
SCALABLE TRAINING OF DEEP LEARNING MACHINES BY INCREMENTAL BLOCK
TRAINING WITH INTRA-BLOCK PARALLEL OPTIMIZATION AND BLOCKWISE

MODEL-UPDATE FILTERING

Kai Chen1,2∗, Qiang Huo2

1University of Science and Technology of China, Hefei, China
2Microsoft Research, Beijing, China
{v-kachen, qianghuo}@microsoft.com

ABSTRACT

We present a new approach to scalable training of deep learning
machines by incremental block training with intra-block parallel op-
timization to leverage data parallelism and blockwise model-update
filtering to stabilize learning process. By using an implementation
on a distributed GPU cluster with an MPI-based HPC machine
learning framework to coordinate parallel job scheduling and collec-
tive communication, we have trained successfully deep bidirectional
long short-term memory (LSTM) recurrent neural networks (RNNs)
and fully-connected feed-forward deep neural networks (DNNs) for
large vocabulary continuous speech recognition on two benchmark
tasks, namely 309-hour Switchboard-I task and 1,860-hour “Switch-
board+Fisher” task. We achieve almost linear speedup up to 16 GPU
cards on LSTM task and 64 GPU cards on DNN task, with either no
degradation or improved recognition accuracy in comparison with
that of running a traditional mini-batch based stochastic gradient
descent training on a single GPU.

Index Terms— Incremental block training, parallel optimiza-
tion, blockwise model-update filtering, deep learning, LVCSR

1. INTRODUCTION

In the past several years, deep learning machines, including fully-
connected feed-forward deep neural networks (DNNs), convolu-
tional neural networks (CNNs), deep (bidirectional) long short-
term memory (LSTM) recurrent neural networks (RNNs) and
their variants, have become new state-of-the-art solutions for ap-
plications such as large vocabulary continuous speech recogni-
tion (LVCSR) (e.g., [1–11] and the references therein), image
classification (e.g., [12, 13]) and handwriting recognition (HWR)
(e.g., [14–16]). So far, the most popular method to train deep learn-
ing machines remains mini-batch based stochastic gradient descent
(SGD) with error back propagation [17] and momentum tricks [18],
which is known to be difficult to parallelize over large-scale CPU or
GPU cluster for its serial nature. Given the exciting success of deep
learning machines, one of the most important research problems
is how to scale out deep learning to leverage big data and further
improve recognition accuracy, which is also the topic of this paper.

In addition to our work reported in this study, there are several
successful efforts in scaling out deep learning (e.g., [19–23]). The
most visible one is a software framework called DistBelief devel-
oped by Google [19] that can utilize computing clusters with thou-

∗Kai Chen contributed to this work when he worked as an intern with the
Speech Group, Microsoft Research Asia. We thank our former colleague, Dr.
Zhi-Jie Yan, for his contributions made in the early stage of this study.

sands of machines to train different models with an asynchronous
SGD (ASGD) procedure (a.k.a., Hogwild [24]). “ASGD in DistBe-
lief” has been used successfully to train DNNs and deep LSTMs for
LVCSR with both frame-level maximum cross-entropy (CE) crite-
rion and sequence-level maximum mutual information (MMI) crite-
rion (e.g., [8, 9, 19, 25, 26]). However there is no comparison with
the standard mini-batch SGD, therefore it is not clear yet whether
“ASGD in DistBelief” incurs any loss of recognition accuracy. In
[27], ASGD has also been used to parallelize DNN training on mul-
tiple GPU cards in a single computing server, which achieves a 3.2
times speedup on 4 GPUs than on 1 GPU without the degradation of
recognition accuracy.

Another promising approach to scaling out deep learning is to
use the idea of model averaging (MA, e.g., [28, 29]) that first solves
the learning problem independently on each worker using the portion
of data stored on that worker, and then averages the independent
local solutions to obtain a global solution. Although almost linear
speedup can be achieved in terms of the throughput of processing
training data, this approach incurs recognition accuracy degradation
compared with single-worker scheme, especially when the number
of workers increases (e.g., [21, 30]).

