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Contextual Bag-of-Words for Visual Categorization
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Abstract—Bag-of-words (BOW), which represents an image by
the histogram of local patches on the basis of a visual vocabulary,
has attracted intensive attention in visual categorization due to
its good performance and flexibility. Conventional BOW neglects
the contextual relations between local patches due to its Naive
Bayesian assumption. However, it is well known that contextual
relations play an important role for human beings to recognize
visual categories from their local appearance. This paper pro-
poses a novel contextual bag-of-words (CBOW) representation
to model two kinds of typical contextual relations between
local patches, i.e., a semantic conceptual relation and a spatial
neighboring relation. To model the semantic conceptual relation,
visual words are grouped on multiple semantic levels according to
the similarity of class distribution induced by them, accordingly
local patches are encoded and images are represented. To explore
the spatial neighboring relation, an automatic term extraction
technique is adopted to measure the confidence that neighboring
visual words are relevant. Word groups with high relevance
are used and their statistics are incorporated into the BOW
representation. Classification is taken using the support vector
machine with an efficient kernel to incorporate the relational
information. The proposed approach is extensively evaluated on
two Kinds of visual categorization tasks, i.e., video event and scene
categorization. Experimental results demonstrate the importance
of contextual relations of local patches and the CBOW shows
superior performance to conventional BOW.

Index Terms—Bag-of-words, conceptual relation, local patches
context, neighboring relation.

I. INTRODUCTION

HE POPULARITY of the internet has caused an expo-

nential increase in the amount of online video data and in
the number of users. Visual categorization, which can be used
for indexing, searching, filtering, and mining large amounts
of video data, becomes increasingly important for users. For
example, we can group the video frames according to the high-
level concepts they contain or group the scenes they happened
in such as Indoor, Beach, People_Marching, and so on, for
efficient browsing.

Conventional methods of visual categorization usually rep-
resent an image based on the low level global features such
as “gist,” Gabor filters, color moment, texture from the whole
image or from a fixed spatial layout [1], [22], [37], which is
convenient for categorization and is computationally efficient.
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[5] tried using high-level global features to determine the se-
mantic class of a scene utilizing a semantic object detector and
generative scene-configuration models. The main drawback
of global feature-based methods is their sensitivity to scale,
pose and lighting condition changes, clutter, and occlusions.
Recently, categorization based on local features in the image
has attracted intensive attention in visual categorization, for
its robustness to intra-class variations. Local features detected
from an image are of various numbers and in a different
order, therefore we cannot apply the classification algorithms
directly. Some methods are proposed to define a matching
function [9], [11] or find the correspondences [4] to measure
the similarity between local feature sets directly. Though
effective, they are unpractical to be applied to large scale
datasets, such as TRECVID corpus [33], due to the high-
computational complexity.

Originating from the text categorization area, bag-of-words
(BOW) has become a popular method for visual categorization
for its effectiveness and flexibility. With extracted local fea-
tures from images, a visual vocabulary is built by clustering
the local features to visual words, which are analogous to the
words in text documents. Then each local feature is encoded
by mapping to a visual word, and an image can be represented
as a BOW, or specifically, a vector containing the count of
each visual word in that image [8]. In this process, the visual
vocabulary provides an intermediate helping to convert the
chaotic local feature set to a regular representation vector,
based on which it is convenient to apply the machine learning
techniques, such as support vector machine (SVM), to yield
good performance. Joining the robustness of local feature
matching and the practicality of vector representation, the
BOW model has been applied to various tasks, such as image
categorization [40], video object retrieval [31], near duplicate
detection [36], etc., and shown excellent performance. On
several benchmark datasets, for example the PASCAL visual
object classes, the BOW-based methods achieved a state of the
art performance [28].

Though shown to be very effective [40], the BOW assumes
that local features in an image are independent to each other
given the class, i.e., the Naive Bayesian assumption, which
means the contextual relations between local patches are ne-
glected. Contextual information is important in the recognition
process of human beings. A white image patch is likely to
be the cloud if it is in a sky area, while it could be a
sheep if surrounded by grass. In the text area, the relation
between words can be utilized to help understanding. One can
expect to find certain letters occurring regularly in particular
arrangement with other letters. With the visual words analogy,
encoding the local features as visual words, it is natural that
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Fig. 1. BOW and CBOW for three video keyframes in terms of five

visual words. The representations are shown to the right of each keyframe.
Keyframes /; and I, belong to the car concept while /3 does not. Regarding
BOW, I, has more histogram intersection with /3, while with CBOW, where
the contextual relations are considered, I> has more intersection with I;.

the context of related visual words can be considered for better
categorization.

Two relations between local patches in images or video
keyframes can be important for categorization. First, there is
the semantic conceptual relation between patches. An image
or video frame can be described by the composition of objects
such as cars, buildings, and persons. The objects can be further
described in terms of parts, e.g., a wheel of a car, a window
of a building, or the face of a person. On the bottom level, the
local patches have the relation of appearing on the “same part,”
“same object,” or “same category” [32]. In BOW, visual words
are usually learned by clustering over features, in terms of
the visual appearance. Different words may correspond to the
same concept, i.e., they are conceptually related. As a result
the corresponding features in different images may be encoded
to different bins and classification performance is affected.
Second, the spatial neighboring context of patches is totally
neglected in the BOW. In many cases, two patches appearing
together, i.e., having the neighboring relation, can give more
information for classification than appearing separately.

Fig. 1 illustrates the effect of these two relations for cate-
gorization using three video keyframes and five visual words.
Keyframes I; and I, belong to the car concept and keyframe
I; does not. Visual words W;, W,, and W3 all contain the
concept of “tire” but have different appearances due to the
imaging variation and limitation of the local patch extractor.
Visual words Wy, Ws occur in both I, and I3 while they are
a neighbor forming an informative part only in /,. By the
original BOW, the representation for each keyframe is shown
in the first line of its right area, according to which I, has
more histogram intersection with /3 than with I, which is
not expected in categorization. As marked on the top, we

consider the conceptual relation of W, W,, and W3, and the
neighboring relation of W, and Ws. For conceptual relation,
the occurrence of a word also indicates the concept of its
relational words, and for neighboring relation, the occurrence
of relational words in the neighborhood should be considered.
Therefore, we group the patches of the “tire” concept together
and count the occurrence of neighboring W, and W5 to obtain a
new contextual bag-of-words (CBOW) representation for each
keyframe, as shown in the second line of its right. By the
CBOW, obviously I, is more matched with I; than with I,
therefore categorization can be facilitated.

