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Abstract

Automatically describing video content with natural lan-

guage is a fundamental challenge of computer vision. Re-

current Neural Networks (RNNs), which models sequence

dynamics, has attracted increasing attention on visual in-

terpretation. However, most existing approaches generate

a word locally with the given previous words and the visual

content, while the relationship between sentence semantics

and visual content is not holistically exploited. As a result,

the generated sentences may be contextually correct but the

semantics (e.g., subjects, verbs or objects) are not true.

This paper presents a novel unified framework, named

Long Short-Term Memory with visual-semantic Embedding

(LSTM-E), which can simultaneously explore the learn-

ing of LSTM and visual-semantic embedding. The for-

mer aims to locally maximize the probability of generat-

ing the next word given previous words and visual con-

tent, while the latter is to create a visual-semantic embed-

ding space for enforcing the relationship between the se-

mantics of the entire sentence and visual content. The ex-

periments on YouTube2Text dataset show that our proposed

LSTM-E achieves to-date the best published performance

in generating natural sentences: 45.3% and 31.0% in terms

of BLEU@4 and METEOR, respectively. Superior perfor-

mances are also reported on two movie description datasets

(M-VAD and MPII-MD). In addition, we demonstrate that

LSTM-E outperforms several state-of-the-art techniques in

predicting Subject-Verb-Object (SVO) triplets.

1. Introduction

Video has become ubiquitous on the Internet, broadcast-

ing channels, as well as personal devices. This has encour-

aged the development of advanced techniques to analyze

the semantic video content for a wide variety of applica-

tions. Recognition of videos has been a fundamental chal-

lenge of computer vision for decades. Previous research has
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Input Video:

Output Sentence:

· LSTM [30]: a man is riding a horse.

· LSTM-E [ours]: a woman is riding a horse.

· Human: a woman gallops on a horse. / a woman is riding a

horse along a road. / the girl rode her brown horse.

Figure 1. Examples of video description generation.

predominantly focused on recognizing videos with a pre-

defined yet very limited set of individual words. Thanks

to the recent development of Recurrent Neural Networks

(RNNs), researchers have strived to automatically describe

video content with a complete and natural sentence, which

can be regarded as the ultimate goal of video understanding.

Figure 1 shows the examples of video description gen-

eration. Given an input video, the generated sentences are

to describe video content, ideally encapsulating its most in-

formative dynamics. There is a wide variety of video appli-

cations based on the description, ranging from editing, in-

dexing, search, to sharing. However, the problem itself has

been taken as a grand challenge for decades in the research

communities, as the description generation model should

be powerful enough not only to recognize key objects from

visual content, but also discover their spatio-temporal rela-

tionships and the dynamics expressed in a natural language.

Despite the difficulty of the problem, there have been a

few attempts to address video description generation [5, 30,

34], and image caption generation [6, 13, 16, 31], which are

mainly inspired by recent advances in machine translation

using RNN [1]. Among these successful attempts, most of

them use Long Short-Term Memory (LSTM) [9], a variant

of RNN, which can capture long-term temporal information

by mapping sequences to sequences. Thus, we follow this

elegant recipe and use LSTM as our RNN model to generate

the video sentence in this paper.

However, existing approaches to video description gen-

eration mainly optimize the next word given the input video

and previous words locally, while leaving the relationship

between the semantics of the entire sentence and video con-

tent unexploited. As a result, the generated sentences can



suffer from robustness problem. It is often the case that the

output sentence from existing approaches may be contex-

tually correct but the semantics (e.g., subjects, verbs or ob-

jects) in the sentence are not true. For example, the sentence

generated by LSTM model [30] for the video in Figure 1 is

“a man is riding a horse,” which is correct in logic but the

subject “man” is not relevant to the video content.

To address the above issues, we leverage the semantics

of the entire sentence and visual content to learn a visual-

semantic embedding model, which holistically explores the

relationships in between. Specifically, we present a nov-

el Long Short-Term Memory with visual-semantic Embed-

ding (LSTM-E) framework to bridge video content and nat-

ural language, as shown in Figure 2. Given a video, a 2-D

and/or 3-D Convolution Neural Networks (CNN) is utilized

to extract visual features of selected video frames/clips,

while the video representation is produced by mean pool-

ing over these visual features. Then, a LSTM for generat-

ing video sentence and a visual-semantic embedding model

are jointly learnt based on the video representation and sen-

tence semantics. The spirit of LSTM-E is to generate video

sentence from the viewpoint of mutual reinforcement be-

tween coherence and relevance. Coherence expresses the

contextual relationships among the generated words with

video content which is optimized in the LSTM, while rel-

evance conveys the relationship between the semantics of

the entire sentence and video content which is measured in

the visual-semantic embedding. By jointly learning the co-

herence and relevance, the generated sentence is expected

to be both contextually and semantically correct.