There are also several recent successful efforts to parallelize
standard mini-batch SGD on multiple GPU cards. In [31], very large
DNN acoustic models are trained by leveraging model parallelism
on a GPU cluster using a software framework described in [20].
In [23], by using a 1-bit quantization technique to compress gradi-
ents aggressively to reduce significantly data-exchange bandwidth,
the feasibility of running SGD on a GPU cluster by exploiting data
parallelism within a mini-batch is demonstrated. For example, the
parallel training solution in [23] achieves 6.9 times speedup with 20
GPUs than on a single GPU with little degradation of recognition
accuracy. A follow-up work in [32] improves scalability for training
DNNs by applying 1-bit quantization on those significant enough
gradients. Yet a large mini-batch SGD method with tied scalar reg-
ularization is proposed in [33] to train DNNs with rectified linear
units (ReLUs) and achieves promising results.

In this paper, we propose a new approach to scaling out training
of deep learning machines by incremental block training with intra-
block parallel optimization to leverage data parallelism and block-
wise model-update filtering (BMUF) to stabilize learning process,
which will be described in Section 2. By using this approach, we
have trained successfully deep bidirectional LSTMs (DBLSTMs)
and DNNs for LVCSR on two benchmark tasks, namely 309-hour
Switchboard-I task and 1,860-hour “Switchboard+Fisher” task. In
Section 3, we will present experimental results and the findings of
this study. Finally, we conclude the paper in Section 4.

5880978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

2. OUR APPROACH

2.1. Training Procedure

In this section, we present the training procedure of our proposed
approach, which can be used to train DNN, CNN, LSTM and other
types of deep learning machines.

2.1.1. Data Partition

Our approach takes an incremental block training procedure. Con-
ceptually, during training, full training set D is partitioned into M
non-overlapping blocks and each block is partitioned into N non-
overlapping splits, which can be represented formally as follows:

D = {Dj |j = 1, 2, · · · ,M}
Dj = {Djk|k = 1, 2, · · · , N} (1)

for ∀j, k, l,m Djk ∩Dlm = ∅ .

We denote the above partition configuration as N ×M . Depending
on the nature of the training strategy used, the data partition can be
done randomly at frame, chunk or sequence level as appropriate.

2.1.2. Intra-block Parallel Optimization

Select randomly a block of unprocessed data denoted as Dt, which
generates the t-th blockwise update, and distribute N splits of this
block to N workers (e.g., GPU cards in a GPU cluster). These work-
ers run in parallel to optimize local models with its portion of data.

By leveraging data parallelism within the block, the intra-block
optimization can be conducted with different parallel algorithms.
For example, if the problem is formulated as a global consensus
problem, it can be solved by the alternating direction method of mul-
tipliers (ADMM) (e.g., [34, 35]). If the problem is formulated as an
elastic forced problem, it can be solved by an elastic averaging SGD
(EASGD) method [36].

In this paper, we just broadcast a global model Wg(t− 1) to all
workers to initialize local models and then update these local models
by each worker independently with 1-sweep mini-batch SGD with
classical momentum trick. It is noted that local models can also be
optimized by other algorithms such as natural gradient SGD [30] and
even ASGD for workers with multiple GPUs or CPUs. Finally, an
aggregated model denoted as W(t) can be obtained by averaging N
optimized local models.

2.1.3. Blockwise Model-Update Filtering

After intra-block parallel optimization is completed, global model
need be updated. Instead of treating W(t) as updated global model
directly, which is the strategy of MA, we treat global model up-
date as a block-level stochastic optimization process and propose
a Blockwise Model-Update Filtering (BMUF) technique to stabilize
the learning process, which works as follows:

• Firstly, we use G(t) to denote the model-update resulting
from block Dt:

G(t) = W(t)−Wg(t− 1) . (2)

• Then, we calculate the global-model update ∆(t) as

∆(t) = ηt∆(t− 1) + ζtG(t), 0 ≤ ηt < 1, ζt > 0. (3)

• Consequently, the global model is updated as

W(t) = W(t− 1) +∆(t) . (4)

Equations (3) and (4) look similar to the SGD with momentum trick,
where G(t) plays the role of negative gradient. We call Equation (3)
as doing BMUF since it generates model-update vector by filtering
G(t) with the previous update vector. It is noted that when ηt = 0
and ζt = 1, the above procedure becomes MA.

