider must provide these models
for the cooling technologies to be considered. In Section 5,
we detail the power models we use in our Parasol case study.

4.6 Workload and Energy Management

Using the models described in Sections 4.4 and 4.5 and the
input (IT power plus outside conditions) lifetime profile,
CoolProvision can determine the required cooling capacity
over time. However, provisioning for the maximum require-
ment can be expensive, so it also embodies workload and
energy management techniques — workload throttling (via
DVES), workload consolidation onto fewer active servers,
and workload deferral (when the latter is allowed) — to lower
the higher cooling capacity requirements. For best results,
these techniques should be used by the datacenter manage-
ment software when the datacenter starts to operate.

Instead of applying the techniques to detailed workload
traces that are unlikely to be accurate so far in advance of op-
eration, CoolProvision evaluates the techniques analytically
in terms of their impact on the IT power profile. The cloud
provider specifies which techniques are acceptable, based on

the characteristics of the expected workload (e.g., batch vs
interactive). The techniques change the power draw when
they are used, and possibly the future power draw when us-
ing them causes load to be postponed or lengthened. The
provider must also specify the extent of these effects on the
power profile, and limits on the techniques’ use (e.g., do not
DVES the CPU for more than 5% of the epochs, do not ex-
ceed 80% CPU utilization when consolidating). We assume
that the provider knows the limits its workloads would be un-
der. We refer to these limits as the performance constraints.

Our algorithm for applying the techniques works as fol-
lows. It starts when CoolProvision finds Equation 1 to be
infeasible (usually because the inlet temperature becomes
higher than Ting. + Ting,;) for a horizon. At that point, the
algorithm performs a gradient descent by repeatedly chang-
ing the power profile according to the technique used (and
within its performance constraints), and evaluating the equa-
tion for the horizon. Currently, CoolProvision uses only one
technique per optimization run. Eventually, CoolProvision
finds the cheapest setting of the power profile that will sat-
isfy all constraints. Next, we discuss each technique in turn.

Workload Deferral. Workload deferral often applies to
batch computations that do not have tight deadlines. This
technique may allow CoolProvision to shift some of the ex-
pected IT energy consumption (heat production) to times
when there is less load in the system or when cooling is more
efficient. For example, free cooling is most efficient when
both humidity and temperature are relatively low. CoolPro-
vision guarantees that the workload cannot be deferred more
than a provider-chosen number of epochs.

Workload Consolidation. Both batch and interactive work-
loads can often be consolidated onto fewer servers, so that
the freed-up servers can be transitioned to a low-power state
(e.g., ACPI S3). This technique allows CoolProvision to
lower the expected IT power draw when the outside envi-
ronmental conditions are expected to be harsh (e.g., noon
time during the summer at a warm location) or when power
draw is expected to be very high. To apply this technique,
CoolProvision requires two additional inputs from the cloud
provider: the typical CPU utilization at the highest expected
load peak, and how much higher is CPU utilization of the
active servers is allowed to get after consolidation. These
two values determine the maximum amount of consolidation
that the cloud provider wants to allow. For example, an inter-
active workload may target a peak CPU utilization of 50%,
(response time often suffers at higher utilization due to queu-
ing effects), but may accept that a subset of the servers run at
60% utilization during short periods of extreme conditions.
To calculate the power draw of the consolidated cluster, the
algorithm assumes that the load on the servers to be deacti-
vated is evenly spread (e.g., via live VM migration or request
distribution) across the servers that will remain active.

Workload Throttling via DVFS. Workload throttling can
usually be applied to both batch and interactive workloads.



Similar to the two previous techniques, throttling can re-
duce the required cooling capacity by “shaving” the thermal
peaks. CoolProvision assumes that all servers are throttled
together and by the same amount. When applying this tech-
nique, CoolProvision searches for the frequency that will
minimize the cooling-related cost. To do this, CoolProvision
requires three inputs from the cloud provider: (1) a func-
tion quantifying power consumption for each allowed DVFS
setting during load peaks, (2) a function quantifying perfor-
mance loss (or how much the power profile should be shifted
to the right) for each DVFS setting during load peaks, and (3)
a constraint on the percentage of epochs during a year where
CoolProvision can apply DVFS.