The contributions of this paper are as follows:

(1) We present an end-to-end deep model for automatic

video description generation, which incorporates both visu-

al appearance of video frames (2-D CNN) and temporal dy-

namics across frames (3-D CNN) for learning an effective

spatio-temporal video representation.

(2) We propose a novel Long Shot-Term Memory with

visual-semantic Embedding (LSTM-E) framework, which

considers both the contextual relationship among the words

in sentence, and the relationship between the semantics of

the entire sentence and video content, for generating natural

language of a given video.

(3) The proposed LSTM-E model is evaluated on the

popular YouTube2Text corpus and outperforms the-state-

of-the-art in terms of both Subject-Verb-Object (SVO)

triplet prediction and sentence generation. In addition, we

also demonstrate that LSTM-E achieves superior perfor-

mances in sentence generation on two larger movie descrip-

tion datasets, i.e., M-VAD and MPII-MD.

2. Related Work

There are mainly two directions for translation from vi-

sual content. The first direction predefines the special rule

for language grammar and split sentence into several part-

s (e.g., subject, verb, object). With such sentence frag-

ments, many works align each part with visual content and

then generate the sentence for corresponding visual content:

[15] use Conditional Random Field (CRF) model to pro-

duce sentence for image and in [7], a Markov Random Field

(MRF) model is proposed to attach a descriptive sentence to

the given image. For video translation, Rohrbach et al. [21]

learn a CRF to model the relationships between differen-

t components of the input video and generate descriptions

for video. Guadarrama et al. [8] use semantic hierarchies

to choose an appropriate level of the specificity and accura-

cy of sentence fragments. This direction is highly depended

on the templates of sentence and can only generate sentence

with syntactical structure.

Another direction is to learn the probability distribution

in the common space of visual content and textual sentence.

In this direction, several works explore such probability dis-

tribution using topic models [3, 10] and neural networks

[5, 12, 16, 29, 30, 31, 34] to generate sentence more flexi-

bly. Recently, most methods are proposed based on RNN.

Kiros et al. [12] firstly take the neural networks to generate

sentence for image by proposing a multimodal log-bilinear

neural language model. In [31], Vinyals et al. propose an

end-to-end neural networks system by utilizing LSTM to

generate sentence for image. For video translation, an end-

to-end LSTM based model is also proposed in [30], which

only reads the sequence of video frames and then gener-

ates a natural sentence. The model is further extended by

inputting both frames and optical flow in [29]. Yao et al.

propose to use a 3-D CNN for modeling video clip dynamic

temporal structure and an attention mechanism to select the

most relevant temporal clips [34]. Then, the resulting video

representations are fed into the text-generating RNN.

Our work belongs to the second direction. However,

most of the above approaches in this direction mainly focus

on optimizing the contextual relationship among words to

generate sentence given visual content, while the relation-

ship between the semantics of the entire sentence and visu-

al content is not fully explored. Our work is different that

we claim to generate video sentence by jointly exploiting

the two relationships, which characterize the complemen-

tary properties of coherence and relevance of a generated

sentence, respectively.

3. Video Description with Relevance and

Coherence

Our goal is to generate language sentences for videos.

What makes a good sentence? Beyond describing important

persons, objects, scenes, and actions by words, it should al-

so convey how one word leads to the next. Specifically,

we define a good sentence as a “coherent” chain of word-

s in which each word influences the next through contex-
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Figure 2. An overview of our LSTM-E framework with a language generating LSTM and a visual-semantic embedding model (better

viewed in color). The video representation is produced by mean pooling over the visual features of frames/clips, extracted by a 2-D/3-D

CNN. The relevance loss is to measure the relationships between the semantics of the entire sentence and video content in the embedding

space, while the coherence loss is to characterize the contextual relationships among the generated words in the sentence in LSTM. Both

LSTM and visual-semantic embedding are jointly learnt by minimizing two losses.

tual information. Furthermore, the semantics of the entire

sentence must be “relevant” to the video content. We be-

gin this section by presenting the problem formulation, and

followed by the proposal of two losses on measuring coher-

ence and relevance, which are two principles for making a

natural and correct sentence.