Because ηt plays the role of a block-level momentum, we call it
“block momentum” (BM). Similarly, we call ζt “block learning rate”
(BLR). Akin to SGD with momentum trick [37], BM can also work
with a classical momentum scheme [17] or a Nesterov momentum
scheme [38], which are referred to hereinafter as CBM and NBM, re-
spectively. Before processing next data block Dt+1, a global model
Wg(t) need be broadcast to all workers to initialize their local mod-
els, which is calculated as follows:

• For ηt in CBM scheme,

Wg(t) = W(t), (5)

• For ηt in NBM scheme,

Wg(t) = W(t) + ηt+1∆(t) . (6)

Repeat Steps 2.1.2 and 2.1.3 until all M data blocks are pro-
cessed, which is called one sweep. We can fine-tune the model by
several sweeps until a stopping criterion is satisfied and obtain the
final global model W(T).

2.2. Implementation

As discussed in Section 2.1, intra-block parallel optimization can be
run on a computer cluster, while local model aggregation, BMUF
and global model update rely on collective communication among
computational nodes. We implement our approach on an HPC GPU
cluster with multiple computing nodes, each equipped with 2-8
Nvidia Telsa K40xm GPUs. A 56 Gbps private InfiniBand network
is configured to connect all GPU nodes. The GPU cluster is con-
nected to a shared storage with Hadoop Distributed File System
(HDFS) via several spine switches. The total throughput of the
spine switches to HDFS and to HPC GPU cluster are 8 Tbps and
320 Gbps, respectively. The HDFS serves as a high-performance
distributed data storage in our experiments.

In our implementation, an MPI-based HPC machine learning
platform [39] is used to coordinate parallel job scheduling and col-
lective communication. It implements a master-slave model among
computing nodes, where the master is responsible for job schedul-
ing, load balancing, BMUF and global model update, and the slaves
are workers for intra-block parallel optimization. The peer-to-peer
and collective communications among master and slaves are very
efficient through MPI. Using such a machine learning platform fa-
cilitates a scenario when the number of free GPUs in a shared cluster
is less than the number of data splits N . In this case, the platform
could for example only use N/2 GPUs and assign 2 data splits to
each of them for processing. As a result, the actual number of GPUs
only affects the speedup factor, while the learning behavior of our
approach is unaltered.

To reduce the overhead of job scheduling, we will send each
worker its subset of training data before training. During training, on
each worker, next split will be loaded to memory when the current
split is being processed to hide data-loading cost. Since all splits
contain the same amount of data, for example τ mini-batches, it is

5881

Table 1. Performance (in %) comparison and training speedups
of DBLSTMs trained by CSC-BPTT with SGD, MA and BMUF ap-
proach on “SWB task”.

Trainng
Method

Partition
Config.

WER (%) Training
SpeedupEval2000 RT03S

MA 8× 104 15.4 22.9 7.7
16× 52 16.0 23.4 15.3

BMUF
-CBM

8× 104 14.7 22.7 7.7
16× 52 15.0 22.7 15.3

BMUF
-NBM

8× 104 14.9 22.3 7.7
16× 52 14.8 22.4 15.3

Single-GPU SGD Baseline 14.8 22.9 1.0

equivalent to conducting BMUF after all workers have updated their
local models for τ times respectively. In practice, we only need to
partition training set into N subsets instead of N ×M splits.

