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ABSTRACT

This paper describes the Webclopedia Question
Answering system, in which methods to automatically
learn patterns and parameterizations are combined with
hand-crafted rules and concept ontologies.  The source
for answers is a collection of 1 million newspaper texts,
distributed by NIST.  In general, two kinds of
knowledge are used by Webclopedia to answer
questions: knowledge about language and knowledge
about the world.  The former is embodied both in the
Information Retrieval engine that identifies likely
answer sentences and the CONTEX parser that analyses
the input question and candidate answers.  The latter is
embodied in a QA typology of some 140 nodes, a
concept ontology of some 10,000 concepts, and the IR
engine’s ranking algorithm that takes typical document
structure into account.

Keywords: Question Answering, Question/Answer
Typology, Qtarget, Webclopedia, CONTEX.

1. INTRODUCTION

Several research projects have recently investigated the
problem of automatically answering simple questions
that have brief phrasal answers (‘factoids’), by
identifying and extracting the answer from a large
collection of text.  IR techniques have proven quite
successful at locating within large collections of
documents those relevant to a user’s query.  Often,
however, the user wants not whole documents but brief
answers to specific questions: How old is the Queen of
England?  Who was the second person in space?  When
was the storming of the Bastille?  In order to pinpoint
the answers within likely documents, however, more
fine-grained methods have to be used.  As a result, most
QA systems exhibit a fairly standard structure: all create
a query from the user’s question, perform IR with the
query to locate (segments of) documents likely to
contain an answer, and then pinpoint the most likely
answer passage within the candidate documents.  The

more accurately the IR engine can select passages, the
less additional knowledge and/or processing is required
for pinpointing.

Answering short questions then becomes a problem of
finding the best combination of word-level (IR) and
syntactic/semantic-level (NLP) techniques, the former to
produce as short a set of likely candidate segments as
possible and the latter to pinpoint the answer(s) as
accurately as possible.  Typically, IR techniques tend to
use broad-brush (statistical) techniques while NLP
techniques tend to use more pointed handcrafted rules.

To improve performance, QA systems are increasingly
augmenting their general-purpose rules with knowledge
about language and about the world.

In this paper we describe Webclopedia, a system built
over the past 2-1/2 years that includes a classification of
QA types to facilitate coverage, uses a robust syntactic-
semantic parser to perform the analysis, and contains a
matcher that combines word- and parse-tree-level
information to identify answer passages.

Knowledge about language is employed especially by
the CONTEX parser.  This knowledge is incorporated in
three resources: a 30,000-node concept hierarchy, a
taxonomy of 140 question/answer types, and a lexicon.
With this knowledge, CONTEX is able to assign
semantic roles such as Logical-Subject and Logical-
Object to parts of sentences, thereby enabling the
Webclopedia QA matcher to determine that in  “Belli’s
clients have included Jack Ruby, who killed John F.
Kennedy assassin Lee Harvey Oswald, and Jim and
Tammy Bakker.” Ruby was the killer not of Kennedy
but of Kennedy's assassin, and that it was Oswald who
killed Kennedy.

Knowledge about the world is employed by both
CONTEX and Webclopedia’s retrieval module that
locates candidate answers. Currently this knowledge is
incorporated primarily in WordNet.  Using WordNet, for
example, the system can determine directly that
Belgrade is the capital of Yugoslavia, and can then score



higher candidate answer passages that contain
“Belgrade”.  Similarly, for definition-type questions
such as  “what is bandwidth?” the system uses WordNet
to extract words used in the term definitions, and boosts
candidate answer scores appropriately.  We plan soon to
also use the web to determine the answer, prior to
finding the answer again within the QA source corpus
for justification.

2. ARCHITECTURE

Webclopedia adopts the by now more or less standard
QA system architecture, namely question analysis,
document / passage retrieval, passage analysis for
matching against the question, and ranking of results.  Its
architecture (Figure 1) contains the following modules,
which are described in more detail in [9,10]:
• Question parsing: Using BBN’s IdentiFinder [2],

the CONTEX parser produces a syntactic-semantic
analysis of the question and determines the QA
type.