3.1. Problem Formulation

Suppose we have a video V with Nv sample frames/clips

(uniform sampling) to be described by a textual sentence S ,

where S = {w1, w2, ..., wNs
} consisting of Ns words. Let

v ∈ R
Dv and wt ∈ R

Dw denote the Dv-dimensional vi-

sual features of a video V and the Dw-dimensional textual

features of the t-th word in sentence S , respectively. As a

sentence consists of a sequence of words, a sentence can be

represented by a Dw ×Ns matrix W ≡ [w1,w2, ...,wNs
],

with each word in the sentence as its column vector. Fur-

thermore, we denote another feature vector s in the text s-

pace for representing a sentence as a whole.

In the video description generation problem, on one

hand, the generated descriptive sentence must be able to

depict the main contents of a video precisely, and on the

other, the words in the sentence should be organized coher-

ently in language. Therefore, we can formulate the video

description generation problem by minimizing the follow-

ing energy loss function

E(V,S) = (1− λ)× Er(v, s) + λ× Ec(v,W) , (1)

where Er(v, s) and Ec(v,W) are the relevance loss and

coherence loss, respectively. The former measures the rel-

evance degree of the video content and sentence semantics

and we build a visual-semantic embedding for this purpose,

which is introduced in Section 3.2. The latter estimates the

contextual relationships among the generated words in the

sentence and we use LSTM-type RNN as our model, which

is presented in Section 3.3. The tradeoff between these two

competing losses is captured by linear fusion with a positive

parameter λ.

3.2. Visual­Semantic Embedding: Relevance

In order to effectively represent the visual content of

a video, we first use a 2-D and/or 3-D CNN, which is

powerful to produce a rich representation of each sam-

pled frame/clip from the video. Then, we perform “mean

pooling” process over all the frames/clips to generate a s-

ingle Dv-dimensional vector v for each video V . The

sentence feature s is produced by the feature vectors wt

(t = 1, 2, ..., Ns) of each word in the sentence. We first en-

code each word wt as “one-hot” vector (binary index vector

in a vocabulary), thus the dimension of feature vector wt,

i.e. Dw, is the vocabulary size. Then the binary TF weights

are calculated over all words of the sentence to produce the

integrated representation of the entire sentence, denoted by

s ∈ R
Dw , with the same dimension as wt.

We assume that a low-dimensional embedding exists for

the representation of video and sentence, which is widely

used in image search [18, 35] and image reranking [17].

The linear mapping function can be derived from this em-

bedding by
ve = Tvv and se = Tss, (2)

where De is the dimensionality of the embedding, and

Tv ∈ R
De×Dv and Ts ∈ R

De×Ds are the transformation

matrices that project the video content and semantic sen-

tence into the common embedding, respectively.



To measure the relevance between the video content and

semantic sentence, one natural way is to compute the dis-

tance between their mappings in the embedding. Thus, we

define the relevance loss as

Er(v, s) = ‖Tvv −Tss‖
2
2 . (3)

We strengthen the relevance between video content and

semantic sentence by minimizing the relevance loss. As

such, the generated sentence is expected to better manifest

the semantics of videos.

3.3. Translation by Sequence Learning: Coherence

Inspired by the recent successes of probabilistic se-

quence models leveraged in statistical machine translation

[5, 31], we define our coherence loss as

Ec(v,W) = − log Pr (W|v). (4)

Assuming that a generative model of W that produces

each word in the sequence in order, the log probability of

the sentence is given by the sum of the log probabilities

over the word and can be expressed as:

log Pr (W|v) =

Ns
∑

t=0

log Pr (wt|v,w0, . . . ,wt−1). (5)

By minimizing the coherence loss, the contextual relation-

ship among the words in the sentence can be guaranteed,

making the sentence coherent and smooth.

In video description generation task, both the relevance

loss and coherence loss need to be estimated to complete the

whole energy function. We will present a solution to jointly

model the two losses in a deep recurrent neural networks in

the next sections.