2.3. Discussion

In mini-batch based SGD with momentum trick, momentum can be
treated as a way to delay parameter update. For example, Bi, which
is the i-th mini-batch in D, contributes to not only the i-th update,
but also all the following updates. Assume the final parameter of
mini-batch SGD optimized model is Ws and ∆s = Ws −W(0),
where W(0) is initial model, then the contribution of the i-th mini-
batch to ∆s is

δ(i)
s = γsg

(i)
s (1 + ϵs + ϵ2s + · · ·) ≈ γs

1− ϵs
g(i)
s , (7)

where γs, ϵs, and g
(i)
s are the learning rate, momentum and gradient

of the i-th mini-batch, respectively.
In incremental block training, we assume Bi is the l-th mini-

batch of the k-th split in block Dj and each split contains τ mini-
batches. τ is always set to be a relatively small value to avoid di-
vergence of local models. When MA is used, Bi only contributes
to local and global model update at current split and block, and will
have no direct influence in successive training, so we can express its
contribution to ∆m as follows:

δ(i)
m =

1

N
γmg(i)

m (1 + ϵm + ϵ2m + · · ·+ ϵτ−l
m)

=
1

N
· γm(1− ϵτ−l+1

m)

1− ϵm
g(i)
m . (8)

Compared with Equation (7), we should set γm about N times of γs
to ensure enough per mini-batch contribution. As we know, an im-
portant role of momentum in SGD is to attenuate influence of noisy
component in gradients by history update information. For per split
optimization, lack of update information from previous blocks will
weaken the attenuation effect while larger γm enlarges influences of
noise. Consequently, model-update resulting from a single block is
pretty noisy and the performance of MA becomes poorer with more
parallel workers.

Assume constant BLR ζ and BM η are used in BMUF. Since η
builds links between successive blocks, Bi’s contribution to ∆b is

δ
(i)
b =

γb(1− ϵτ−l+1
b)

N(1− ϵb)
g
(i)
b ζ(1 + η + η2 + · · ·)

≈ ζ

N(1− η)
·
γb(1− ϵτ−l+1

b)

1− ϵb
g
(i)
b . (9)

Table 2. Performance (in %) comparison and training speedups of
DBLSTMs trained by epoch-wise BPTT with SGD, MA and BMUF
approach on “SWB task”.

Training
Method

Partition
Config.

WER (%) Training
SpeedupEval2000 RT03S

MA 8× 104 15.6 23.5 7.9
16× 52 16.2 24.0 15.8

BMUF
-CBM

8× 104 14.7 23.1 7.9
16× 52 14.8 23.4 15.8

BMUF
-NBM

8× 104 14.5 22.8 7.9
16× 52 14.3 23.0 15.8

Single-GPU SGD Baseline 14.8 22.9 1.0

Akin to the behavior of a mini-batch in momentum SGD training,
current block contributes to all the following global model updates,
and noisy components of model-update resulting from current block
will be attenuated while informative ones will be enlarged. We use
the following formula

ζ

N(1− η)
= C (10)

to set empirically the values of η and ζ, where C is a constant slightly
larger than 1. Therefore γb can be set at the same range of γs to
ensure enough per mini-batch contribution. The above analysis is
applicable to both CBM and NBM versions of BMUF.

Another possible solution to mitigate the degradation problem in
MA is to warm-up per split optimization by introducing history up-
date information to SGD. However, its gain is limited in comparison
with BMUF, therefore we will not report its result here.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

We choose two LVCSR benchmark tasks to conduct evaluations.
The first one is Switchboard-I conversational telephone speech tran-
scription task [40], which contains about 309 hours of training
speech and is referred to as “SWB task”. The second one consists
of Switchboard-I corpus and Fisher English corpus (part 1 and part
2) [41], which contains about 1,860-hour training speech data and is
referred to as “SWB+Fisher task”. For both tasks, we use the 2000
NIST Hub5 evaluation (Eval2000, about 2 hours of speech) and
Spring 2003 NIST rich transcription set (RT03S, about 6.3 hours of
speech) as testing sets, and word error rate (WER) as performance
metric. A 52-dimensional PLP feature vector with up to 3rd order
time derivatives is extracted for each frame. The LVCSR systems
take a hybrid neural network and HMM architecture (e.g., [1]).