5. Applying CoolProvision to Parasol

We do not have unfettered access to a cloud datacenter and
its cooling, so we demonstrate CoolProvision with models
developed for Parasol in [19]. Parasol is a small container-
based datacenter that combines a free cooling unit (Dan-
therm Flexibox 4500) and a direct-expansion AC (Dantherm
iA/C 19000). It also embodies a commercial cooling con-
troller that periodically selects the cooling regime (e.g., free
cooling at 50% fan speed, or free cooling off with AC on).
To broaden the geographical regions where Parasol could be
efficiently used, we model an additional washer system in
Parasol’s free cooling unit to lower air temperature via evap-
oration. With the additional model, Parasol becomes a hy-
brid direct evaporative cooler plus an AC.

Using the Parasol models and the workload and energy
management techniques we consider, CoolProvision can de-
termine what an underprovisioned cooling system for Para-
sol could have been and how much money it would save.
Similarly, we can use these models and the management
techniques to provision a different datacenter with one or
both of the cooling technologies we consider.

Goiri et al. built the Parasol thermal and cooling models
using regression over several months of temperature, humid-
ity, and power consumption data [19]. Next, we describe the
models that we use for the free cooling unit and the AC. We
also leverage Parasol’s free cooling model to derive a model
for an evaporative cooler (which Parasol does not have).

Compressor-based AC thermal model. We model a variable-

speed compressor as in [19]. The model predicts the next
inlet air temperature T'in, | based on several factors:

Ting 1 = a-Cooly + B - Tout, +y-Ting + 8 - Ting— 1+
E'L[+C'COOZ[+TI (8)

where Cool; is the cooling speed, L, is the percentage of the
maximum datacenter power, and ((...1] are constants esti-
mated using regression from Parasol’s AC unit. We model
the relative humidity as a constant when using the AC.

Direct evaporative cooler thermal model. We use the the-
oretical model for an evaporative cooler [1] to alter the prop-
erties of the outside air, effectively simulating the decrease

in dry bulb and the increase in wet bulb temperature due to
water evaporation. The relationship is as follows:

ToutNewDB, | = Tout; 1 — ((Tout;+ — ToutWB; 1) - E)

€))
where ToutNewDB; 1 denotes the new dry bulb tempera-
ture, Tout;1 and ToutWB;,| denote the original dry and
wet bulb temperatures, and E denotes the efficiency of the
medium. To compute the inlet temperature, we set Tout; | =
ToutNewDB, 1. To compute the relative humidity, we oper-
ate with the dry and wet bulb temperatures using a model
from [4]. Then, we use the new air properties as an input to
the existing Parasol free cooling model:

Ting 1 = a-Cools_1 + B - Cool, - Tout; +y-Cool;_y - Ting_
+6-Tout; +€-Ting + ¢ -Tin,_1+1-L;

(10)

When it is too cold outside, the optimizer lowers the fan

speed (and may even close out the datacenter) to increase

the temperature inside. When the outside relative humidity

is higher than RHpy;gp,, the optimizer re-circulates the warm
air to raise temperature (thus lowering relative humidity).

AC power model. We model the AC power as the sum of
the compressor (PComp) and fan (PFan) powers.

PComp; = - Cool; - PCompMax+ 3 (11)
PFan, = (y- (Cool?) — & - Cool,) - PFanMax+¢  (12)

where PCompMax and PFanMax are the maximum power
draws of the AC compressor and fan, respectively.

Direct evaporative cooler power model. We model this
power draw as PFan, above but with other constants instan-
tiated from measurements of Parasol’s free cooling unit [19].
We assume that the power draw of the washer is negligible.

6. Evaluation
6.1 Methodology

We evaluate CoolProvision in two main scenarios. First,
we use it to investigate how much we could have saved
by underprovisioning Parasol, as an example of a small-
scale datacenter. Then, we re-target CoolProvision to explore
larger datacenters. In both scenarios, we seek to determine
the cooling capacity that will minimize the cooling-related
costs, while respecting all environmental and performance
constraints, according to Equation 1.