4. Joint Modeling Embedding and Translation

Following the relevance and coherence criteria, this

work proposes a Long Short-Term Memory with visual-

semantic Embedding (LSTM-E) model for video descrip-

tion generation. The basic idea of LSTM-E is to translate

the video representation from a 2-D and/or 3-D deep con-

volutional network to the desired output sentence by using

LSTM-type RNN model. Figure 2 shows an overview of

LSTM-E model. In particular, the training of LSTM-E is

performed by simultaneously minimizing the relevance loss

and coherence loss. Therefore, the formulation presented

in Eq.(1) is equivalent to minimizing the following energy

function:

E(V,S) = (1− λ)× ‖Tvv−Tss‖
2
2 −

λ×
Ns
∑

t=0

log Pr (wt|v,w0, . . . ,wt−1; θ;Tv;Ts)
, (6)

where θ are the parameters of our LSTM-E models.

In the following, we will first present the architecture

of LSTM memory cell, followed by jointly modeling with

visual-semantic embedding.
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Figure 3. A diagram of an LSTM memory cell.

4.1. Long Short Term Memory

We will briefly introduce the standard LSTM, which ad-

dresses the vanishing gradients problem in traditional RN-

N training. A diagram of the LSTM unit is illustrated in

Figure 3. It consists of a single memory cell, an input ac-

tivation function, an output activation function, and three

gates (input, forget and output). The hidden state of the cell

is recurrently connected back to the input and three gates.

The memory cell updates its hidden state by combining the

previous cell state which is modulated by the forget gate

and a function of the current input and the previous output,

modulated by the input gate. The forget gate is a critical

component of the LSTM unit, which can control what to

be remembered and what to be forgotten by the cell and

somehow can avoid the gradient from vanishing or explod-

ing when back propagating through time. Having been up-

dated, the cell state is mapped to (−1, 1) range through an

output activation function which is necessary whenever the

cell state is unbounded. Finally, the output gate determines

how much of the memory cell flows into the output. These

additions to the single memory cell enable LSTM to cap-

ture extremely complex and long-term temporal dynamics,

which has also been applied to video classification [32].

The vector formulas for a LSTM layer forward pass are

given below. For timestep t, xt and h
t are the input and out-

put vector respectively, T are input weights matrices, R are

recurrent weight matrices and b are bias vectors. Sigmoid

σ and hyperbolic tangent φ are element-wise non-linear ac-

tivation functions. The dot product and sum of two vectors

are denoted with ⊙ and +©, respectively. Given inputs x
t,

h
t−1 and c

t−1, the LSTM unit updates for timestep t are:

gt = φ(Tgx
t +Rgh

t−1 + bg) cell input

it = σ(Tix
t +Rih

t−1 + bi) input gate

f t = σ(Tfx
t +Rfh

t−1 + bf ) forget gate

ct = gt ⊙ it + ct−1 ⊙ f t cell state

ot = σ(Tox
t +Roh

t−1 + bo) output gate

ht = φ(ct)⊙ ot cell output

. (7)



4.2. LSTM with Visual­Semantic Embedding

By further incorporating a visual-semantic embedding,

our LSTM-E architecture is to jointly model embedding and

translation. In the training stage, given the video-sentence

pair, the inputs of LSTM are the representations of the video

and the words in the sentence after mapping into the embed-

ding. As mentioned above, here we train the LSTM model

to predict each word in the sentence given the embedding of

visual feature for video and previous words. There are mul-

tiple ways that can be used to combine the visual content

and words in LSTM unit updating procedure. The first one

is to feed the visual content at each time step as an extra

input for LSTM to emphasize the visual content frequent-

ly among LSTM memory cells. The second one only inputs

the visual content once at the initial step to inform the whole

memory cells in LSTM about the visual content. As empir-

ically verified in [31], feeding the image at each time yields

inferior results, due to the fact that the network can explic-

itly exploit noise and overfits more easily. Therefore, we

adopt the second approach to arrange the inputs into LSTM

in our architecture. Given the video v and its correspond-

ing sentence W ≡ [w0,w1, ...,wNs
], the LSTM updating

procedure is as following:

x
−1 = Tvv (8)

x
t = Tswt, t ∈ {0, . . . , Ns − 1} (9)

h
t = f

(

x
t
)

, t ∈ {0, . . . , Ns − 1} (10)

where f is the updating function within LSTM unit. Please

note that for the input sentence W ≡ {w0, . . . ,wNs
}, we

take w0 as the start sign word to inform the beginning of

sentence and wNs
as the end sign word which indicates the

end of sentence, both of the special sign words are included

in our vocabulary. Most specifically, at the initial time step,

the video representation in the embedding is set as the input

for LSTM, and then in the next steps, word embedding x
t

will be input into the LSTM along with the previous step’s

hidden state ht−1. In each time step (except the initial step),

we use the LSTM cell output ht to predict the next word.