Although the contextual relations between local patches are
useful, they have not been well explored in the BOW-based vi-
sual categorization. Most approaches group local features into
separate bins of visual words and treat these words indepen-
dently when comparing or categorizing. Different weighting
schemes, such as binary or term frequency (TF) [8], [40], term
frequency—inverse document frequency [31], and binary [27],
have been proposed for considering the significance of indi-
vidual words. However, the visual words context has not been
considered in this process. In [17], Lazebnik et al. consider
the spatial layout relation of local features by partitioning an
image into increasingly fine grids and computing the BOW
inside each grid cell. It shows better performance than the
original BOW and validates the importance of the local patches
context for visual categorization. The spatial layout relation
of local patches is still rough, though, and the two contextual
relations addressed in this paper have not been considered yet.

In this paper, we propose a novel visual categorization
algorithm to model the two contextual relations between
local patches based on the BOW representation. Firstly, the
semantic conceptual relation is measured according to the class
distribution induced by the visual words. The distributional
similarity is measured by the Kullback-Leibler (KL) [15]
divergence. With different similarity criteria, relational visual
words are grouped on multiple semantic levels and images
are represented accordingly. The multiple level conceptual
relation is integrated into the classification by a kernel design
based on the pyramid matching theory. Moreover, to evaluate
the neighboring relation of visual words, the automatic term
extraction from the text area is adopted, which calculates a
confidence value that neighboring words can form an infor-
mative part. Informative word groups with high confidence
are then extracted and their statistical information is combined
with the BOW representation.

We studied the effectiveness of the proposed contextual
relations modeling method on two visual categorization
tasks: scene categorization and video event categorization.
Experiments are conducted on the 15 scene categories dataset
and TRECVID2005 events detection corpus. Comparisons
with previous methods are taken. The spatial layout relation
is further combined to extensively explore the effective of
local patches context in categorization. In the following,
we also use conceptual relation and neighboring relation to
denote semantic conceptual relation and spatial neighboring
relation, respectively.

The rest of this paper is organized as follows. Section II
briefly reviews the related works. Section III presents the de-
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tails of the proposed visual categorization approach, including
conceptual relation modeling, neighboring relation modeling,
and classification scheme. Section IV gives experimental re-
sults on two benchmark datasets. Finally, Section V concludes
this paper.

II. RELATED WORK

Since being introduced, BOW has attracted intensive at-
tention. Some works have studied the parameters or feature
settings of BOW comparatively to yield high-categorization
performance [38]. Many algorithms were also proposed to
improve the method itself. Different clustering techniques,
such as agglomerative [13], mean-shift [18] or hierarchical
k-means [26], have been adopted for visual vocabulary learn-
ing. To introduce discrimination to the visual words or in-
tegrate the visual words learning step into the classification
scheme, Winn et al. [34] proposed to build a compact and
discriminative codebook by pair wise merging of visual words
based on the information bottleneck principle, and Moosmann
et al. [24] applied the randomized forest method to codebook
learning. Recently, [16] proposed to learn the codebook by
minimizing information loss. These algorithms aim at improv-
ing the visual words to encode local features efficiently, there-
fore lead to better categorization performance or high speed.

In contrast, to minimize the gap between visual words
encoding and the semantic concepts, [10], [30] try to extract
the middle level topics based on BOW and model categories
in terms of the semantic topics. They apply the probabilistic
latent semantic analysis (pLSA) and latent Dirichlet allocation
(LDA), which originate from the text processing area. Each
topic has a probabilistic distribution over the words and
image categories are modeled in terms of the distribution of
topics. The learning process can be unsupervised and pLSA
is also applied to human action categorization [25] and video
object discovery [19]. Though appealing in theory, later work
shows that BOW still keeps the prior position in terms of
categorization performance [17]. None of the above algorithms
have considered the contextual relations between local patches
in the image.

In [17], the spatial layout relation of local features is
considered assuming that similar parts of scene categories
often appear in similar areas of 2-D image space. Images
are partitioned into increasingly fine grids and histograms
are computed for patches found inside each grid cell, based
on which the pyramid matching is adapted for classification,
named spatial pyramid matching (SPM). It obtains better
categorization performance than the original BOW, but the
spatial layout relation is still rough and the contextual relations
we are going to address in this paper have not been considered.
Liu et al. [20] proposes to group visual words to intermediate
concepts by co-clustering and reducing the dimensions of
image representation for efficient computing, where visual
words are clustered semantically. However, their aim is to be
more efficient and the conceptual relation is not well combined
for better performance.

The neighboring relation between local patches has been
explored in Bayesian framework-based object categorization
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Fig. 2. Overview of the proposed visual categorization approach. White and
gray pipelines mark the flow of training and test keyframes, respectively, and
the green pipeline represents the contextual relations that are used in the
representation computing process.

and image retrieval tasks. Wu er al. [35] proposed to use
the visual language model (VLM) to statistic distribution
of the neighboring visual words (N-grams) to describe the
image category. Modeling the probability of every possible
N-gram in a Bayesian framework, the VLM cannot be nat-
urally combined with the BOW representation, thus it is
weak in categorization performance. Zheng et al. [42] and
Zhang et al. [41] extract visual phases, i.e., neighboring words
groups, simply according to their occurrence frequency for
image retrieval. This paper is different from them in that we
explore the contextual relations between local patches for more
effective visual categorization in the BOW framework.

III. CONTEXTUAL BAG-OF-WORDS CATEGORIZATION

There are three main steps in the proposed approach for
visual categorization. First, similar to BOW, local features
are extracted from images or video keyframes and translated
to the feature descriptors; then visual words are learned by
clustering. Second, the occurrence numbers of visual words
are counted and the two contextual relations between visual
words are measured from the statistics. Finally, the images
are represented and classification is taken considering the
relation information. Fig. 2 shows an overview of the proposed
approach. White and gray pipelines mark the flow of training
and test images or video keyframes respectively, and the green
pipeline represents the contextual relations that are used in the
CBOW representation computing process.

A. Feature Extraction and Visual Words Learning

In the feature extraction, local patches used are extracted
densely from the images and translated to scale invariant fea-
ture transform (SIFT) descriptors [21]. Some previous works
use interest point detectors for local patches extraction, but
the features detected are usually too sparse to describe the
visual characteristics. Recent research shows that extracting
local patches densely can yield better performance [27]. Thus,
we extract the patches centering on a regular grid with spacing
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Fig. 3. Illustration of the patches conceptual relation. Patches of the same
concept may correspond to different visual words, which is referred to as
“conceptual relation” here. The appearance of a word implies the information
of its relational words.

