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Deep Learning is Amazing!!!



What makes it work? Why?



An MLer’s View of the World 

Loss functions
(likelihood, reconstruction, margin, …)

Constraints
(normality, sparsity, label, prior, KL, sum,  …) 

Algorithms
MC (MCMC, Importance), Opt (gradient, IP), … 

Stopping criteria
Change in objective, change in update …

Structures
(Graphical, group, chain, tree, iid, …)



DL ML (e.g., GM)

Empirical goal: e.g., classification, feature 
learning

e.g., transfer learning, latent 
variable inference

Structure: Graphical Graphical

Objective: Something aggregated from local 
functions

Something aggregated from local 
functions 

Vocabulary: Neuron, activation/gate function 
… 

Variables, potential function

Algorithm: A single, unchallenged, inference 
algorithm -- BP

A major focus of open research,
many algorithms, and more to come

Evaluation: On a black-box score -- end 
performance

On almost every intermediate 
quantity

Implementation: Many untold-tricks More or less standardized 

Experiments: Massive, real data (GT unknown) Modest, often simulated data (GT 
known)



A slippery slope to heuristics

• How to conclusively determine what an improve in 
performance could come from: 

– Better model (architecture, activation, loss, size)?

– Better algorithm (more accurate, faster convergence)?

– Better training data?

• Current research in DL seem to get everything above 
mixed by evaluating on a black-box “performance 
score” that is not directly reflecting 

– Correctness of inference

– Achievability/usefulness of model

– Variance due to stochasticity



Although a single dimension (# of layers) is compared, 
many other dimensions may also change, to name a 
few:

• Per training-iteration time
• Tolerance to inaccurate inference
• Identifiability
• …

An Example



Inference quality

• Training error is the old concept of a classifier with 
no hidden states, no inference is involved, and thus 
inference accuracy is not an issue

• But a DNN is not just a classifier, some DNNs are not 
even fully supervised, there are MANY hidden states, 
why their inference quality is not taken seriously?

• In DNN, inference accuracy = visualizing features

– Study of inference accuracy is badly discouraged

– Loss/accuracy is not monitored 



Inference/Learning Algorithm, 
and their evaluation
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Learning in GM with Hidden 
Variables

• In fully observed iid settings, the log likelihood decomposes 
into a sum of local terms (at least for directed models).

• With latent variables, all the parameters become coupled 
together via marginalization
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Gradient Learning for mixture 
models

• We can learn mixture densities using gradient descent on the 
log likelihood. The gradients are quite interesting:

• In other words, the gradient is aggregated from many other 
intermediate states   
– Implication: costly iteration, heavy coupling between parameters



Eric Xing 12

Parameter Constraints

• Often we have constraints on the parameters, e.g. Skpk = 1, S 

being symmetric positive definite (hence Sii > 0).

• We can use constrained optimization, or we can 
reparameterize in terms of unconstrained values.
– For normalized weights, use the softmax transform: 

– For covariance matrices, use the Cholesky decomposition:

where A is upper diagonal with positive diagonal:

the parameters gi, li, hij  R are unconstrained.

– Use chain rule to compute 
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Identifiability

• A mixture model induces a multi-modal likelihood.

• Hence gradient ascent can only find a local maximum.

• Mixture models are unidentifiable, since we can always switch 
the hidden labels without affecting the likelihood.

• Hence we should be careful in trying to interpret the 
“meaning” of latent variables.
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Then Alternative Approaches Were 
Proposed

• The EM algorithm
– M: a convex problem

– E: approximate constrained optimization
• Mean field

• BP/LBP

• Marginal polytope

• Spectrum algorithm: 
– redefine intermediate states, convexify the original problem



Learning a DNN



Learning a DNN

• In a nutshell, sequentially, and recursively apply:

• Things can getting hairy when locally defined losses are 
introduced, e.g., auto-encoder, which breaks a loss-driven 
global optimization formulation

• Depending on starting point, BP converge or diverge with 
probability 1
– A serious problem in Large-Scale DNN





DL

Utility of the network
• A vehicle for synthesize complex 

decision hypothesis
– stage-wise projection and aggregation

• A vehicle for organizing computing 
operations
– stage-wise update of latent states

• A vehicle for designing processing 
steps/computing modules
– Layer-wise parallization

• No obvious utility in evaluating DL 
algorithms

Utility of the Loss Function
• Global loss? Well it is non-convex 

anyway, why bother ?