• Query formation: Single- and multi-word units
(content words) are extracted from the analysis, and
WordNet synsets are used for query expansion.  A
series of Boolean queries is formed.

• IR: The IR engine MG [16] returns the top-ranked
N documents.

• Selecting and ranking sentences: For each
document, the most promising K<<N sentences are
located and scored using a formula that rewards
word and phrase overlap with the question and its
expanded query words.  Results are ranked.

• Parsing segments: CONTEX parses the top-ranked
300 sentences.

• Pinpointing: Each candidate answer sentence parse
tree is matched against the parse of the question;
sometimes also the preceding sentence.  As a
fallback the window method is used.

• Ranking of answers: The candidate answers’
scores are compared and the winner(s) are output.

As described later, Webclopedia classifies desired
answers by their semantic type, using the approx. 140
classes called Qtargets [8,11], which represent the
essential point of a question/answer, regardless of
phrasing.

Segment parsing
• Steps: parse segment sentences
• Engines: CONTEX

Matching
• Steps: match general constraint patterns against parse trees
             match desired semantic type against parse tree elements
             assign score to words in sliding window
• Engine: Matcher

Ranking and answer extraction
• Steps: rank candidate answers
             extract and format them
• Engine: Answer ranker/formatter

QA typology
• QA types, categorized in taxonomy

Constraint patterns
• Identify likely answers in relation to
   other parts of the sentence

Create query

Retrieve documents

Select & rank sentences

Parse top segments

Parse question

Input question

Perform additional inference

Rank and prepare answers

Output answers

Question parsing
• Steps: parse question
             find desired semantic type
• Engines: IdentiFinder (BBN)
                 CONTEX

Match segments against answers

Query creation
• Steps: extract, combine important words

 expand query words using WordNet
 create queries, order by specificity

• Engines: Query creator

IR
• Steps: retrieve top 1000 documents
• Engines: MG (Sydney)

Sentence selection and ranking
• Steps: score each sentence in each document

 rank sentences
• Engines:Ranker

Figure 1. Weclopedia architecture.



3. THE QA TYPOLOGY

Almost all QA systems employ some categorization of
answers to help delimit the pinpointing step.   The
simplest categorization is simple by question word (who,
what, when, where, why, and how).  More types
simplify matching, however.  For example, “Who is the
richest person in the world?”, “Where is Cambodia?”,
and “When did Marilyn Monroe marry Arthur Miller?”
may have answer types ProperPerson, Location, and
Date respectively.

The same answer type can be intended by various forms
of question, as in “What is the name of the person who
invented xeroxing?”, “Who invented xeroxing?”, and
“Who was the inventor of xeroxing?”.  Similarly, the
answer can occur in different forms, such as “Chester F.
Carlson invented xeroxing”, “the man who invented
photocopying was Chester Carlson”, and “Inventing the
xeroxing process was a high point of Chester F.
Carlson’s life”.   What we called an answer type is thus a
kind of equivalence class of all these phrasings, or a
relation that links all the question forms to all their
answer forms.  We call this equivalence class a Qtarget;
for this example it might be Person.  Most QA systems
include a list of such Qtargets, typically ranging in
number from around 10 to around 50.

Since many QA systems associate specific matching
information (indicative words, surface word patterns,
etc.) with their Qtargets, it is useful to create more
specific alternatives that narrow the equivalent sets.
Thus Person might be specialized to Inventor, and be
associated with words such as “invent”, “invention”,
“discover”, “discovery”, and “create”.  Other
specializations of Person  might be Artist  (with
“perform”, “sing”) and Author  (“write”, “book”,
“publish”).  In addition, questions often explicitly
require more or less specific answers (“Where is
Vesuvius?” vs. “In which country is Vesuvius?”)