M pixels and calculate the descriptor of each local patch. As
a result each image is translated to a set of local features. The
SIFT descriptor is widely used and is shown to be effective in
the performance evaluation of [23], and the PCA-SIFT [14],
which extends the original SIFT descriptors, has been shown
to be more compact and distinctive. Conventionally, SIFT is
computed for eight orientation planes and each gradient region
is sampled over a 4 x 4 grid of locations. Thus, the dimension
of the resulting descriptor is 128. In this paper, since the
main orientation of the sampled local patches is unknown,
for each sampled patch we use two orthogonal orientations as
the main orientation and concatenate the descriptors calculated
accordingly, resulting in a vector of 256 dimensions. Then the
principle component analysis (PCA) is applied to transform
the features to 80 dimensions to reduce the computation and
storage cost. The PCA transform is learned using a randomly
selected subset of training features and applied to all the local
features.

The visual words are learned from a collection of local
patches sampled from the training images using the k-means
clustering algorithm, which efficiently groups visually similar
patches into one cluster. The visual words are set as the cluster
centroids. With a visual vocabulary, each local feature can be
encoded as a word by a vector quantization algorithm, i.e., the
nearest word to it. For each keyframe or image, the occurrence
number of each word can be counted to form a histogram
representation.

B. Conceptual Relation Modeling

The conventional BOW encodes local patches purely ac-
cording to the visual appearance and considering visual words
independently. However, as illustrated in Fig. 3, some words
are closely related in concept while some are not. The oc-
currence of a visual word conveys similar information to its
relational words, which should be considered in the catego-
rization. This section details the process that measures and
incorporates the conceptual relation between local patches in
the categorization.

Evaluating the conceptual relation between local patches has
rarely been addressed in visual categorization. However, in the
text area, the relation between words can be obtained from the
WordNet [29], which is built manually. In informative cluster-
ing, semantic distance between words is measured implicitly
or explicitly to group the semantically similar words [3]. Most
of the methods are essentially based on the information gain
criterion. Among them, an effective way is to measure the

word relation by the KL divergence between distributions
of the classes induced by the words, and it also measures
the distance explicitly and is convenient to be incorporated
into categorization frameworks [2], [3]. The distribution is
computed according to the statistical information of words’
occurrence [2]. In BOW, with the visual words analogy, the
conceptual relation between visual words can be measured
similarly. The core intuition behind this measurement is that
visual words related to the same objects or object parts are
more likely to distribute similarly over the categories. For
example, patches of “eye” or “nose” tend to occur frequently
in face images and less in other categories.

To illustrate the conceptual relation of visual words derived
from their distribution, in Fig. 4, four visual words from
1000 words learned by k-means clustering (from a 15 scene
categories dataset) are used. The above figure shows some
sample patches of these visual words extracted from the
training images in row sequence. We can see visual words #2,
#352, and #503 are closely related to the “coastline” part of the
coast category and therefore have strong conceptual relation,
while visual word #4 has a very small conceptual relation with
them. The below figure plots the class distributions induced by
these words in the training set. The horizontal axis represents
the class variable, the vertical axis indicates the probability of
each class given the word, and the shape of the line shows
the distribution. As we can see, the line shape of distributions
of the three relational words is quite similar, while that of
word #4 is obviously different. Thus, using the induced class
distribution, the conceptual relation between visual words can
be calculated. Considering the classification task, the graph
of class distributions can also be interpreted as a picture of
how much the word votes for each of the classes whenever it
occurs, and it can be seen from Fig. 4 that the three relational
visual words vote mostly for the coast category, with the other
voting mostly for the forest category.

Consider the distribution of a particular word W, over a
class Cj, i.e., the probability of C; given W,
P(Cj, W,)

P(W)

This probability is approximately calculated by counting the
occurrence number of visual words, i.e., the number W,
occurring in class C; versus its occurrence number in all the
classes. To measure the difference between two conditional
distributions, the KL divergence, also called information diver-
gence, is used. The KL divergence between the distributions
of class variable C induced by W, and W; is defined as

P(Cj|W,) = (1)

IC]

KL(P(C|W’)||P(C|WY)) = ; P(Cj|Wz) log (M)

P(C;|Wy)
2
In the context of information theory, the KL divergence can
be intuitively understood as a measure of inefficiency that
occurs when messages are sent according to one distribution,
P(C|W,), but encoded with a code that is optimal for a
different distribution, P(C|W;).
Since the KL divergence is not symmetric, and it is infinite
when an event with nonzero probability in the first distribution
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Fig. 4. Conceptual relation of patches from the class distribution induced by
visual words. (a) Sample patches corresponding to words #2, #352, #503, and
#4 from 1000 words leaned by k-means in row sequence. (b) Plots the class
probability distribution of these words. Words #2, #352, and #503 have similar
distribution and are grouped as relational in the proposed method while word
#4 is not.

has zero distribution in the second distribution, here we use
a related measure that does not have these problems. It is a
weighted average of the KL divergence of each distribution to
their mean distribution

O P(W
DO, W) = o s = KL(PCIWDIPCIW, v W)
AU O NNS) (P(C|WS)||P(C|Wt v WS)>.
P(W; v Wy)

3)

When words W, and W, are considered as relational and
grouped together, the new distribution P(C|W; v W) is the
weighted average of the individual distributions. This metric
can be understood as the expected amount of inefficiency
incurred if, instead of encoding two distributions optimally
with their own code, we use the code that would be optimal
for their mean. Here it describes the difference of effect to the
image representation that relational words that formerly gen-
erated their own individual statistics now generate combined
statistics.

With the informative measurement of (3), from an initial
vocabulary of K words, we can group the visual words to a
pre-defined number of relational groups by an agglomerative
procedure as in the following, where the group number is

385

denoted as K _C.

1) Calculate the conditional distribution over the class
variable of each original word P(C;|W;). According to
(2) and (3), calculate the semantic distance D(W,, W)
between each words pair (W;, Wy).

2) Initially, each word itself is considered as a relational
group. Iteratively merge the two groups whose distance
value is the smallest until the group number equals to
K C. The distance between two groups (WC,, WCy) is
defined as the shortest distance that a word in cluster
WC; to a word in cluster WCy

D(WC,, WC)) = min DIW. W) (4)

where I, J represent the collection of words in group ¢
and group s, respectively.

Since words of the same conceptual group reflect simi-
lar semantic meaning, their occurrence is considered as the
occurrence of the group. The occurrence numbers of all the
groups can form a histogram representation similar to that of
the BOW, which is used in the categorization. Furthermore,
semantic relation between patches can be interpreted in mul-
tiple levels; containing same scene, object, object parts, or
intermediate concepts. It is impossible to precisely measure
visual words relation corresponding to these levels; here we
propose to incorporate the conceptual relations between visual
words on multiple levels in an approximate way, which will
be detailed in Section III-D.

