
Efficient and Consistent Robust Time Series Analysis

Kush Bhatia∗ Prateek Jain∗ Parameswaran Kamalaruban#

Purushottam Kar†
∗Microsoft Research, Bangalore, India
{t-kushb, prajain}@microsoft.com

#Australian National University, Canberra, Australia
kamalaruban.parameswaran@nicta.com.au
†Indian Institute of Technology Kanpur, India

purushot@cse.iitk.ac.in

Abstract

We study the problem of robust time series analysis under the standard auto-regressive (AR) time
series model in the presence of arbitrary outliers. We devise an efficient hard thresholding based algorithm
which can obtain a consistent estimate of the optimal AR model despite a large fraction of the time series
points being corrupted. Our algorithm alternately estimates the corrupted set of points and the model
parameters, and is inspired by recent advances in robust regression and hard-thresholding methods.
However, a direct application of existing techniques is hindered by a critical difference in the time-series
domain: each point is correlated with all previous points rendering existing tools inapplicable directly.
We show how to overcome this hurdle using novel proof techniques. Using our techniques, we are also able
to provide the first efficient and provably consistent estimator for the robust regression problem where
a standard linear observation model with white additive noise is corrupted arbitrarily. We illustrate our
methods on synthetic datasets and show that our methods indeed are able to consistently recover the
optimal parameters despite a large fraction of points being corrupted.

1 Introduction

Several real world prediction problems, for instance, the temperature of a city, stock prices, traffic patterns,
the GPS location of a car etc are naturally modeled as time series. One of the most popular and simple
model for time series is the auto-regressive (AR (d)) model which models a given observation as a sample
from a distribution with mean given by a fixed linear combination of previous d time series values. That is,
xt =

∑d
i=1 w

∗
i xt−i + εi where εi is unbiased noise.

Unfortunately, in real life scenarios, time series tend to have several outliers. For example, traffic patterns
may get disrupted due to accidents and stock prices may get affected by unforseen political or social influences.
The estimation of model parameters in the presence of such outliers is a classical problem in time-series
literature and is given a detailed treatment in several texts [11, 12].

Existing time-series texts define two major outlier models: a) innovative outliers, b) additive outliers. In
innovative outliers, corrupted values become a part of the time series and influence future iterates i.e. if xt
is corrupted and we observe x̃t = xt + bt then subsequent values xt′ (t′ > t) are obtained by using x̃t rather
than xt. In the additive outlier model, on the other hand, although the observation of x̃t is corrupted, the
time series itself continues using the clean value xt. Conventional wisdom in time series literature considers
innovative outliers to be “good” and helpful in spurring a shift in the time series [11]. Additive outliers, on
the other hand, are considered more challenging due to this latent behaviour in the model and can cause
standard estimators for the AR model to diverge.

1

Due to importance of the problem, several estimators have been proposed for the AR model under
corruption, e.g. the generalized M-estimator by [13]. However, most existing estimators are computationally
intractable (operate in exponential time) and do not offer non-asymptotic guarantees.

Our goal in this work is to devise an efficient and consistent estimator for the Robust Time Series
Estimation (RTSE) problem in the AR(d) model with non-asymptotic convergence guarantees in the presence
of a large number of outliers. To this end, we cast the model estimation problem as a sparse estimation
problem and use techniques from the sparse regression literature [10] to devise our hard-thresholding based
algorithm. At a high level, our algorithm locates the corrupted indices by using a projected gradient method
where the projection is onto the set of sparse vectors.

However, analyzing this technique proves especially challenging. While hard threshodling methods have
been extensively studied for sparse linear regression [10, 6, 23], similar techniques do not apply directly to
our problem because of two key challenges: a) in the time series domain, data points xt’s are dependent on
each other while sparse linear regression techniques typically assume independence of the data points, and
b) even for robust linear regression (where each row of data matrix is assumed to be independent), existing
analyses [5] are unable to guarantee consistent estimates.

Using a novel two-stage proof technique, we show that our method provides a consistent estimator for
the true model w∗ so long as the number of outliers k satisfies k = O(n

d logn), where n is the total number
of points in the time series and d is the order of the model. Whenever k satisfies the above assumption, our
method in time Õ(nd) outputs an estimate ŵ s.t. ‖ŵ −w∗‖2 ≤ f(n) where f → 0 as n → ∞. We direct
the reader to Theorem 9 for precise rates.

In fact, using our techniques, we are also able to give a consistent estimator for the robust least squares
regression (RLSR) problem [22, 16, 5] even when a constant fraction of the responses are corrupted. Here
again, our algorithm runs in time Õ(nd), where d is the dimensionality of the data. To the best of our
knowledge, our method is the first efficient and consistent estimator for the RLSR problem in the challenging
setting where a constant fraction of the responses can be corrupted.

We then study our methods empirically for both the robust time series analysis, as well as the standard
robust regression problems. Our methods demonstrate consistency for both problem settings. Moreover, our
results for robust time series show that the ordinary least squares estimate, that ignores outliers, provides
very poor estimators and hence, is significantly less accurate. In contrast, our proposed method and a few
variants of it indeed recover the underlying AR(d) model accurately.

Paper Organization: Section 3 considers the “warm-up” problem of robust regression and presents our
algorithm and theoretical guarantees. We then, introduce the robust time series problem and our algorithm
and analysis in Section 4. Section 5 presents simulations on synthetic datasets.