The hierarchicalized Qtargets form a typology that
defines the types of questions the system can handle.
The hierarchicalization can be exploited for backoff
matches, to allow more general Qtargets to apply in
cases where specific ones fail.  QA lists or typologies are
reported in almost all QA system papers; see for
example [5,1].

ISI’S QA Typology
Over the past two years, we have created at ISI a QA
Typology that currently contains 140 Qtargets.  Our
initial Typology of about 75 nodes was derived from an
analysis by one of our students of over 17,000 questions,
downloaded from answers.com [8,11]; see
http://www.isi.edu/natural-language/projects/webclop

edia/Taxonomy/taxonomy_toplevel.html and the
description in [11].  Subsequently, we have been
restructuring and extending the Typology to its current
form.

Qtargets are of several types.

Abstract Qtargets.  Some Qtargets are not typical
semantic types but are specific to QA.  For example, the
usual reading of “who was Mother Theresa?” is “why is
the individual known as Mother Theresa famous?”.  The
Qtarget A-WHY-FAMOUS is not a semantic class.
Additional Qtargets include A-YES-NO-QUESTION
and A-ABBREVIATION-EXPANSION.

Semantic (concept) Qtargets.   These Qtargets, the
largest class, limit the search space to sentence
constituents that satisfy a particular semantic class with
respect to the Webclopdia ontology, which currently
contains about 10,000 items, mostly extracted from
WordNet.  Semantic Qtargets include C-PROPER-
ORGANIZATION, C-BODY-PART C-COLOR, C-
PROPER-ANIMAL.

Syntactic Qtargets.  Other Qtargets apply when the
system cannot determine a specific semantic type for the
answer, but can specify the desired syntactic type.
Syntactic Qtargets are fairly weak, in that they generally
don’t restrict the search space much.  Webclopedia uses
S-NP as the default Qtarget.  The four syntactic Qtargets
are:
S-NP, S-NOUN
  What does Peugeot manufacture?
S-VP
  What did John Hinckley do to impress Jodie Foster?
S-PROPER-NAME

Role Qtargets.  These Qtargets specify constituents of
the parse tree of the question and candidate answer:
ROLE REASON
    Why did David Koresh ask the FBI for a
      word processor?
ROLE MANNER
  How did David Koresh die?
For example, in the (simplified) parse tree
    The tournament was cancelled due to bad weather.

((SUBJ LOG-OBJ) The tournament
 (PRED) was cancelled
 (REASON) due to bad weather
 (DUMMY) .
)

the phrase “due to the bad weather” satisfies the Qtarget
ROLE REASON.  This constraint is independent of the
syntactic category, which also could have been a
subordinate clause (“because the weather was so bad”)
or a verb phrase (“to avoid injuries”).



Slot Qtargets.  Slot Qtargets refer to non-syntactic
information associated with sentence constituents.  Slots
may be filled during parsing or later.  Some examples
are:
SLOT TITLE-P TRUE
    Name a novel written by Proust.
SLOT QUOTE-P TRUE
    What did Richard Feynman say upon hearing he
        would receive the Nobel Prize in Physics?
SLOT POSSIBLE-REASON-P TRUE

ISI’s QA systems Webclopedia [11] and Textmap [12]
both employ the Typology.  Both systems can combine
Qtargets, using variable strengths:

Question: Where is the Getty Museum?
Qtarget: ((C-PROPER-CITY 1.0)
                (C-AT-LOCATION 0.7)
                (C-PROPER-PLACE 0.7) …)

indicating that the system would prefer a proper city, but
could accept something tagged by the named entity
tagger just as a general location, or as a place with a
name [8].

Relation Qtargets. Relation Qtargets express some
relationship between two semantic types, such as Person
and Date to express the Qtarget R-BIRTHYEAR or
Person and Noun to express R-INVENTION.