C. Neighboring Relation Modeling

In images or video keyframes, some patches can be com-
bined to form a meaningful object or object part, which is
similar to the terms constituted by closely relevant words in
text. These patches are considered as having a “neighboring
relation,” as illustrated in Fig. 1. To incorporate the neighbor-
ing relation into the BOW, we measure the information that
the neighboring visual word groups give for classification and
use the occurrence number of informative groups in image
representation.

In natural language words’ contextual information is usually
modeled by the N-gram language model in text categorization,
according to the grammar which restricts the words connection
and order. The N-gram model estimates the conditional prob-
ability of word sequences of length N(N > 2), and set as the
prior knowledge for understanding the text. Many works model
the neighboring relation between words using the conditional
probability assuming the Markov property or words sequence,
such as VLM [35]. As we have explained, it is hard to integrate
with the BOW. To directly adopt the N-gram in the BOW,
and count the number of N-grams in the image to construct
a “Bag of N-grams,” we encounter the practical problem that
the vector dimension for representing an image is too high to
compute. For example, the number of Bi-grams constituted
by 1000 visual words is 500000 without considering the
order. At the same time, many word pairs are useless for the
classification and even seldom appear. Therefore, we need to
extract the informative neighboring visual words groups and
model them based on the BOW.
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TABLE I
OBSERVED FREQUENCIES OF WORD PAIR

W,=B | W,#B
Wy=A Oy Oz Ro
Ws #A 021 Op Roy
Co Coy
TABLE II

EXPECTED FREQUENCIES OF WORD PAIR

W, =B W, # B
Roj xCo Ro| xCo,
Wy=A | En="5= | En="52
Roy xCo Roy xCo
Wy# A | Ey = 2550 | Epp = 202522

Various feature selection or key term extraction techniques
proposed in the text area can be applied. Among them,
the automatic terms extraction technique with the chi-square
criterion, which is commonly used and is shown to be very
effective [39], is adopted. Automatic terms extraction is used
to find relevant word groups through the statistic information
from the corpus. It calculates a confidence value that a pair
of words constitutes a term. Considering any two consecutive
words Wy and W, in the corpus forming a word pair (W, W,),
for each word pair we can get the contingency table of
observed frequencies O;; as Table I. Where O;; represents
the frequency of word pair (W, W;) in the corpus when W;
is A and W, is B. Oy, represents the frequency that W; is
A and W, is not B. Oy represents the frequency that Wi is
not A and W; is B. O, represents the frequency that W; is
not A and W; is not B. Based on Table I, the expected values
of these frequencies, if consecutive words A and B form a
meaningful term, can be calculated according to Table II.
The Ej; values are the expected occurrence number of the
corresponding cases to the O;; values in Table 1. N is the fre-
quency of all word pairs in the corpus. Using the above two
tables, for any of the two words A and B, the confidence
that they form a term can be calculated by the following (5).
Word pairs with a high-confidence value are considered as the
terms

0

Confidence(A, B) =2 lzj: 0;j log Ey . (®)]

In the BOW representation, an image is analogous to a
document, thus by the above method the confidence value that
a group of neighboring visual words form an informative part
can also be calculated. For convenience, here we use N-gram
to name the group of N neighboring words and define the
Bi-gram as the visual word pair occurring in neighbor, and
the (N + 1)-gram as the neighboring pair of an N-gram and
a word. Fig. 5 illustrates the definition of “visual N-gram.”
After translating the features to visual words, we consider
their 8-neighborhood relation in the image space and extract
the neighboring word groups as shown in Fig. 5. Using the
above confidence evaluating method, informative neighboring
N-grams are extracted by the following procedure.

Wy, Wy Wy
Wy Wy Wy
Wiy Wi

Wi

Tri-grams

Bi-grams

Fig. 5. Illustration of the visual N-grams extraction. The top middle image
shows the extracted local features from the top left image, and the features
are converted to visual words as at the top right image. The below figures
illustrate the “visual N-grams” we define.

1) Count the occurrence of all the word pairs in the training
set, calculate the confidence value of each word pair and
extract those whose confidence is high to construct the
Bi-gram terms.

2) Find the informative (N + 1)-grams by calculating the
confidence of an N-gram with a word and extract these
with high-confidence values. This step can be iterated.

In practice, visual word groups with a small occurrence
number are neglected. Finally, we count the occurrence num-
ber of the informative neighboring N-grams and concatenate
to the original BOW representation.

D. Classification

Considering the two contextual relations together, an image
can be finally represented by a multilevel BOW representation
by first incorporating the neighboring relation then applying
the multiple level conceptual relation modeling method. With
the conceptual distance between visual words measured by the
method of the previous section, the initial K visual words can
be grouped to K C relational groups by an agglomerative
procedure. To incorporate the words relation information on
multiple levels, we group the relational words with different
similarity criterions resulting in different levels of the group
numbers K Cs. K Cs are set as the following:

K _C=K/2, 1=0,...,L—1 (6)

where L represents the number of conceptual levels con-
sidered. On each level a histogram representation can be
computed; as a result, an image is represented as a multireso-
lution histogram of the pyramid structure, where higher level
features are encoded semantically more coarsely. Based on this
representation categorization is taken using the kernel SVM.
Here we adopted the idea of the pyramid matching [11] for
combining multilevel information in matching.

The pyramid matching works by placing a sequence of
increasingly coarser grids over the feature space and taking
a weighted sum of the number of matches that occur at
each level of resolution, with coarser levels assigned smaller
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weights. A sequence of grids at different resolutions O, ..., L
is constructed over the feature space. At any resolution, two
points are considered as a match if they fall into the same cell
of the grid. Matches found at finer resolutions are weighted
more highly than matches found at coarser resolutions. Specif-
ically, consider that the feature dimension is d and the grid at
level  has 2/ cells along each dimension; thus there are in
total T =24 cells. Let H! and H; denote the histograms of x
and y at this resolution, H)’C(i) and Hé(i) are the numbers of
points from x and y that fall into the iy, cell of the grid. Then
the number of matches at level / is given by the histogram
intersection function

T
I(Hy, Hy) =" min(Hy (i), Hy (). 7
i=1

Note that the number of matches found at level / also includes
all the matches found at the finer level [/ + 1. Therefore, the
number of new matches found at level [ is given by I’ — I™*!
for [=0,...,L — 1 (abbreviate I(ch, H!) as I'). The weight
associated with level [ is set to 1/2X~/ which is inversely
proportional to cell width at that level. Intuitively, matches
found in larger cells should be weighted lower because the cor-
responding features are increasingly dissimilar. In summary, a
pyramid match kernel (PMK) is defined as

L—1
1
K#MK(X, )’)=1L+ E F(ll—ll*‘l)
1=0
L
1 1
=—/+ —_. 8
2L ;2L—l+l ®

Both the histogram intersection and the pyramid match kernel
are Mercer kernels [11].