For “SWB task”, we train DBLSTM as acoustic model, which
has 5 hidden layers, each containing 512 memory blocks (256 for
forward and 256 for backward states), and 9,304 HMM tied-states as
output classes, resulting to about 11 million free parameters. Both
epoch-wise BPTT and context-sensitive-chunk (CSC) BPTT [11] are
used to train DBLSTM. In CSC-BPTT training, each utterance is
partitioned into CSCs of 64 frames long with 21 past and 21 future
frames appended as context, which is denoted as “21-64+21”, while
a 32-frame overlap is used in decoding. For “SWB+Fisher task”, we
train DNN as acoustic model, which has 11 consecutive frames of
feature vectors as input, 7 hidden layers with 2,048 ReLUs per layer,
and 18,002 HMM tied-states as output classes, resulting to about

5882

42

44

46

48

50

52

54

56

0 1 2 3 4 5

F
r
a
m

e
E

rr
o

r
R

a
te

 (
%

)

Sweeps

1-GPU SGD Baseline

8x620 MA

8x620 BMUF-CBM

8x620 BMUF-NBM

16x310 MA

16x310 BMUF-CBM

16x310 BMUF-NBM

32x155 MA

32x155 BMUF-CBM

32x155 BMUF-NBM

64x78 BMUF-NBM

Fig. 1. Learning curves of FER on validation set with different meth-
ods and data partition configurations for DNN training.

63 million free parameters. During training, L2 constraint is used
for regularization. For both DBLSTM and DNN training, a frame-
level CE criterion is used as objective function. The frame-level
ground truth of training data is obtained by the forced alignment of
the training sentences using the corresponding ML-trained GMM-
HMM systems. Learning rate scheduling is the same as in [11]. For
both tasks, we randomly sample 30 hours of speech as validation
set. In DBLSTM training, validation set is evaluated every sweep of
data, while in DNN training, it is evaluated every 600 hours of data.
Moreover, learning rates are carefully tuned for all training configu-
rations and the one leading to the best validation set performance is
chosen to decode testing sets. In order to make fair comparison, all
methods start from the same initial model and process the training
set for the same number of sweeps. For DBLSTM, initial model is
obtained by 1-sweep SGD with respective algorithms and the train-
ing set is processed for 6 sweeps, while for DNN, initial model is
obtained by 1-sweep SGD of 309 hours of data and the training set
is processed for 5 sweeps. According to Equation (10), the BM η is
set as 0.9, 0.94, 0.97 and 0.986 in 8-, 16-, 32-, 64-GPU experiments
respectively and BLR ζ is always set as 1.0.

3.2. Experimental Results

3.2.1. SWB task

The partition configurations are “8×104” and “16×52” (about 22.5
minutes of speech per split). The number of GPUs equals to the split
number per block. Tables 1 and 2 compare WERs on testing sets
and training speedups with CSC and epoch-wise BPTT training per
worker, respectively. Both MA and BMUF achieve linear speedup
in terms of the throughput of processing training data. As for model
performance, consistent with our analysis, with more GPUs, the per-
formance gap between MA and SGD becomes larger, while BMUF-
trained models outperform that of SGD-trained ones in most cases.
For our BMUF approach, NBM performs better than CBM.

3.2.2. SWB+Fisher task

In DNN training, data set is partitioned at frame level and the par-
tition configurations are “8 × 620”, “16 × 310”, “32 × 155” and
“64 × 78” (about 22.5 minutes per split). Again, the number of
GPUs equals to the split number per block. Fig. 1 shows the learn-
ing curves of different methods and data partitions in terms of frame
error rate (FER) on validation set. Significant performance degra-
dations are observed for MA, while BMUF approach performs sim-

Table 3. Performance (in %) comparison and training speedups of
DNNs trained by single-GPU SGD, MA and BMUF approach on
“SWB+Fisher task”.

Training
Method

Partition
Config.

WER (%) Training
SpeedupEval2000 RT03S

MA
8× 620 14.2 18.8 7.3

16× 310 14.8 19.3 14.5
32× 155 15.5 19.9 28.7

BMUF
-CBM

8× 620 13.4 18.0 7.3
16× 310 13.4 18.1 14.4
32× 155 13.5 18.2 28.4

BMUF
-NBM

8× 620 13.3 17.8 7.3
16× 310 13.4 17.9 14.4
32× 155 13.4 17.9 28.4
64× 78 13.6 18.1 56.2

Single-GPU SGD Baseline 14.0 18.8 1.0

Table 4. Elapsed time (in minutes) per sweep of 1,860-hour training
data in DNN training with different optimization methods.