To find instances of Qtargets in sentences, Webclopedia
includes several dozen hand-built matching rules.  We
have developed a method to learn additional ones
automatically.  This method was suggested by several
recent attempts at a surface-oriented pattern matching
approach to QA.  The Insight system from Moscow [15]
used some hundreds of surface-level patterns to identify
answer strings without (apparently) applying Qtargets or
similar reasoning.  For example, for BirthYear questions
such as “which year was Mozart born?” the phrase
“Mozart (1756 – 1791)…” provides the answer using the
general template

NAME_OF_PERSON ( BIRTHYEAR – DEATHYEAR )

Several other systems also defined word-level patterns
indicating specific Qtargets; e.g., [13].  The Microsoft
system [3] extended the idea of a pattern to its limit, by
reformulating the input question as a declarative
sentence and then retrieving the sentence verbatim, with
its answer as a completion, from the web using the
normal search engines.  For example, “who was Chester
F. Carlson?” would be transformed to “Chester F.
Carlson was” and submitted.  Although this approach
might yield many wrong answers (including “Chester F.
Carlson was born February 8, 1906, in Seattle”), the
sheer number of correct answers often leads to success.

We estimate that word-level patterns can provide at least
25% of the MRR score defined for NIST’s TREC QA
evaluation competition (although some systems claimed
considerably higher results; see [15]).  In order to
determine their power and reap their benefits, we
collected all the patterns associated with as many
Qtargets as made sense (some Qtargets, such as C-
PROPER-PLANET and C-PROPER-OCEAN, are
known closed sets that require no patterns).

As described in [11] we developed an automated
procedure to learn such patterns from the web, using
Altavista (because it returns 1000 documents per query),
and to measure their Precision.  More formally this
experiment can be phrased as “Given a QA pair such as
(NAME_OF_PERSON BIRTHYEAR), extract from the
web all the different patterns (TEMPLATEs) that
contain this QA pair along with the precision of each
pattern”.  We have inserted into the Typology the
patterns for approx. 20 Qtargets, recording their
Precision scores and relative frequencies of appearance.

The results were quite good in some cases.  For the
rather straightforward R-BIRTHYEAR patterns are:
 Precision  #Correct  # Found  Pattern

1.0 122 122 <NAME> ( <BD> - <DD>
1.0   15   15 <NAME> ( <BD> - <DD> ) ,
1.0   13   13 , <NAME> ( <BD> - <DD> )
0.9166   11   12 <NAME> was born on <BD> in
0.9090   10   11 <NAME> : <BD> - <TIME>
0.6944   25   36 <NAME> was born on <BD>

Note the overlaps among patterns.  By not compressing
them further we can record different precision levels.
Other patterns are provided in the Typology and in [11].

4. THE PROCEDURE

Parsing Questions
Webclopedia parses input questions using CONTEX to
obtain a semantic representation of the questions.
CONTEX is a deterministic machine-learning based
grammar learner/parser that was originally built for MT
[6].  For English, parses of unseen sentences measured
87.6% labeled precision and 88.4% labeled recall,
trained on 2048 sentences from the Penn Treebank.
Over the past few years CONTEX has been extended to
Japanese and Korean [7].

For Webclopedia, the CONTEX grammar had to be
augmented to recognize Qtargets [ 8 ] .   For example,
given the question “How far is it from Denver to
Aspen?”, the parser identifies noun phrases, nouns, verb
phrases, verbs, adjective phrases, and adjectives
embedded in the question, and determines that the
question is asking for a distance quantity.



IR: Creating and Expanding Queries
These phrases/words are assigned significance scores
according to the frequency of their type in our question
corpus (a collection of 27,000+ questions and answers),
secondarily by their length, and finally by their
significance scores, derived from word frequencies in
the question corpus.

We remain indebted to BBN for the use of IdentiFinder
[2], which isolates proper names in a text and classifies
them as person, organization, or location.

Query expansion comes from two sources and is used in
different stages.  In the document retrieval stage, the
highly relevant question terms (identified by CONTEX)
are expanded in order to boost recall, for example going
from “Russian” to “Soviet” or from “capital of the
United States” to “Washington”.  In the sentence ranking
stage, we use WordNet 1.6 [4] to match expanded query
terms.  Although these expanded terms contribute to the
final score, their contribution is discounted.  This
application of expansion strategy aims to achieve high
precision and moderate recall.