SVM has demonstrated its effectiveness in many catego-
rization tasks and shows excellent performance for feature
combination. The kernel is important for SVM. In previous
works using BOW, several kernel types have been adopted,
such as histogram intersection and linear. The proposed match-
ing kernel is defined based on the Laplacian radial basis
function (LRBF) proposed in [7], which has shown superior
performance in histogram-based image categorization. Given
two images which are represented by K-dimensional vectors
x and y, respectively, the LRBF kernel is defined as

Dis(x, y)
Kirer(x, y) = exp A 9
with the distance function
K
Dis(x, y) =Y _ 1x(i) — y(). (10)

i=1

In this paper, representing an image on L levels, x and
y each contain L vectors of different dimensions as defined
in (6). The multilevel representation of images corresponds
to different fine levels in conceptual relations. A lower level
means the words groups have a finer relation and the matched
local features are semantically more similar. Motivated the
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Fig. 6. Example images of the 15 scene categories.

pyramid matching kernel, the kernel function for image match-
ing is defined as
L-1

Dis(x, y) = Z aidi(x, y)

1=0

(1D

where a; is the weight at level I defined as a; = 1/2, d,
represents the distance between x and y at level /, and is
defined as
K—C
di(x, y) =Y 1@ — Y@l

i=1

(12)

The parameter A in the LRBF kernel is set as the mean
value of the defined distances between all training images
in the implementation. This parameter setting works well in
experiments.

IV. EXPERIMENTAL RESULT

In this section, we evaluate the proposed algorithm for
two kinds of visual categorization tasks: scene and video
event categorization, which can be used for understanding
what and where the video is. Two widely used benchmarks,
the TRECVID2005 video events database [33] and 15 scene
categories database [17], are used in the experiments. For
feature extraction, gray level images are used for both datasets.
The sampling interval M of local patches is set as 8 and 10 for
the two datasets, respectively. The scale of extracted patches
is randomly sampled between 10 to 30 pixels. The SVM is
implemented using LIBSVM [6]. Multiclass classification is
done with the SVM trained using the one-versus-all rule. The
parameters of SVM, such as the cost value C, are set empir-
ically and fixed in all the tests for a database. Though cross
validation can be used for parameter selection, its computation
is high for large datasets and our parameters setting also does
well as we observed in experiments.

A. Evaluation on Scene Categorization

The scene database is composed of 15 scene categories:
Store, Office, Tall building, Street, Open country, Mountain,
Inside city, Highway, Forest, Coast, Living room, Kitchen,
Industrial, Suburb, and Bedroom. Each category has 212 to
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TABLE III
COMPARISON OF DIFFERENT KERNEL TYPES WITH BOW

Kernel Intersection Linear Polynomial LRBF

AR 79.8% 78.2% 77.9% 81.3%
TABLE IV

PERFORMANCE OF BOC AND BOW WITH DIFFERENT VOCABULARY
SIZES
K/K _C 100 200 400 1000 1500
BOW 747%  76.0% 80.3% 813%  80.9%
BoC 774% 79.8% 81.3% X X

TABLE V

COMPARISON OF DIFFERENT LEVEL NUMBERS OF CBOW

L 1 2 3 4
AR 824% 83.1% 833% 83.4%

410 images, and average image size is 240 x 352 pixels. The
major sources of the pictures in the dataset include the COREL
collection, personal photographs, and Google image search.
This is one of the most complete scene category datasets
used in the literature thus far. Fig. 6 shows the example
images. Following previous works on this dataset [17], [20],
we randomly choose 100 images per class for training and
use the rest for testing. The classification accuracy rate (AR)
is adopted as evaluation criterion, i.e., the number of correctly
classified images versus the number of all test images.

We first test the baseline BOW method with different
parameter settings. Table III compares the performance of
different kernel types with the BOW. The performance of
LRBF is shown to be better than the other three popular
kernel types, which validates the effectiveness of the proposed
CBOW matching kernel based on LRBF. The vocabulary size
for the baseline BOW is also tested and the results are shown in
the row “BOW” in Table IV. The best performance is achieved
when K = 1000. The conceptually relational words groups
obtained by the proposed method can also be considered as
the intermediate concepts, based on which we can construct a
“Bag of Concepts” on a single semantic level. The row “BoC”
in Table IV gives the performance of the Bag of Concepts with
a different words groups number K C. They are learned from
an original vocabulary of 1000. As shown in the table, the BoC
is better than the original BOW with the same vocabulary size.
This result verifies the effectiveness of the proposed conceptual
relation measuring method and shows that encoding the local
features semantically is more effective than using the words
learned by pure clustering.

The proposed neighboring relation modeling method is then
evaluated. An original vocabulary of size K =400 is used in
this test since large vocabularies cause much computational
load, and the confidence calculation of (5) relies on the precise
statistics of visual words in the training corpus, while large
vocabularies have too many word pairs to estimate and require

TABLE VI
PERFORMANCE COMPARISON ON THE 15 SCENE CATEGORIES

Alg. VLM BOW CBOW CBOW_SL SPM SPM_IC

AR 53.6% 813% 83.4% 85.1% 83.4% 83.3%

much training data. The informative Bi-grams with high-
confidence values are extracted and used to construct a “Bag of
Bi-grams.” The best performance is achieved when using 800
Bi-grams, giving an accuracy rate of 74.1%. It’s lower than
the original BOW due to the information loss when discarding
most word pairs. However, the combination of the 800 Bi-
grams and the original 400 words yields an accuracy rate
of 82.4%. It is better than the BOW with large vocabularies
and proves that the neighboring relation can be helpful. With
the proposed method, informative N-grams (N > 2) can be
further extracted. However, due to the lack of training data
for statistics, there are only a few Tri-grams with a high-
confidence value.

Using the combination of 800 Bi-grams and 400 words
as the initial vocabulary, the conceptual relation modeling
method is applied as the proposed CBOW. Table V lists
the performance of CBOW with different level numbers,
i.e., L in (6). The performance improves as L increases for
the consideration of more conceptual relation. However, it
does not change much when L is high, since as in (6), the
dimension of higher level representation becomes lower and
the incorporated information is small. Finally, we used four
levels in the following tests on the scene dataset.