Here a softmax layer is applied after the LSTM layer to

produce a probability distribution over all the Ds words in

the vocabulary as

Prt+1 (wt+1) =

exp

{

T
(wt+1)
h ht

}

∑

w∈W

exp
{

T
(w)
h ht

} , (11)

where W is the word vocabulary space, T
(w)
h

is the param-

eter matrix in softmax layer. Therefore, we can obtain the

next word based on such probability distribution until the

end sign word is emitted.

Accordingly, we define our loss function as follows:

E(V,S) = (1− λ)× ‖Tvv −Tss‖
2
2 − λ×

Ns
∑

t=1

log Prt(wt) .

(12)

Let N denote the number of video-sentence pairs in the

training set, we have the following optimization problem:

min
Tv,Ts,Th,θ

1
N

N
∑

i=1

E(V(i),S(i))

+ ‖Tv‖
2
2 + ‖Ts‖

2
2 + ‖Th‖

2
2 + ‖θ‖22

, (13)

where the first term is the combination of the relevance loss

and coherence loss, while the rest are regularization terms

for video embedding, sentence embedding, softmax layer

and LSTM, respectively.

The above overall objective is optimized over the whole

training video-sentence pairs using stochastic gradient de-

scent. By minimizing this objective function, our LSTM-E

model takes into account both the contextual relationships

among the words in sentence (coherence) and the relation-

ships between the semantics of the entire sentence and video

content (relevance). For sentence generation, we choose the

word with maximum probability at each timestep and set its

embedded feature as LSTM input for next timestep until the

end sign word is outputted.

5. Experiments

We evaluate and compare with state-of-the-art approach-

es on two tasks, i.e., SVO triplet prediction and natural sen-

tence generation. Moreover, the effect of tradeoff parame-

ter between coherence and relevance and the size of hidden

layer in LSTM are presented, respectively.

5.1. Experimental Settings

We conduct our experiments mainly on the Microsoft

Research Video Description Corpus (YouTube2Text) [4],

which contains 1,970 YouTube snippets. There are roughly

40 available English descriptions per video. In our exper-

iments, we follow the setting used in prior works [8, 33],

taking 1,200 videos for training, 100 for validation and 670

for testing.

In addition, two large-scale movie description dataset-

s, Montreal Video Annotation Dataset (M-VAD) [27] and

MPII Movie Description Corpus (MPII-MD) [20], are in-

cluded for evaluation on sentence generation. The two

datasets are both composed of Hollywood movie snippets

with descriptions from movie scripts or audio description-

s. Specifically, M-VAD contains about 49,000 video clips

from 92 movies and MPII-MD contains about 68,000 video

clips from 94 movies.

We compare our LSTM-E approach with two 2-D CN-

N of AlexNet [14] and the 19-layer VGG [23] network both

pre-trained on Imagenet ILSVRC12 dataset [22], and one 3-

D CNN of C3D [28] pre-trained on Sports-1M video dataset



[11]. Specifically, we take the output of 4096-way fc7 layer

from AlexNet, 4096-way fc6 layer from the 19-layer VGG,

and 4096-way fc6 layer from C3D as the frame/clip repre-

sentation, respectively. The dimensionality of the visual-

semantic embedding space and the size of hidden layer in

LSTM are both set to 512. The tradeoff parameter λ lever-

aging the relevance loss and coherence loss is empirically

set to 0.7. The sensitivity of λ will be discussed later.

5.2. Performance Comparison

We empirically verify the merit of our LSTM-E model

from two aspects: SVO triplet prediction and sentence gen-

eration for the video-language translation.

5.2.1 Compared Approaches

To fully evaluate our model, we compare our LSTM-E mod-

els with the following non-trivial baseline methods.

(1) Conditional Random Field (CRF) [33]: CRF model is

developed to incorporate subject-verb and verb-object pair-

wise relationship based on the word pairwise co-occurrence

statistics in the sentence pool.

(2) Canonical Correlation Analysis (CCA) [24]: CCA is

to build a video-language joint space and generate the SVO

triplet by k-nearest-neighbors search in the sentence pool.