GM

• A vehicle  for synthesize a global 
loss function from local structure
– potential function, feature function

• A vehicle for designing sound and 
efficient inference algorithm
– Sum-product, mean-field  

• A vehicle to inspire approximation 
and penalization
– Structured MF, Tree-approx

• Vehicle for monitoring theoretical 
and empirical behavior and 
accuracy of inference

• A major measure of quality of 
algorithm and model



GMFr

GMFb

BP

An Old Study of DL as GM Learning

A sigmoid belief network, and mean-field partitions

Study focused on only inference/learning accuracy, speed, and partition 

[Xing, Russell, Jordan, UAI 2013]

Now we can ask, with a correctly learned DN, is it doing will on the desired task?



Why A Graphical Model 
formulation of DL might be fruitful

• Modular design: easy to incorporate knowledge and interpret, 
easy to integrate feature learning with high level tasks, easy to 
built on existing (partial) solutions

• Defines an explicit and natural learning objective

• Guilds strategies for inference, parallelization, evaluation, and 
theoretical analysis   

• A clear path to further upgrade: 
– structured prediction

– Integration of multiple data modality

– Modeling complex: time series,  missing data, online data …

• Big DL on distributed architectures, where things can get 
messy everywhere due to incorrect parallel computations 



Easy to incorporate knowledge 
and interpret

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors & 
feedback to articulation Slides Courtesy:

Li Deng



Easy to integrate feature learning with 
high level tasks

Hidden Markov Model

+
Gaussian Mixture Model

Hidden Markov Model

+
Deep Neural Network

Jointly trained, but shallow Deep, but separately trained

Hidden Markov Model

+
Deep Graphical Models

Jointly trained and deep



Mathematics 101 for ML

Model ParameterData

This computation needs to be parallelized! 



Toward Big ML

Data Parallel Model Parallel Task Parallel



Data-Parallel DNN using Petuum 
Parameter Server

• Just put global parameters in 
SSPTable:

• DNN (SGD)
– The weight table

• Topic Modeling (MCMC)
– Topic-word table

• Matrix Factorization (SGD)
– Factor matrices L, R

• Lasso Regression (CD)
– Coefficients β

• SSPTable supports generic classes
of algorithms
– With these models as examples

L

R
SSPTable

Topic 1

Topic 2

Topic 3

Topic 4

β

25



• If the undistributed BP updates of a multi-
layer DNN lead to weights , and the 
distributed BP updates under SSP lead to 
weights , then converges in probability to 

, i.e . 

Consequently
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Theorem: Multilayer convergence of 
SSP based distributed DNNs to optima



Model-Parallel DNN using Petuum 
Scheduler

Neuron Partition

Weight Partition



Theorem: Multilayer convergence of 
model distributed DNNs to optima

• If the undistributed BP updates of a multi-layer 
DNN lead to weights and the distributed BP 
updates in model distributed setting lead to 
weights , then converges in probability to 

, i.e . .Consequently

• In case of model distributed DNN we divided the 
DNN vertically such that a single layer is 
distributed across processors
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Distributed DNN: (preliminary)

• Application: phoneme classification in speech recognition.

• Dataset: TIMIT dataset with 1M samples.

• Network configuration: input layer with 440 units, output layer with 1993 
units, six hidden layers with 2048 units in each layer

Methods PER

Conditional Random Field [1] 34.8%

Large-Margin GMM [2] 33%

CD-HMM [3] 27.3%

Recurrent Neural Nets [4] 26.1%

Deep Belief Network [5] 23.0%

Petuum DNN (Data Partition) 24.95%

Petuum DNN (Model Partition) 25.12%
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Conclusion

• In GM: lots of efforts are directed to improving inference 
accuracy and convergence speed
– An advanced tutorial would survey dozen’s of inference 

algorithms/theories, but few use cases on empirical tasks

• In DL: most effort is directed to comparing different 
architectures and gate functions (based on empirical 
performance on a downstream task)
– An advanced tutorial typically consist of a list of all designs of nets, 

many use cases, but a single name of algorithm: back prop of SGD

• The two fields are similar at the beginning (energy, structure, 
etc.), and soon diverge to their own signature pipelines

• A convergence might be necessary and fruitful 