Table VI gives the performance of the proposed CBOW
and the combination of spatial layout context with the CBOW
(CBOW _SL), which partitions images into 2 x 2 regions
and concatenates the representation of all the regions. There,
recent local feature-based methods, the VLM [35], BOW,
SPM, and the SPM with intermediate concepts (SPM IC)
[20], are compared. The best performance of SPM is achieved
with vocabulary size K = 400 and level number L = 3, as it
surpasses previous reported results on this dataset by “gist” [1]
and pLSA [10]. The proposed CBOW and the previous SPM
obtain similar improvements over the baseline BOW, which
demonstrates the importance of spatial layout and the proposed
contextual relations of local patches for categorization. Note
that the dimension for image representation in the SPM is
thus 400 x (1 + 4 + 16) = 8400, while that of the CBOW
is 1200 + 600 + 300 + 150 = 2250, which is much lower. It
means the CBOW costs much less computation than the SPM
with a similar performance level. To classify the 2985 test
images of this dataset, the BOW with 1000 visual words takes
about 113 s, the SPM takes 944 s, while the proposed CBOW
method requires about 248s (2.4GHz CUP and 3G RAM;
not including feature extraction time). High performance is
achieved by integrating all these contextual relations between
local patches together. As shown in Table VI, CBOW _SL
yields the best result. This result proves the importance of
local patches context for categorization. The VLM shows low
performance for its Bayesian classification framework. Trying
to model the conditional dependence between visual words, it
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Fig. 7. Example keyframes of TRECVID2005 10 high-level video event
concepts.

does not utilize the classification power of machine learning
techniques such as SVM. Comparatively, the BOW-based
methods can be more flexible and therefore more effective.

B. Evaluation on Events Categorization

The TRECVID2005 video event concepts dataset contains
a total of 61901 keyframes from 39 annotated categories.
These keyframes are extracted from a variety of real TV news
programs. The size of the keyframes is 240 x 352; it is a very
challenging dataset. In the TRECVID, high-level feature ex-
traction task [33], the following ten concepts were chosen for
evaluation: Building, Car, Explosion _Fire, Flag US, Maps,
Mountain, People Marching, Prisoner, Sports, and Water. In
this test, we also evaluate the ten concepts detection and
compare with previous work [37]. Fig. 7 shows the example
keyframes. We follow the experimental settings of [22], [37]
to partition the data for training and test. In [22], [37], the
annotated dataset is partitioned to training, validation and
test sets. However, in this experiment, the validation set is
not needed for choosing the parameters since the parameter
values are fixed for all categories. Therefore, the training and
validation partitions are used for training together and the test
set is used for test. Since in the training set, the number of
negative samples is much larger than the number of positive
ones, for each category, the negative training keyframes are
down sampled by ten in model learning. The keyframes in the
TRECVID2005 set may contain several overlapping concepts
and each keyframe may be classified into multiple categories.
In this experiment, we posed the multilabel video annotation
task into a binary classification problem using binary SVM as
the classifier, which classifies the keyframes from one category
as positive, with the rest being treated as negative. For each
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concept a binary classifier is learned and the ten concept
classifiers are applied to each test keyframe one by one; finally,
the positive ones are output as the resulting multiple labels.

Following previous work on this dataset [22], [37], the
average precision (AP) is adopted as the performance measure.
For each concept, assuming N retrieved keyframes are ranked,
and R of them are relevant (R < N), we can define the AP
as follows:

(13)

where B; = 1if the j-th shot is relevant, otherwise 0. R; is the
number of relevant keyframes in the top j retrieved keyframes.
Precision and recall were also popular performance measures
when evaluating detection algorithms [12]. However, both
recall and precision must be taken into account simultaneously,
which is not convenient in the case of multiple concepts detec-
tion. Usually, the AP is the most commonly used performance
measure and it takes into account both recall and precision
[43]. To observe the performance extensively, we also plot the
Precision—Recall curves of some concepts in the results.

Two typical previous works on this dataset, Columbia [37]
and MSRA [22], are compared in the test. They use global
features with the SVM classifier and yield excellent perfor-
mance. In [22], several kinds of global features are combined.
Here only the best one, 5 x 5 color moment, is implemented
for comparison since the BOW can also be considered as
one feature. The original BOW [8], [40] and the SPM [17]
are also implemented for comparison. It is difficult to apply
other local feature-based algorithms not based on BOW to the
large dataset due to the high computation. In [38], the BOW
was applied to TRECVID data with extensive comparisons of
different parametric settings such as visual vocabulary size and
weighting scheme. However, the sparse local feature extraction
they used degrades the performance, and the large visual
vocabularies used cause a high-computational load. Due to
the huge computational load for this large dataset, we fix the
initial vocabulary size as K = 1000 for each concept and use
the TF weighting method. This setting proves to be effective
in experiments.

Based on this baseline the proposed conceptual relation
modeling method is applied with three levels, i.e., L = 3
in (6). The neighboring relation modeling was also tried.
500 Bi-grams with high-relevant confidence were extracted
and incorporated to the BOW. However, for this dataset the
proposed neighboring relation modeling of patches does not
provide improvement and the AP values go down to about 0.02
lower than the original BOW. The reason is that the variation
of keyframes in this set is large and there are only a small
amount of positive samples for most concepts; the expected
occurrence numbers and confidence values of word pairs can-
not be estimated precisely. In the following result, the proposed
CBOW only contains the conceptual relation. As shown in the
scene categorization experiment, with the dataset containing
less variation, the confidence estimation is more precise and
the proposed neighboring relation modeling does help.

In Fig. 8, we compare the resulting AP values of Columbia
[37], MSRA [22], the BOW, the SPM of two levels, and the



390

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 4, APRIL 2011

B Columbia

= MSRA

= BoW

&°

&
¢

\‘B

@03
@‘3&

(ﬁ" eﬂ% '@0
o &
o
QQ\Q
Q@

Fig. 8.
TABLE VII

PERFORMANCE COMPARISON ON THE TRECVID2005 TEN VIDEO
CONCEPTS

MSRA
0.3214

BOW
0.3580
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0.3928
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Fig. 9. Precision—Recall curves of four video event concepts.

proposed CBOW. Spatial layout context is also combined to
the proposed CBOW to study the context of local patches
further, and the result is listed for comparison (CBOW _SL).
Table VII lists the mean AP (MAP) values of these methods.
Compared to the global feature-based methods of Columbia
and MSRA, local feature-based BOW related methods yield
better performance for the good representation ability. The
contextual relations of CBOW and the spatial layout relation of
SPM both yield significant improvements over the BOW while
the CBOW is superior. The performance is further improved
by introducing the spatial layout information to the CBOW by
partitioning keyframes into 2 x 2 regions and concatenating
the representation of all the regions together. Fig. 9 plots the
Precision—Recall curves of four example concepts for better
observation and comparison. We can see the proposed CBOW
or CBOW _SL shows good performance on these concepts

@‘\\
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= CBoW
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O &
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Comparison of APs of six methods on the TRECVID2005 10 video event concepts.

from the curves, which coincides with the measurement of
the AP values.