(3) Factor Graph Model (FGM) [26]: FGM combines

knowledge mined from text corpora with visual confidence

using a factor graph and performs probabilistic inference to

determine the most likely SVO triplets.

(4) Joint Embedding Model (JEM) [33]: Proposed most

recently, JEM jointly models video and the corresponding

text sentences by minimizing the distance of the deep video

and compositional text in the joint space.

(5) Long Shot-Term Memory (LSTM) [30]: LSTM at-

tempts to directly translate from video pixels to natural lan-

guage with a single deep neural network. The video repre-

sentation is by performing mean pooling over the features

of frames using AlexNet.

(6) Soft-Attention (SA) [34]: SA combines the frame

representation from GoogleNet [25] and video clip repre-

sentation based on a 3-D CNN trained on Histograms of

Oriented Gradients (HOG), Histograms of Optical Flow

(HOF), and Motion Boundary Histogram (MBH) hand-

crafted descriptors. Furthermore, a weighted attention

mechanism is used to dynamically attend to specific tem-

poral regions of the video while generating sentence.

(7) Sequence to Sequence - Video to Text (S2VT) [29]:

S2VT incorporates both RGB and optical flow inputs, and

the encoding and decoding of the inputs and word represen-

tations are learnt jointly in a parallel manner.

(8) Long Shot-Term Memory with visual-semantic Em-

bedding (LSTM-E): We design four runs for our proposed

approach, i.e., LSTM-E (Alex), LSTM-E (VGG), LSTM-

Table 1. SVO accuracy on YouTube2Text.

Model S% V% O%

FGM [26] 76.42 21.34 12.39

CRF [33] 77.16 22.54 9.25

CCA [24] 77.16 21.04 10.99

JEM [33] 78.25 24.45 11.95

LSTM [30] 71.19 19.40 9.70

LSTM-E (Alex) 78.66 24.78 10.30

LSTM-E (VGG) 80.30 27.91 12.54

LSTM-E (C3D) 77.31 28.81 12.39

LSTM-E (VGG+C3D) 80.45 29.85 13.88

E (C3D), and LSTM-E (VGG+C3D). The input frame/clip

features of the first three runs are from AlexNet, VGG and

C3D network respectively. The input of the last one is to

concatenate the features from VGG and C3D.

5.2.2 Evaluation of SVO Triplet Prediction

As SVO triples can capture the compositional semantics of

videos, predicting SVO triplet could indicate the quality of

a translation system to a large extent.

We adopt SVO accuracy [33] which measures the exact-

ness of SVO words by binary (0-1 loss), as the evaluation

metric. Table 1 details SVO accuracy of compared nine

models on YouTube2Text. Within these models, the for-

mer four models (called Item driven models) explicitly op-

timize to identify the best subject, verb and object items for

a video; while the later five models (named Sentence driv-

en models) focus on training on objects and actions jointly

in a sentence and learn to interpret these in different con-

texts. For the later five sentence driven models, we extract

the SVO triplets from the generated sentences by Stanford

Parser1 and the words are also stemmed. Overall, the re-

sults across SVO triplet indicate that almost all the four

Item driven models exhibit better performance than LST-

M model which predicts the next word by only considering

the contextual relationships with the previous words given

the video content. By jointly modeling the relevance be-

tween the semantics of the entire sentence and video con-

tent with LSTM, LSTM-E significantly improves LSTM.

Furthermore, the performances of LSTM-E (VGG), LSTM-

E (C3D), and LSTM-E (VGG+C3D) on Subject, Verb and

Object are all above that of the four Item driven models.

The result basically indicates the advantage of further ex-

ploring the relevance holistically between the semantics of

the entire sentence and video content in addition to LSTM.

Compared to LSTM-E (Alex), LSTM-E (VGG) using

a more powerful frame representation brought by a deep-

er CNN exhibits significantly better performance. In addi-

tion, LSTM-E (C3D) which has a better ability in encap-

sulating temporal information leads to better performance

than LSTM-E (VGG) in terms of Verb prediction accuracy.

1http://nlp.stanford.edu/software/lex-parser.shtml



Table 2. BLEU@N and METEOR scores on YouTube2Text. All values are reported as percentage (%).