Training
Method

Partition
Config.

Elapsed Time (minutes)
optimize aggregate validate SUM

MA
8× 620 320.1 16.5 2.8 339.4

16× 310 159.9 10.3 1.4 171.6
32× 155 81.0 4.7 0.7 86.4

BMUF
-CBM

8× 620 320.1 17.2 2.8 340.1
16× 310 159.5 11.3 1.4 172.2
32× 155 81.6 5.0 0.7 87.3

BMUF
-NBM

8× 620 319.8 17.4 2.8 340.0
16× 310 159.6 11.9 1.4 172.9
32× 155 81.5 5.2 0.7 87.4
64× 78 40.3 3.5 0.4 44.2

Single-GPU SGD Baseline 2460.6 N/A 22.5 2483.1

ilarly with different configurations, yet outperforms SGD. For our
BMUF approach, NBM learns faster yet converges to better solu-
tions than CBM. It is noted that NBM experiments with 8-32 GPUs
converge to almost the same FER. In terms of testing set perfor-
mance, Table 3 shows that in comparison with single-GPU SGD
training, MA incurs WER degradations, while BMUF approaches
achieve about 5.0% and 5.3% relative WER reductions on Eval2000
and RT03S, respectively. Again, NBM performs better than CBM.
We also compare the elapsed time per sweep of data in Table 4. Ob-
viously, a linear speedup is also achieved on this task.

4. CONCLUSION AND DISCUSSION

From the above results, we conclude that the proposed BMUF ap-
proach can indeed scale out deep learning on a GPU cluster with al-
most linear speedup and improved or no-degradation of recognition
accuracy compared with mini-batch SGD on single GPU. In addi-
tion to the verified cases for DBLSTM and DNN training on LVCSR
tasks, we have also verified its effectiveness up to 16 GPUs for CTC-
training of DBLSTM on a handwriting OCR task using about one
million training text line images. Our ongoing and future work in-
clude 1) Scale out to more GPUs; 2) Evaluate our approach to CNN
and other types of discriminative sequence training for D(B)LSTM
and DNN; 3) Develop even better parallel training approach.

5883

5. REFERENCES

[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Trans. on Audio, Speech, and Language Processing, vol. 20, no. 1,
pp.30-42, 2012.

[2] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-depedent deep neural networks,” Proc. INTERSPEECH-2011,
pp.437-440.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29, no.
16, pp.82-97, 2012.

[4] D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning
Approach, Springer, 2015.

[5] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” Proc. ICASSP-2013, pp.6645-6649.

[6] A. Graves, N. Jaitly, and A. R. Mohamed, “Hybrid speech recognition
with deep bidirectional LSTM,” Proc. ASRU-2013, pp.273-278.

[7] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” Proc. ICML-2014, pp.1764-1772.

[8] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” Proc.
INTERSPEECH-2014, pp.338-342.

[9] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga,
and M. Mao, “Sequence discriminative distributed training of long short-
term memory recurrent neural networks,” Proc. INTERSPEECH-2014,
pp.1209-1213.

[10] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate re-
current neural network acoustic models for speech recognition,” Proc.
INTERSPEECH-2015, pp.1468-1472.

[11] K. Chen, Z.-J. Yan, and Q. Huo, “Training deep bidirectional LSTM
acoustic model for LVCSR by a context-sensitive-chunk BPTT ap-
proach,” Proc. INTERSPEECH-2015, pp.3600-3604.

[12] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” Proc. NIPS-2012, pp.1097-
1105.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
surpassing human-level performance on ImageNet classification,” Proc.
ICCV-2015.

[14] B. Moysset, T. Bluche, K. Maxime, M. F. Benzeghiba, R. Messina, J.
Louradour, and C. Kermorvant, “The A2iA multi-lingual text recog-
nition system at the second Maurdor evaluation,” Proc. ICFHR-2014,
pp.297-302.

[15] T. Bluche, H. Ney, J. Louradour, and C. Kermorvant, “Framewise and
CTC training of neural networks for handwriting recognition,” Proc.
ICDAR-2015, pp.81-85.