From Fig. 8, we can also see that for some specific concepts
the global feature-based methods are much better than the
proposed method. Thus, they are complementary and could
be combined for better performance. It is noticeable that for
the concept Mountain, the global feature-based methods yield
very low APs and for Prisoner the local feature-based methods
perform poorly. One reason is that the global description of
Mountain is not discriminative from other concepts while the
local characteristics of Prisoner can be confused with concepts
such as People Marching, etc. Another reason causing the
big variation of AP values is the small number of positive test
samples of the two concepts, i.e., three for Prisoner and 40
for Mountain out of more than 6000 test keyframes.

V. CONCLUSION

In this paper, we addressed the problem of the BOW
algorithm that local patches context is neglected and pro-
posed a new algorithm, named CBOW, modeling the concep-
tual context and neighboring context of local patches based
on the BOW. First, the measurements for these relations
between visual words were introduced. Then visual words
were grouped on multiple levels according to the conceptual
relation. Images were represented and matched accordingly.
Visual words groups, which have informative neighboring
relation, were extracted and their statistics were incorpo-
rated in the image representation. The proposed method
was tested for scene categorization and video event cate-
gorization tasks. Experimental results showed that the con-
textual relations between local patches can be very useful
for categorization and the proposed algorithm achieves sig-
nificant improvement over the original BOW. Furthermore,
in experiments the spatial layout context also was com-
bined to extensively study the importance of local patches
context for categorization with a high performance being
achieved.

ACKNOWLEDGMENT

T. Li would like to thank L. Wu for providing visual
language model results, and also grateful to M. Callcut for
proof reading the paper.



LI et al.: CONTEXTUAL BAG-OF-WORDS FOR VISUAL CATEGORIZATION

(1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]

REFERENCES

A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vision, vol. 42,
no. 3, pp. 145-175, 2001.

L. D. Baker and A. K. McCallum, “Distributional clustering of words for
text classification,” in Proc. Assoc. Comput. Machinery Special Interest
Group Informat. Retrieval (SIGIR), 1998, pp. 96-103.

R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter, “On feature
distributional clustering for text categorization,” in Proc. Assoc. Comput.
Machinery Special Interest Group Informat. Retrieval (SIGIR), 2001, pp.
146-153.

A. Berg, T. Berg, and J. Malik, “Shape matching and object recognition
using low distortion correspondences,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit. (CVPR), 2005, pp. 26-33.

M. R. Boutell, J. Luo, and C. M. Brown, “Scene parsing using region-
based generative models,” IEEE Trans. Multimedia, vol. 9, no. 1, pp.
136-146, Jan. 2007.

C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector
Machines [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm
O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines for
histogram-based image classification,” IEEE Trans. Neural Netw., vol.
10, no. 5, pp. 1055-1064, Sep. 1999.

G. Csurka, C. Dance, L. Fan, J. Williamowski, and C. Bray, “Visual cat-
egorization with bags of keypoints,” in Proc. Statist. Learning Comput.
Vision Workshop (SLCV), 2004, pp. 1-22.

C. Wallraven, B. Caputo, and A. Graf, “Recognition with local features:
The kernel recipe,” in Proc. IEEE Int. Conf. Comput. Vision (ICCV),
2003, pp. 257-264.

L. Fei-Fei, R. Fergus, and P. Perona, “A bayesian hierarchical model for
learning natural scene categories,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit. (CVPR), 2005, pp. 524-531.

K. Grauman and T. Darrell, “Pyramid match kernels: Discriminative
classification with sets of image features,” in Proc. IEEE Int. Conf.
Comput. Vision (ICCV), 2005, pp. 1458-1465.

M. John, E. Kubala, R. Schwartz, and R. Weischedel, ‘“Performance
measures for information extraction,” in Proc. Defense Advanced Re-
search Projects Agency (DARPA) Broadcast News Workshop, 1999, pp.
249-252.

F. Jurie and B. Triggs, “Creating efficient codebooks for visual recogni-
tion,” in Proc. IEEE Int. Conf. Comput. Vision (ICCV), Beijing, China,
2005, pp. 604-610.

Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for
local image descriptors,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit. (CVPR), 2004, pp. 506-513.

S. Kullback, “The Kullback-Leibler distance,” Am. Statistician, vol. 41,
no. 4, pp. 340-341, 1987.

S. Lazebnik and M. Raginsky, “Supervised learning of quantizer code-
books by information loss minimization,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 7, pp. 1294-1309, Jul. 20009.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), 2006, pp. 2169—
2678.

B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” Int. J. Comput. Vision
Special Issue Learn. Recognit. Recognit. Learn., vol. 77, nos. 1-3, pp.
259-289, 2008.

D. Liu and T. Chen, “Discov: A framework for discovering objects in
video,” IEEE Trans. Multimedia, vol. 10, no. 2, pp. 200-208, Feb. 2008.
J. Liu and M. Shah, “Scene modeling using co-clustering,” in Proc.
IEEE Int. Conf. Comput. Vision (ICCV), 2007, pp. 1-7.

D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, 2004.

T. Mei, X.-S. Hua, W. Lai, L. Yang, Z.-J. Zha, Y. Liu, Z.
Gu, G.-J. Qi, M. Wang, J. Tang, X. Yuan, Z. Lu, and J. Liu,
“MSRA-USTC-SJTU at TRECVID 2007: High-level feature extrac-
tion and search,” in Proc. Text Retrieval Conf. Video Retrieval Eval-
uation Online (TRECVID), 2007 [Online]. Available: http://www-
nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html#2007

K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615-1630, Oct. 2005.

F. Moosmann, B. Triggs, and F. Jurie, “Fast discriminative visual
codebooks using randomized clustering forests,” in Proc. Adv. Neural
Informat. Process. Syst. (NIPS), 2006, pp. 985-992.

(25]

[26]

[27]

[28]
(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

[38]

(39]

(40]

[41]

(42]

[43]

391

J. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised learning of human
action categories using spatial-temporal words,” Int. J. Comput. Vision,
vol. 79, no. 3, pp. 299-318, 2008.

D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR),
2006, pp. 2161-2168.

E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-
of-features image classification,” in Proc. Eur. Conf. Comput. Vision
(ECCV), Graz, Austria, 2006, pp. 490-503.
Pascal visual object classes [Online].
ecs.soton.ac.uk/challenges/VOC/.

Wordnet [Online]. Available: http://wordnet.princeton.edu/perl/webwn?
s=word-you-want

J. Sivic, B. Russell, A. Efros, A. Zisserman, and B. Freeman, “Discov-
ering objects and their locations in images,” in Proc. IEEE Int. Conf.
Comput. Vision (ICCV), Beijing, China, 2005, pp. 370-377.

