A Few Thoughts on How We May
Want to Further Study DNN

Eric Xing
Carnegie Mellon University

Deep Learning is Amazing!!!

y -

Tasks for Which Deep Convolutional Nets are the B&St Y LeCun
= . MA Ranzato

Handwritin
OCR in the
Traffic sign
Pedestrian
Volumetric

e segmentation [2009] connectamics (IDSIA, MIT)
Human Acti I 11] Hollyt¥ bod II da anford)
Object Recog /i gt lel ton petition
Scene Parsin tan or ftF bw, Barce V)
Scene parsin ag 3]I"NYU RGB-y datiSet (NYU)
Acc_ st

Speech Recognition [20 ndUng (IBM and Google)
Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

recognition MNIST (many), Arabic HWX (IDSIA)

ild [2011]: StreetView House Numbers (NYU and others)
itign [2011] GTSRB competition (IDSIA, NYU)
1of9[2013]: INRIA datasets and others (NYU)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets.

What makes it work? Why?

=3 hen o v

mivraclie
W (

DCcurs

Good work - but 7 thrink pro—
we might need a little
rriore detail riglit here.

An MLer’s View of the World

Structures
(Graphical, group, chain, tree, jid, ...

——— — e

Constraints

normality, sparsity, label, prior, KL, sum, ...
BRI 138 it

Algorithms

MC (MCMC, Importance), Opt (gradient, IP), ...
(= ,IIMMMMM,)

Stopping criteria

Change in objective, change in update ...

Empirical goal:

Structure:

Objective:

Vocabulary:

Algorithm:

Evaluation:

Implementation:

Experiments:

e.g., classification, feature
learning

Graphical

Something aggregated from local
functions

Neuron, activation/gate function

A single, unchallenged, inference
algorithm -- BP

On a black-box score -- end
performance

Many untold-tricks

Massive, real data (GT unknown)

e.g., transfer learning, latent
variable inference

Graphical

Something aggregated from local
functions

Variables, potential function

A major focus of open research,
many algorithms, and more to come

On almost every intermediate
quantity

More or less standardized

Modest, often simulated data (GT
known)

A slippery slope to heuristics

 How to conclusively determine what an improve in
performance could come from:
— Better model (architecture, activation, loss, size)?
— Better algorithm (more accurate, faster convergence)?

— Better training data?

* Current research in DL seem to get everything above
mixed by evaluating on a black-box “performance
score” that is not directly reflecting

— Correctness of inference
— Achievability/usefulness of model
— Variance due to stochasticity

An Example

—— WWH
A PP A ot P i B S WSy AT el o g SRR e
DS-S-_ e - e . b P P P P —
== ey g e eyt
el pv;::-::;uf‘*f“m e e ﬂfmwdmwmwm“% ¥ S
n4s— Ry ¢ —
£ L S S S A _
g Although a single dimension (# of layers) is compared,
E : many other dimensions may also change, to name a
|:I-:¢'|" . vaee PR PR . waas vaee e PR . . et
< 4 few:
03 -~ Pertraining-iteration time —
* Tolerance to inaccurate inference
e Identifiability —— 1 hid. layer
|:|2-5. P ;.. B - P P b B B _P'"E‘ hid_ Iayers H
—= 4 hid. lavers
=28 hid. layers
gzl =10 hid. layers |
i | | i : i 12 hid. Iaygrs

20 40 a0 an 100 120 140

Inference quality

* Training error is the old concept of a classifier with
no hidden states, no inference is involved, and thus
inference accuracy is not an issue

 But a DNN is not just a classifier, some DNNs are not
even fully supervised, there are MANY hidden states,
why their inference quality is not taken seriously?

* In DNN, inference accuracy = visualizing features

— Study of inference accuracy is badly discouraged
— Loss/accuracy is not monitored

Inference/Learning Algorithm,
and their evaluation

Learning in GM with Hidden
Variables

In fully observed iid settings, the log likelihood decomposes
into a sum of local terms (at least for directed models).

¢.(0;D)=log p(x,z|08) =log p(z|6,)+log p(x|z,6,)

With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log> p(x,z|8)=log> p(z|6,)p(x|z,6,)
Z Z YA Z

O O

Gradient Learning for mixture
models

* We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:

[(0) = log p(x10) = log ¥ 7, p,(x|6,)

ol _ 1 E” dp,(x]6,)
96, p(x1@)< “ 90,

_ T, 0 alogpk(x‘gk)
gp(xlﬁ)pk(x‘ X
—2” pk(x‘gk)alogpk(x‘gk)=2r ol

~7F p(x16) a6, =" 90,

* In other words, the gradient is aggregated from many other
intermediate states

— Implication: costly iteration, heavy coupling between parameters

Parameter Constraints

Often we have constraints on the parameters, e.g. 2,7, = 1, =
being symmetric positive definite (hence 2> 0).