[16] K. Chen, Z.-J. Yan, and Q. Huo, “A context-sensitive-chunk BPTT
approach to training deep LSTM/BLSTM recurrent neural networks for
offline handwriting recognition,” Proc. ICDAR-2015, pp.411-415.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” in D. E. Rumelhart, J. L. McClel-
land, and the PDP Research Group (Eds.), Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, vol. 1, pp.318-362,
MIT Press, 1986.

[18] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp,1-17, 1964.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. A. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” Proc. NIPS-2012, pp.1232-
1240.

[20] A. Coates, N. Huval, T. Wang, D. Wu, B. Catanzaro, and A. Y. Ng,
“Deep learning with COTS HPC systems,” Proc. ICML-2013, pp.1337-
1345.

[21] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep neu-
ral network acoustic models using generalized maxout networks,” Proc.
ICASSP-2014, pp.215-219.

[22] T. N. Sainath, I. Chung, B. Ramabhadran, M. Picheny, J. Gunnels,
B. Kingsbury, G. Saon, V. Austel, and U. Chaudhari, “Parallel deep
neural network training for LVCSR tasks using Blue Gene/Q,” Proc.
INTERSPEECH-2014, pp.1048-1052.

[23] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-Bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” Proc. INTERSPEECH-2014, pp.1058-1062.

[24] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” Proc. NIPS-2011,
pp.693-701.

[25] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato,M.
Devin, and J. Dean, “Multilingual acoustic models using distributed
deep neural networks,” Proc. ICASSP-2013, pp.8619-8623.

[26] G. Heigold, E. McDermott, V. Vanhoucke, A. Senior, and M. Bac-
chiani, “Asynchronous stochastic optimization for sequence training of
deep neural networks,” ICASSP-2014, pp.5624-5628.

[27] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asynchronous
stochastic gradient descent for DNN training,” Proc. ICASSP-2013,
pp.6660-6663.

[28] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies
for the structured perceptron,” Proc. North American Chapter of the
Association for Computational Linguistics (NAACL), 2010, pp.456-464.

[29] M. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized Stochas-
tic Gradient Descent,” Proc. NIPS-2010, pp.2595-2603

[30] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of DNNs
with natural gradient and parameter averaging,” Proc. ICLR-2015.

[31] A. L. Maas, A. Y. Hannun, C. T. Lengerich, P. Qi, D. Jurafsky, and A.
Y. Ng, “Increasing deep neural network acoustic model size for large
vocabulary continuous speech recognition,” arXiv:1406.7806, 2014.

[32] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” Proc. INTERSPEECH-2015, pp.1488-1492.

[33] S. Zhang, H. Jiang, S. Wei, and L. Dai, “Rectified linear neu-
ral networks with tied-scalar regularization for LVCSR,” Proc.
INTERSPEECH-2015, pp.2635-2639.

[34] S. Boyd, N. Parikh, E. Chu, B, Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp.1-122, 2010.

[35] Q. Huo, Z.-J. Yan, and K. Chen, “Deep learning using alternating di-
rection method of multipliers,” USA Patent Application, 2014.

[36] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging SGD,” Proc NIPS-2015.

[37] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” Proc. ICML-2013, pp.
1139-1147.

[38] Y. Nesterov, “ A method of solving a convex programming problem
with convergence rate O(1/sqr(k)),” Soviet Mathematics Doklady, vol.
27, pp. 372-376, 1983.

[39] Z.-J. Yan, T. Gao, and Q. Huo, “Designing an MPI-based par-
allel and distributed machine learning platform on large-scale HPC
clusters,” 2012 International Workshop on Statistical Machine
Learning for Speech Processing, Kyoto, Japan, March 31, 2012
(http://www.ism.ac.jp/IWSML2012/).

[40] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: tele-
phone speech corpus for research and development,” Proc. ICASSP-
1992, pp.I-517-520.

[41] C. Cieri, D. Miller, and K. Walker, “The Fisher corpus: A resource for
the next generation of speech-to-text,” Proc. ICLRE-2004, pp.69-71.

5884