J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in Proc. IEEE Int. Conf. Comput. Vision
(ICCV), 2003, pp. 1470-1477.

E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky, “Learning
hierarchical models of scenes, objects, and parts,” in Proc. IEEE Int.
Conf. Comput. Vision (ICCV), 2005, pp. 1331-1338.

Trec Video Retrieval Evaluations (TRECVID) [Online]. Available:
http://www.nlpir.nist.gov/projects/trecvid/

J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned
universal visual dictionary,” in Proc. IEEE Int. Conf. Comput. Vision,
2005, pp. 1800-1807.

L. Wu, Y. Hu, M. Li, N. Yu, and X.-S. Hua “Scale-invariant visual
language modeling for object categorization,” IEEE Trans. Multimedia,
vol. 11, no. 2, pp. 286294, Feb. 2009.

X. Wu, W.-L. Zhao, and C.-W. Ngo, “Near-duplicate keyframe retrieval
with visual keywords and semantic context,” in Proc. Assoc. Comput.
Machinery Int. Conf. Image Video Retrieval (ACM MIR), 2007, pp. 162—
169.

A. Yanagawa, S. F. Chang, L. Kennedy, and W. Hsu, “Columbia Uni-
versity’s baseline detectors for 374 LSCOM semantic visual concepts,”
Columbia Univ., New York, ADVENT Tech. Rep. 222-2006-8, 2007.
J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, “Evaluating bag-
of-visual-words representations in scene classification,” in Proc. Assoc.
Comput. Machinery Int. Conf. Multimedia Informat. Retrieval (ACM
MIR), Augsburg, Germany, 2007, pp. 197-206.

Y. Yang and J. O. Pedersen, “A comparative study on feature selection in
text categorization,” in Proc. Int. Conf. Machine Learn. (ICML), 1997,
pp. 412-420.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” Int. J. Comput. Vision, vol. 73, no. 2, pp. 213-238,
2007.

S. Zhang, Q. Tian, G. Hua, Q. Huang, and S. Li, “Descriptive visual
words and visual phrases for image applications,” in Proc. 17th Assoc.
Comput. Machinery Int. Conf. Multimedia (ACM MM), Beijing, China,
2009, pp. 75-84.

Q. Zheng, W. Wang, and W. Gao, “Effective and efficient object-
based image retrieval using visual phrases,” in Proc. Assoc. Comput.
Machinery Int. Conf. Multimedia (ACM MM), Santa Barbara, CA, 2006,
pp. 77-80.

M. Zhu, “Recall, precision, and average precision,” Dept. Statistics
Actuarial Sci., Univ. Waterloo, CA, Tech. Rep. 9, 2004.

Available: http://pascallin.

Teng Li received the B.Eng. degree in automation
from the University of Science and Technology of
China, Hefei, in 2001, the M.Eng. degree in pattern
recognition and intelligent systems from the Institute
of Automation, Chinese Academy of Sciences, Bei-
jing, China, in 2004, and the Ph.D. degree in electri-
cal engineering from the Korea Advanced Institute
of Science and Technology, Daejeon, in 2010.

His current research interests include visual cat-
egorization, multimedia retrieval, machine learning,
and computer vision.



392 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 4, APRIL 2011

Tao Mei received the B.E. degree in automation
and the Ph.D. degree in pattern recognition and
intelligent systems from the University of Science
and Technology of China, Hefei, in 2001 and 2006,
respectively.

He joined Microsoft Research Asia, Beijing,
China, as a Researcher Staff Member in 2006. His
current research interests include multimedia content
analysis, computer vision, and multimedia applica-
tions such as search, advertising, presentation, social
networks, and mobile applications. He is the editor
of one book, and the author of over 100 journal and conference papers as
well as book chapters in these areas. He holds more than 25 filed patents or
pending applications.

Dr. Mei serves as an Associate Editor for the Journal of Multimedia
and Neurocomputing, a Guest Editor for IEEE MULTIMEDIA, ACM/Springer
Multimedia Systems, and the Journal of Visual Communication and Image
Representation. He was the Principle Designer of the automatic video search
system that achieved the best performance in the worldwide TRECVID
evaluation in 2007. He received the Best Paper and Best Demonstration
Awards in ACM Multimedia in 2007, the Best Poster Paper Award in IEEE
MMSP in 2008, and the Best Paper Award in ACM Multimedia in 2009. He
was awarded Microsoft Gold Star in 2010.

In-So Kweon (M’95) received the B.S. and M.S.
degrees in mechanical design and production engi-
neering from Seoul National University, Seoul, Ko-
rea, in 1981 and 1983, respectively, and the M.S. and
Ph.D. degrees in robotics from the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, in 1986
and 1990, respectively.

He was with the Toshiba Research and Devel-
opment Center, Kanagawa, Japan, and joined the
Department of Automation and Design Engineering,
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea in 1992. He is currently a Professor with the
Department of Electrical Engineering, KAIST. Specific research topics include
invariant-based visions for recognition and assembly, 3-D sensors and range
data analysis, color modeling and analysis, robust edge detection, and moving
object segmentation, and tracking. His research interests include computer
vision, robotics, pattern recognition, and automation.

Dr. Kweon is a Member of the Institute for Computer Applications in
Science and Engineering and the Association for Computing Machinery.

Xian-Sheng Hua (M’05) received the B.S. and
Ph.D. degrees from Peking University, Beijing,
China, in 1996 and 2001, respectively, both in ap-
plied mathematics.

Since 2001, he has been with Microsoft Research
Asia, Beijing, China, where he is currently a Lead
Researcher with the Media Computing Group. He is
now an Adjunct Professor of University of Science
and Technology of China. He has authored, or co-
authored, more than 160 publications in these areas
and has more than 40 filed patents or pending
applications. When he was with Peking University, his major research in-
terests included the areas of image processing and multimedia watermarking.
His current research interests include the areas of video content analysis,
multimedia search, management, authoring, sharing, mining, advertising, and
mobile multimedia computing.

Dr. Hua serves as an Associate Editor of the IEEE TRANSACTIONS ON
MULTIMEDIA, Associate Editor of the Association for Computing Machinery
(ACM) Transactions on Intelligent Systems and Technology, an Editorial
Board Member of the Advances in Multimedia and Multimedia Tools and
Applications, and an Editor of the Scholarpedia (Multimedia Category).
He won the Best Paper Award and the Best Demonstration Award in the
ACM Multimedia in 2007, the Best Poster Paper Award in the 2008 IEEE
International Workshop on Multimedia Signal Processing. He also won the
2008 MIT Technology Review TR35 Young Innovator Award, and was named
as one of the “Business Elites of People under 40 to Watch” by Global
Entrepreneur. He is a Senior Member of the Association for Computing
Machinery.