Model METEOR BLEU@1 BLEU@2 BLEU@3 BLEU@4

LSTM [30] 26.9 69.8 53.3 42.1 31.2

SA [34] 29.6 80.0 64.7 52.6 42.2

S2VT [29] 29.8 - - - -

LSTM-E (Alex) 28.3 74.5 59.8 49.3 38.9

LSTM-E (VGG) 29.5 74.9 60.9 50.6 40.2

LSTM-E (C3D) 29.9 75.7 62.3 52 41.7

LSTM-E (VGG+C3D) 31.0 78.8 66.0 55.4 45.3

Table 3. METEOR scores (%) on (a) M-VAD and (b) MPII-MD.

(a) M-VAD dataset.

Model METEOR

SA [34] 4.3

LSTM [30] 4.1

S2VT [29] 5.6

LSTM-E

(VGG+C3D)
6.7

(b) MPII-MD dataset.

Model METEOR

SMT [20] 5.6

LSTM [30] 5.8

S2VT [29] 6.3

LSTM-E

(VGG+C3D)
7.3

When combining the features from VGG and C3D, LSTM-

E (VGG+C3D) further increases the performance gains.

5.2.3 Evaluation of Sentence Generation

For item driven models including FGM, CRF, CCA and

JEM, the sentence generation is often performed by lever-

aging a series of simple sentence templates (or special lan-

guage trees) on the SVO triplets [30]. Having verified in

[30], using LSTM architecture can lead to a large perfor-

mance boost against the template-based sentence genera-

tion. Thus, Table 2 only shows comparisons of LSTM-

based sentence generations on YouTube2Text. We use the

BLEU@N [19] and METEOR scores [2] against all ground

truth sentences. Both metrics have been shown to correlate

well with human judgement, and widely used in machine

translation literature. Specifically, BLEU@N measures the

fraction of N -gram (up to 4-gram) that are in common be-

tween a hypothesis and a reference or set of references,

while METEOR computes unigram precision and recall, ex-

tending exact word matches to include similar words based

on WordNet synonyms and stemmed tokens.

As shown in the Table 2, the qualitative results across

different N of BLEU and METEOR consistently indicate

that the LSTM-E (Alex) significantly outperforms the tra-

ditional LSTM model. Moreover, we can find that the per-

formance gain of BLEU@N becomes larger when N in-

creases, where N measures the length of the contiguous se-

quence in the sentence. This again confirms that LSTM-E

is benefited from the way of holistically exploring the rela-

tionships between the semantics of the entire sentence and

video content by minimizing the distance of their mappings

in the visual-semantic embedding. Similar to the observa-

tions in SVO prediction task, our LSTM-E (VGG) outper-

forms LSTM-E (Alex) and reach 29.5% METEOR. Fur-

thermore, LSTM-E (C3D) achieves 29.9% METEOR and

improves the performance to 31.0% when combined with

VGG, which makes the improvement over the two state-of-

the-art methods SA by 4.7% and S2VT by 4.0%, respec-

tively.

Figure 4 shows a few sentence examples generated by d-

ifferent methods and human-annotated ground truth. From

these exemplar results, it is easy to see that all of these au-

tomatic methods can generate somewhat relevant sentences.

When looking into each word, both LSTM-E (Alex) and

LSTM-E (VGG+C3D) predict more relevant Subject, Verb

and Object (SVO) terms. For example, compared to sub-

ject term “a man,” “people” and “a group of people” are

more precise to describe the video content in the second

video. Similarly, verb term “singing” presents the fourth

video more exactly. The predicted object term “motorcy-

cle” is more relevant than “car” in fifth video. Moreover,

LSTM-E (VGG+C3D) can offer more coherent sentences.

For instance, the generated sentence “a man is talking on

a phone” of the third video encapsulates the video content

more clearly.

We also evaluate our best run, LSTM-E (VGG+C3D) on

two movie description datasets M-VAD and MPII-MD. The

high diversity of visual and textual content in movie datasets

makes the sentence generation task especially challenging.

The METEOR scores on M-VAD and MPII-MD are given

in Table 3. Our LSTM-E (VGG+C3D) approach consistent-

ly outperforms the state-of-the-art methods on both movie

datasets. In particular, the METEOR scores on M-VAD and

MPII-MD of LSTM-E (VGG+C3D) can achieve 0.067 and

0.073, which make the relative improvement over the best

competitor S2VT by 19.6% and 15.9%. Please note that on

MPII-MD, we include the performance of SMT [20], which

translates detected essential components into sentence de-

scription by CRF as in [21].