Retrieving Documents
We use MG [16] as our search engine.  Although MG is
capable of performing ranked query, we only use its
Boolean query capability.  For the entire TREC-10 test
corpus, the size of the inverse index file is about 200
MB and the size of the compressed text database is
about 884 MB.  The stemming option is turned on.
Queries are sent to the MG database, and the retrieved
documents are ranked according to their ranking from
query analysis.  We order queries most specific first,
then gradually relax them to more general, until we have
retrieved a sufficient number of documents.  For
example, (Denver&Aspen) is sent to the database first.
If the number of documents returned is less than a pre-
specified threshold, for example, 500, then we retain this
set of documents as the basis for further processing,
while also submitting the separate queries (Denver) and
(Aspen).

Ranking Sentences
If the total numbers of sentences contained in the
documents returned by MG is N for a given Boolean
query, we would like to rank the sentences in the
documents to maximize answer recall and precision in
the topmost K << N, in order to minimize the parsing
and subsequent processing.  In this stage we set K=300.
We assign goodness score to a sentence according to the
following criteria:
1. Exact match of proper names such as “Denver” and

“Aspen” get 100% bonus score.

2. Upper case term match of length greater than 1 get
60% bonus, otherwise get 30%.  For example,
match of “United States” is better than just of
“United”.

3. Lower case matches get the original score.
4. Lower case term match with WordNet expansion

stems get 10% discount.  If the original term is
capital case then it gets 50% discount.  For example,
when Cag(e) matches cag(e), the former may be the
last name of some person while the latter is an
object; therefore, the case mismatch signals less
reliable information.

5. Lower case term matches after Porter stemming get
30% discount.  If the original term is capital case
then 70% discount.  The Porter stemmed match is
considered less reliable than a WordNet stem match.

6. Porter stemmer matches of both question word and
sentence word get 60% discount.  If the original
term is capital case then get 80% discount.

7. If CONTEX indicates a term as being qsubsumed
then it gets 90% discount.  For example, “Which
country manufactures weapons of mass
destruction?” where “country” will be marked as
qsubsumed.

Normally common words are ignored unless they are
part of a phrase in question word order. Based on these
scores, the total score for a sentence is:

Sentence score = sum of word scores
At the end of the ranking we apply Qtarget filtering to
promote promising answer sentences.  For example,
since the question “How far is it from Denver to
Aspen?” is asking for a distance quantity, any sentence
that contains only “Denver” or “Aspen” but not any
distance quantities are thrown out.  Only the top 300
remaining sentences are passed to the answer
pinpointing module.

The bonus and discount rates given here are heuristics.
We are in the process of developing mechanisms to learn
these parameters automatically.

Answer Matching using Qtarget-Specific
Knowledge
Once the candidate answer passages have been
identified, their sentences are parsed by CONTEX.

The Matcher module then compares their parse trees to
the parse tree of the original question.  The Matcher
performs two independent matches [8,9]:
• match Qtargets and Qargs/Qwords obtained from

the questions to those identified in the candidate
answer parse trees,

• if that fails, move a word window over the answer
text, assigning a score to each position based on
word overlaps, etc. [9].



Qtargets and their accompanying Qargs enable the
matcher to pinpoint within the answer passage the exact,
syntactically delimited, answer segment.  (In contrast,
word window matching techniques, that have no
recourse to parse structures, have no accurate way to
delimit the exact answer boundaries.)

For many questions, the Qtarget, syntactic clues, and
word overlap are insufficient to select a good answer.
Strategies for dealing with this problem are described in
[9,10].

In NIST’s TREC QA evaluation competition,
Webclopedia tied for second place in 2000 and scored
fourth in a field of over 30 in 2001.

5. CONCLUSION

Ongoing work [12] is focusing on answer longer, more
complex questions, including ones with somewhat
structured answers (such as biographies and descriptions
of events and objects) and ones expressing opinions.
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