We drive CoolProvision using a power plus outside con-
ditions lifetime profile constructed as described in Section 3.
To study realistic profiles, we build them based on the char-
acteristics of realistic workload power traces. Table 3 lists
the characteristics of our traces, the techniques we allow
CoolProvision to apply to them, and their corresponding per-
formance constraints. (We scale the traces linearly to keep
the same average utilization and peak-to-valley load ratio
across small and large datacenters.) The Fixed-High traces



Power Management Performance Average Peak/Valley

Trace Technique Constraint Utilization Load Ratio
Fixed-High-1 None, rightsized N/A 100% 1.00
Fixed-High-2 | None, underprov. N/A 100% 1.00

Batch Throttling 5% per year 72% 8.00
Batch-Defer Deferral 6 hours 72% 8.00
Interactive-1 Throttling 5% per year 57% 2.90
Interactive-2 Consolidation 62% ratio 52% 4.92

Table 3. Power traces and management techniques.
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Figure 4. Environmental conditions at our locations.

represent the traditional approach of provisioning based on
a single maximum power value (100% cluster utilization).
In the Fixed-High-1 results, we do not allow CoolProvision
to underprovision the cooling infrastructure. In the Fixed-
High-2 (also peak utilization) results, we allow CoolPro-
vision to underprovision the cooling infrastructure, but not
to use any workload/energy management techniques. Fixed-
High-2 directly trades off savings in cooling cost against the
cost of hardware replacements due to harsh environmentals.
The Batch power traces are based on a Facebook trace [10],
whereas Interactive-1 and Interactive-2 are based on Hot-
mail [38] and Ask.com [3] traces, respectively. The Batch-
Deferrable results allow the workload to be deferred by up to
6 hours. In the throttling cases, we only allow CoolProvision
to DVFES the CPUs at most 5% of the epochs in each year.
The CPUs can be throttled to half of their peak frequency in
increments of 100MHz, with power consumption dropping
by 55% at the slowest speed. Finally, we allow consolida-
tion in Interactive-2 down to 62% of active servers. In the
absence of real performance constraints, we use these plau-
sible values to demonstrate the operation of CoolProvision.

For our results, we run CoolProvision while specifying
no performance loss for doing workload throttling or con-
solidation, and the performance constraints listed in Table 3.
The reason is that, given these constraints and the target uti-
lization, the techniques produce losses that are insignificant
compared to our default epoch length (60 minutes).

In terms of outside environmental conditions, we study
four locations with different weather patterns: (1) hot and
dry with low temperature variation (Austin), (2) hot and dry
with high temperature variation (Newark), (3) hot and hu-
mid with low temperature variation (Singapore) and (4) cold
and humid with low temperature variation (Dublin). Figure 4
shows the main characteristics of the locations using Cumu-
lative Distribution Functions (CDFs) of outside temperature
(temperature) and outside relative humidity (right).

Active Servers (64 is max) Cooling-Related Cost ($107)

80[ — Default 2
60 — Consolidation
20
0 0
40 Temperature (°C) 3 Extra HDD Cost ($10°)

30

. — Default
10 — Outside Temp — CoolProvision

Figure 5. Behaviors over 15 days in June for a small-scale data-
center with free cooling (X-axes are time).

We consider three cooling technologies: direct-expansion
AC and direct evaporative (free) cooling for small datacen-
ters, and chiller and free cooling for large datacenters. Al-
though CoolProvision is capable of provisioning the cooling
infrastructure with multiple technologies, we only consider
infrastructures with one technology in this paper.

For each technology and location pair, we use a different
baseline cooling capacity. To obtain it, we configure Cool-
Provision (using Fixed-High-1 as the power trace) to identify
the minimum capacity that keeps (1) Ts,; = 30°C without
workload/energy management for the AC and chiller sys-
tems, and (2) the closest temperature to Ts,, = 30°C for the
evaporative cooler without workload/energy management.
These baselines mimic the traditional provisioning.

6.2 Underprovisioning small datacenters

Our first evaluation study applies CoolProvision to Parasol.
For this study, we instantiate the constants in our models
using real measurements from Parasol. The Parasol custom
container currently hosts 64 low-power (25-30W) servers
organized in a single cold aisle.

Figure 5 shows an example of the behaviors that Cool-
Provision projects for two weeks of Interactive-2 with di-
rect evaporative cooling in Newark. The figure shows the
number of active servers (top left), the total cooling-related
cost per hour (top right), the inlet and outside air tempera-
tures (bottom left), and the disk replacement cost per hour
(bottom right). Note that the times when CoolProvision pre-
scribes consolidation are exactly the times with both high
power consumption and outside temperatures.