5.3. Experimental Analysis

We further analyze the effect of the tradeoff parameter λ

between two losses, and the size of hidden layer in LSTM

learning for sentence generation task on YouTube2Text.

5.3.1 The Tradeoff Parameter λ

To clarify the effect of the tradeoff parameter λ in Eq.(12),

we illustrate the performance curves with a different trade-

off parameter in Figure 5. To make all performance curves



LSTM: a woman is talking

LSTM-E (Alex): a man is talking

LSTM-E (VGG+C3D): a man is talking on a phone

LSTM: a man is dancing

LSTM-E (Alex): people are dancing

LSTM-E (VGG+C3D): a group of people are dancing

LSTM: a cat is playing with a mirror

LSTM-E (Alex): a cat is playing with a watermelon

LSTM-E (VGG+C3D): a kitten is playing with a toy

Ground Truth:

a kitten is playing with his toy

a cat is playing on the floor

a kitten plays with a toy

Ground Truth:

a group of people are dancing

people are dancing outside

many people dance in the street

Ground Truth:

a man is singing on stage

a man is singing into a microphone

a man sings into a microphone

Ground Truth:

a man is talking on a cell phone

a man is speaking into a cell phone

the man talked on the phone

LSTM: a man is playing a flute

LSTM-E (Alex): a man is singing

LSTM-E (VGG+C3D): a man is singing

LSTM: a man is riding a car

LSTM-E (Alex): a man is riding a bicycle

LSTM-E (VGG+C3D): a man is riding a motorcycle

Ground Truth:

someone is riding a motorcycle

a man is riding his motorcycle

a man is riding on a motor bike

... ...

... ...

... ...

... ...

... ...

Figure 4. Sentence generation results on YouTube2Text. The videos are represented by sampled frames, the output sentences generated by

1) LSTM, 2) our LSTM-E (Alex) and LSTM-E (VGG+C3D), and 3) Ground Truth: Randomly selected three ground truth sentences.

Figure 5. The effect of the tradeoff parameter λ in our LSTM-E

(VGG+C3D) framework on YouTube2Text.

fall into a comparable scale, all BLEU@N and METEOR

values are specially normalized as follows

m
′
λ =

mλ −min
λ

{mλ}

min
λ

{mλ}
(14)

where mλ and m′

λ
denote original and normalized perfor-

mance values (BLEU@N or METEOR), respectively.

From Figure 5, we can see that all performance curves

are like the “∧” shapes when λ varies in a range from 0.1

to 0.9. The best performance is achieved when λ is about

0.7. This proves that it is reasonable to jointly learn the

visual-semantic embedding space in the deep RNNs.

5.3.2 The Size of Hidden Layer of LSTM

In order to show the relationship between the performance

and hidden layer size of LSTM, we compare the results of

the hidden layer size in the range of 128, 256, 512 and 1024.

The results shown in Table 4 indicate increasing the hidden

layer size can generally lead to performance improvements.

Meanwhile, the number of parameters increases exponen-

tially. Therefore, in our experiments, the hidden layer size

Table 4. The effect of hidden layer size in our LSTM-E (VG-

G+C3D) framework on YouTube2Text.

Hidden

layer size
BLEU@4 METEOR

Parameter

number

128 38.4 29.0 3.6M

256 40.6 29.6 7.5M

512 45.3 31.0 16.0M

1024 43.1 31.2 36.2M

is empirically set to 512 as it has a better tradeoff between

performance and model complexity.

6. Discussions and Conclusions

In this paper, we have proposed a novel model named

LSTM-E to generate video description. In particular, a

visual-semantic embedding space is additionally incorpo-

rated into LSTM learning. In this way, a global relation-

ship between the video content and sentence semantics is

simultaneously measured in addition to the local contextual

relationship between the word at each step and the previ-

ous ones in LSTM learning. On the popular YouTube2Text

dataset, the results of our experiments demonstrate the suc-

cess of our approach, outperforming the current state-of-

the-art models with a significantly large margin on both

SVO prediction and sentence generation. Moreover, Our

LSTM-E also achieves superior performance on two large-

scale and challenging movie description datasets.

Our future works are as follows. First, as a video it-

self is a temporal sequence, the way of better representing

the videos by using RNN will be further explored. More-

over, the video description generation might be significantly

boosted if we could have sufficient labeled video-sentence

pairs to train a deeper RNN.
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