We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.

— For normalized weights, use the softmax transform: 77, = 20)

Zjep(rj)

— For covariance matrices, use the Cholesky decomposition:
>T=A"A

where A is upper diagonal with positive diagonal:

Aii:exp(ﬁ“i)>o Aj=mn; (J>1) A;=0(<i)

the parameters 7, 4, 17;; € R are unconstrained.

ol of

— Use chain rule to compute 2 A

|dentifiability

A mixture model induces a multi-modal likelihood.
Hence gradient ascent can only find a local maximum.

Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

Hence we should be careful in trying to interpret the
“meaning” of latent variables.

likelithood

/

parameter space

Then Alternative Approaches Were

Proposed
* The EM algorithm 1

€
— M: a convex problem

— E: approximate constrained optimization
* Mean field
* BP/LBP
* Marginal polytope

e Spectrum algorithm:
— redefine intermediate states, convexify the original problem

Learning a DNN

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for (f?f
Energy
e] g 9E _ 9C(XuY)
axX, — 0X,
C(xn'v) .l ’ r
3 . oOFE — OF ‘.)”n.(/\n. le“‘{n)
an dE'dXn Y aXn_l (.:)Xn 8)(,._1
” u:"‘:l Fn{Xn=1, Wn)) OE_ __ 8E OFn(Xn-1,Whn)
Xn-i’ lf‘»l* gXn-1 (‘)an a/\"n oW 'n
1 m _OE _ _O0E OFn1(Xn-23Wa_1)
x| lct - d;Y,,..z o 0)(",_. 1 6..-‘(.,,”2
wi '
e B _0E _ _8E 9Fna(Xn-2Wn 1)
i W1 — 9Xp—y W1
HH W .__etc, until we reach the first module.
Wi Eixo, W) :
- ® we now have all the ; for i € [1,nl.
xot desired

input X output ¥

Learning a DNN

* In a nutshell, sequentially, and recursively apply:

N . o
L-j!i = tL-j!i—?;tﬂjg,i

* Things can getting hairy when locally defined losses are

introduced, e.g., auto-encoder, which breaks a loss-driven
global optimization formulation

|- w,Z A
¥) (-}
g(7,.7) =D . =5

 Depending on starting point, BP converge or diverge with
probability 1

— A serious problem in Large-Scale DNN

(i

Backprop in Practice Y LeCun
. \ MA Ranzato

@l Use RelU non-linearities (tanh and logistic are falling out of favor)
Use cross-entropy loss for classification

Use Stochastic Gradient Descent on minibatches

@ Shuffle the training samples

@ Normalize the input variables (zero mean, unit variance)

Schedule to decrease the learning rate

@l Use a bit of L1 or L2 regularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

@l Use “dropout” for regularization
® Hinton et al 2012 http://arxiv.org/abs/1207.0580

@ Lots more in [LeCun et al. “Efficient Backprop” 1998]

i Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Muller (Springer)

DL

Utility of the network

* A vehicle for synthesize complex
decision hypothesis

— stage-wise projection and aggregation
* A vehicle for organizing computing
operations

— stage-wise update of latent states

* A vehicle for designing processing
steps/computing modules

— Layer-wise parallization
No obvious utility in evaluating DL
algorithms

GM

A vehicle for synthesize a global
loss function from local structure

— potential function, feature function

A vehicle for designing sound and
efficient inference algorithm
— Sum-product, mean-field

A vehicle to inspire approximation
and penalization
— Structured MF, Tree-approx

Vehicle for monitoring theoretical
and empirical behavior and
accuracy of inference

Utility of the Loss Function

 Global loss? Well it is non-convex
anyway, why bother ?

* A major measure of quality of
algorithm and model

An Old Study of DL as GM Learning

[Xing, Russell, Jordan, UAI 2013]

A sigmoid belief network, and mean-field partitions

QOO0
191 000000
,°!II'I"1-,I_1.1 00000000

Study focused on only inference/learning accuracy, speed, and partition

Singleton marginal error CPU time

0.5 140
0.4- 1
GMF, 100~
o5l N o
02 = 60-
L 40-
0.1+ 1
20-
0 — m |
no obs with obs no obs with obs

Now we can ask, with a correctly learned DN, is it doing will on the desired task?