Figure 6 depicts our cost and capacity results for all life-
time profiles and locations. On the left of the figure, we
present the cooling-related costs and the capacity require-
ments for Parasol’s AC. On the right, we present the equiva-
lent results for an evaporative cooler. The bars in each group
can only be directly compared to Fixed-High-1, the tradi-
tional provisioning, since they differ in performance con-
straints and/or expected workloads.

Figure 7 shows the inlet air temperature CDFs for the
three warmest locations under AC and free cooling. We do
not show CDFs for Dublin, but the trends are similar.

Next, we summarize our findings from these figures:

(1) CoolProvision produces provisionings that are substan-
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Figure 6. Yearly cooling-related cost and normalized cooling capacity when provisioning a small datacenter with a direct-expansion AC

(left) and an evaporative cooler (right) at four locations.
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Figure 7. Inlet temperature CDF:s for a direct expansion AC and a direct evaporative cooler at three locations.

tially cheaper than traditional provisioning, due to signif-
icant reductions in required cooling capacity. Underprovi-
sioning reduces both CAPEX and OPEX costs, regardless of
cooling technology. One can see these effects by comparing
the bars for Fixed-High-1 to the other bars in Figure 6.

(2) As expected, the location heavily affects the cooling-
related costs. AC-based cooling is most expensive in Austin
whereas free cooling is most expensive in Singapore. Dublin
shows the lowest costs regardless of technology.

(3) Underprovisioning without workload/energy manage-
ment (Fixed-High-2) reduces costs and required capacities
compared to traditional provisioning (Fixed-High-1). For
example, it reduces required capacities by 21-32% for the
AC system, and even more under free cooling. Despite its
low reliability cost, CoolProvision cannot underprovision
Fixed-High-2 further, due to the limit at 35°C (Figure 7).
(4) Allowing CoolProvision to use workload/energy man-
agement produces even greater savings. Although not com-
parable to each other, the management policies achieve cost
reductions of 21-55% for the AC system and 20-43% for the
free cooling system, compared to traditional provisioning.
(5) The policies may even enable a cheaper technology.
Fixed-High-1 and Fixed-High-2 exceed 35°C when using
free cooling in Singapore. But when CoolProvision can use
the policies, temperatures always stay below the limit. This
shows that an AC need not be used in Singapore, if free
cooling is combined with workload/energy management.
(6) Workload throttling is most effective for locations with
relatively rare outside temperature peaks (e.g., Newark), be-
cause it can easily shave these peaks in required cooling ca-

pacity. Consolidation enables the same kind of shaving but
for longer periods, so it is consistently effective.

(7) Under AC cooling, workload deferral is most effective
for locations where outside temperature variation is high,
since it can defer the load until the outside temperature de-
creases and cooling efficiency improves. Under free cooling,
workload deferral also allows shifting the heat production to
drier times of the day, which is useful in Singapore. Allow-
ing deferrals of up to 6 hours is enough to shave daily peaks
of temperature and relative humidity.

(8) The reliability cost is a small percentage of the overall
cooling-related cost, regardless of technology. However, the
Interactive-1 and Interactive-2 results for Dublin under free
cooling show that, in some scenarios, the increase in relia-
bility cost may prevent further cost reductions.

(9) CoolProvision raises the cost of replacing disks by in-
creasing the expected AFR from 1.5% to 1.63-2.35%. The
highest reliability penalties occur in Singapore, regardless
of technology, where the resulting inlet temperatures are al-
most always higher than 30°C

(10) Traditional provisioning keeps the inlet temperature al-
most always at 30°C under the AC system, whereas the un-
derprovisioned scenarios aggressively exploit the tolerance
up to 35°C. In some cases, temperatures are always higher
than the setpoint in Singapore. When using free cooling, the
percentage of inlet temperatures that are higher than the set-
point increases significantly when we underprovision. Recall
that, for the free cooling system, our baseline seeks to keep
the temperature as close as possible to the setpoint.



6.3 Underprovisioning large datacenters

Our second evaluation considers a hypothetical large 10MW
datacenter cooled via water chillers or a direct evaporative
cooler. To mimic this datacenter, we model our small data-
center as a single cold/hot aisle, and then replicate this aisle
to form the large datacenter. Admittedly, this extrapolation is
only a rough approximation, but should provide a sense for
the possible underprovisioning savings in large datacenters.
We also use different input parameters in some cases (see
Table 2). For example, we replace Parasol’s cooling CAPEX
costs with those from Table 1; we also adjust the maximum
power consumption of the cooling technologies (chillers and
direct evaporative cooling) according to PUEs scaled from
Table 1; and we alter the servers’ characteristics to become
closer to those of the more power-hungry servers of large
datacenters (e.g., 4-disk Microsoft Cloud server [28]).

Figure 8 shows our main results for the same locations,
power traces (scaled to match the larger datacenter size),
and workload/energy management techniques as before. The
cooling-related cost and required capacity trends are very
similar to those of Figure 6. Though we omit the temperature
CDFs to save space, we find similar trends there as well.
An interesting observation is that the free cooling system
cannot maintain even 35°C in Singapore. At this location, the
higher IT power consumption we assume for this datacenter
demands a more expensive cooling technology.

7. Related Work

To our knowledge, this is the first paper to explore the un-
derprovisioning of datacenter cooling systems. A few prior
works (e.g., [7]) studied cooling rightsizing in older datacen-
ters (lower inlet temperatures, no hot aisle containment, no
free cooling) using simulations of heat recirculation. These
works did not model multiple cooling technologies, costs,
workloads, performance, or reliability. Moreover, heat recir-
culation is much less relevant in modern datacenters with hot
aisle containment.

Our work relates peripherally to prior research on energy-
aware dynamic thermal management, dynamic power and
thermal emergency management, and reliability modeling.

Dynamic power and thermal emergency management.
Heath et al. [22] and Ramos et al. [33] proposed workload
and power management techniques for handling datacenter
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Figure 8. Costs and capacities for a I0MW datacenter.

thermal emergencies, i.e. periods when not enough cooling
capacity is available due to cooling equipment failures. Sim-
ilarly, Fan et al. [17] and Govindan et al. [21] proposed to
underprovision the datacenter power delivery infrastructure,
and use power management techniques during power emer-
gencies, i.e. periods when power demand exceeds the capa-
bility of the provisioned delivery infrastructure.

Though CoolProvision is a cooling infrastructure under-
provisioning framework, it does prescribe workload and en-
ergy management techniques that should be used during dat-
acenter operation when the provisioned cooling is insuf-
ficient. In fact, it is those techniques and CoolProvision’s
modeling of reliability costs that enable the underprovision-
ing in the first place. The management techniques we explore
in this paper were inspired by the prior works above.

Energy-aware dynamic thermal management. The litera-
ture on this topic is extensive, e.g. [6, 26, 29, 30, 41]. Most
recently, Goiri ef al. [19] and Kim et al. [25] used workload
placement and scheduling techniques to efficiently man-
age temperature and humidity in hybrid (free cooling plus
backup cooling) datacenters. These works leverage some of
the same workload management techniques (consolidation,
deferral) embodied in CoolProvision.

Reliability modeling in (chiller-based) datacenters. Sankar
et al. [34] indicated an exponential relationship between
operating temperatures and hard disk lifetime in datacen-
ters, using the Arrhenius formula. In contrast, El-Sayed et
al. [12] suggested that the exponential model is pessimistic
and a linear relationship may be more representative. They
also suggested that variability in operating temperature may
be an equally important or even more important factor for
disk reliability than the actual operating temperatures.

CoolProvision establishes both temperature and tempera-
ture variation limits as constraints in its cooling equipment
provisioning. It also models disk reliability using the Arrhe-
nius formula, but a different model can easily be used.

8. Conclusions

In this paper, we proposed an approach for systematically
underprovisioning the cooling infrastructure of cloud dat-
acenters. Based on this approach, we introduced CoolPro-
vision, an optimization and simulation framework for se-
lecting the best provisioning with respect to the datacen-
ter’s cooling-related cost. To demonstrate CoolProvision’s
use, we applied it to a real small free-cooled datacenter, and
found that it can produce cooling-related cost savings of up
to 55%. We also extrapolated our experience and results to
larger cloud datacenters and saw similar trends.
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