Why A Graphical Model
formulation of DL might be fruitful

Modular design: easy to incorporate knowledge and interpret,
easy to integrate feature learning with high level tasks, easy to
built on existing (partial) solutions

Defines an explicit and natural learning objective

Guilds strategies for inference, parallelization, evaluation, and
theoretical analysis

A clear path to further upgrade:
— structured prediction
— Integration of multiple data modality
— Modeling complex: time series, missing data, online data ...

Big DL on distributed architectures, where things can get
messy everywhere due to incorrect parallel computations

Easy to incorporate knowledge
and interpret

s ¢ “‘
articulation ag, ...

distortion-free acoustics ~ o @ @ Q

distorted acoustics
~

00‘@@

Yapva
distortion factors & —' Q @ 0
feedback to articulation -
)

Slides Courtesy:
Li Deng

Easy to integrate feature learning with
high level tasks

Hidden Markov Model Hidden Markov Model
+ +
Gaussian Mixture Model Deep Neural Network
Jointly trained, but shallow Deep, but separately trained

Hidden Markov Model

+
Deep Graphical Models

|

Jointly trained and deep

Mathematics 101 for ML

—

arg max = L({x;,yi}iL, ; 0) + Q(0)
0

Model Data Parameter

P+l =0t + A46(D)
/

This computation needs to be parallelized!

Toward Big ML

Canine

"' in .
. g4educat|or NI ara
b h ol e B § ﬁu&m memud, .‘w’ \
g] i E‘ researc g w‘ = .'z:i ';; Worki ngDo
H . 'ﬂ“g’
: i o
)
)

) 1 Eredh::hlcn;i m;;g%
e fylearning < - = 52
"""“ oal § study ﬂ
§ methodSStfudesﬁt§=i =

mo els N okl
ggmcam i

%

Husky Shep Bulldog

Data Parallel Task Parallel

fE{f17f27°"7fm}

Data-Parallel DNN using Petuum
Parameter Server

J
o\)

Just put global parameters in R &\«@;&"’
SSPTable: FFF S o
Topic 1
Topic 2
DNN (SGD) Topic 3 |
— The weight table Topic 4 /

Topic Modeling (MCMC) S

— Topic-word table
SSPTable
Matrix Factorization (SGD)

— Factor matrices L, R

Lasso Regression (CD) -
— Coefficients B
[T @ P

SSPTable supports generic classes
of algorithms

— With these models as examples

Theorem: Multilayer convergence of
SSP based distributed DNNs to optima

* |f the undistributed BP updates of a multi-
layer DNN lead to weights w, and the
distributed BP updates under SSP lead to
weights V;ﬂ then w, converges in probability to

w,ie.

Consequently

Model-Parallel DNN using Petuum
Scheduler

Neuron Partition

S

//

/
<]

Weight Partition

Theorem: Multilayer convergence of

model distributed DNNs to optima

* |f the undistributed BP updates of a multi-layer
DNN lead to weights w, and the distributed BP
updates in model distributed setting lead to
weights W, then w, converges in probability to

W, l.e. .Consequently

* |n case of model distributed DNN we divided the
DNN vertically such that a single layer is
distributed across processors

Distributed DNN: (preliminary)

Application: phoneme classification in speech recognition.
Dataset: TIMIT dataset with 1M samples.

Network configuration: input layer with 440 units, output layer with 1993
units, six hidden layers with 2048 units in each layer

Conditional Random Field [1] 34.8% : —
Large-Margin GMM [2] 33% Q; //
CD-HMM [3] 27.3% : ; . ; —— .
Recurrent Neural Nets [4] 26.1% " ; P ———Petuum DNN
Deep Belief Network [5] 23.0% 1 Z
Petuum DNN (Data Partition) 24.95% s a5 e s

Number of Cores

Petuum DNN (Model Partition) 25.12%

Conclusion

In GM: lots of efforts are directed to improving inference
accuracy and convergence speed

— An advanced tutorial would survey dozen’s of inference
algorithms/theories, but few use cases on empirical tasks

In DL: most effort is directed to comparing different
architectures and gate functions (based on empirical
performance on a downstream task)

— An advanced tutorial typically consist of a list of all designs of nets,
many use cases, but a single name of algorithm: back prop of SGD
The two fields are similar at the beginning (energy, structure,

etc.), and soon diverge to their own signature pipelines

A convergence might be necessary and fruitful