2 Related Works

Time Series: Analysing time series with corruptions is a classical and widely studied problem in statistics
literature. In an early work, [13] proposed a generalized M-estimator for the RTSE problem in the additive
outlier (AO) model with a positive breakdown point. [11] detail a robust variant of the Durbin-Levinson
algorithm for RTSE and demonstrate the efficacy of the model empirically. [20] provide an analysis of M-
estimators for RTSE with innovative outliers (IO), but show that the standard M-estimator has a break
down point of zero in the presence of AO. This shows that standard M-estimators cannot handle even a
non-zero fraction of corruptions. Recently, [8] proposed a method based on Least Trimmed Squares, which is
closely related to our method, and used Monte Carlo simulations to validate the effectiveness of their method.
[15] present a method based on robust filters in the more powerful ARMA model. Most of the estimators
mentioned above are either not efficient (i.e. exponential time complexity) or do not provide non-asymptotic
error rates. In contrast, we provide a consistent and nearly linear time algorithm that allows a large fraction
of points to be corrupted. Recently, [3] studied time series with missing values but their results do not extend
to cases with latent corruptions. Moreover, they consider the online setting as compared to the stochastic
setting considered by our method.

2

Robust Regression: The goal in RLSR is to recover a parameter using noisy linear observations that
are corrupted sparsely. RLSR is a classical problem in statistics, but computationally efficient, provable
algorithms have been proposed only in recent years. The Least Trimmed Squares (LTS) method guarantees
consistency but in general requires exponential running time [17, 1, 2]. Recently [22, 16] proposed L1 norm
minimization based methods for RLSR but their analyses do not guarantee consistent estimates in presence
of dense unbiased i.i.d. noise. Recently, [5] proposed a hard thresholding style algorithm for RLSR but are
unable to guarantee better than O(σ) error in the estimation of w∗ where σ is the standard deviation of
noise. However, as detailed in section 3, their results holds in a weaker adversarial model than ours. In

contrast, we provide nearly optimal σ
√
d√
n

error rates for our algorithm. [7] considers a stronger model where

along with the response variables, the covariates can also be corrupted. However, their result also do not
provide consistency guarantees and they can only tolerate k ≤ n/

√
d corruptions.

3 Robust Least Squares Regression

We use robust least squares regression (RLSR) as a warm up problem to introduce the tools, as well as
establish notation that will be used for our time-series analysis. We present the problem formulation,
propose our CRR algorithm, and then prove its consistency and robustness guarantees.

Problem Formulation and Notation: We are given a set of n data pointsX = [x1,x2, . . . ,xn] ∈ Rd×n,
where xi ∈ Rd are the covariates, y ∈ Rn is the vector of responses generated as

y = X>w∗ + b∗ + ε, (1)

for some true underlying model w∗ ∈ Rd. The responses suffer two kinds of perturbations – dense white
noise εi ∼ N (0, σ2) that is chosen in an i.i.d. fashion independently of the data X and the model w∗, and
sparse adversarial corruptions in the form of b whose support is chosen independently of X,w∗ and ε. We
assume that b∗ is a k∗-sparse vector albeit one with potentially unbounded entries. The constant k∗ will be
called the corruption index of the problem. The above model is stronger than that of [5] which considers a
fully adaptive adversary. However, whereas [5] is unable to give a consistent estimate, we give an algorithm
CRR that does provide a consistent estimate. We also note that [5] is unable to give consistent estimates
even in our model. As noted in the next section, our result requires significantly more fine analysis; standard
`2-norm style anlaysis by [5] seems unlikely to lead to a consistency result in the robust regression setting.

We will require the notions of Subset Strong Convexity and Subset Strong Smoothness similar to [5] and
reproduce the same below. For any set S ⊂ [n], let XS := [xi]i∈S ∈ Rp×|S| denote the matrix with columns
in that set. We define vS for a vector v ∈ Rn similarly. λmin(X) and λmax(X) will denote, respectively, the
smallest and largest eigenvalues of a square symmetric matrix X.

Definition 1 (SSC and SSS Properties). A matrix X ∈ Rp×n is said to satisfy the Subset Strong Convexity
Property (resp. Subset Strong Smoothness Property) at level k with strong convexity constant λk (resp.
strong smoothness constant Λk) if the following holds:

λk ≤ min
|S|=k

λmin(XSX
>
S) ≤ max

|S|=k
λmax(XSX

>
S) ≤ Λk.

We refer the reader to the appendix for SSC/SSS bounds for Gaussian ensembles.

3.1 CRR: A Hard Thresholding Approach to Consistent Robust Regression

We now present our consistent method CRR for the RLSR problem. CRR takes a significantly different
approach to the problem than previous works. Instead of attempting to exclude data points deemed unclean,
CRR concentrates on correcting the errors instead. This allows CRR to work with the entire data set at all
times, as opposed Torrent [5] that work with a fraction of the data.

Starting with the RLSR formulation minw∈Rp,‖b‖0≤k∗
1
2

∥∥X>w − (y − b)
∥∥2

2
, we realize that given any

estimate b̂ of the corruption vector, the optimal model with respect to this estimate is given by the expression

3

Algorithm 1 CRR: Consistent Robust Re-
gression

Input: CovariatesX = [x1, . . . ,xn], responses
y = [y1, . . . , yn]>, corruption index k, tol-
erance ε

1: b0 ← 0, t← 0,
PX ← X>(XX>)−1X

2: while
∥∥bt − bt−1

∥∥
2
> ε do

3: bt+1 ← HTk(PXbt + (I − PX)y)
4: t← t+ 1
5: end while
6: return wt ← (XX>)−1X(y − bt)

Algorithm 2 CRTSE: Consistent Robust Time Series Estimation

Input: Time-series data yi, i = −d + 1, . . . , n, corruption index k,
tolerance ε, time series order d, error trimming level σ̂

1: yi = max {min {yi, σ̂} ,−σ̂}
2: xi ← (yi−1, . . . , yi−d)>, X ← [x1, . . . ,xn], y ← (y1, . . . , yn)>,
PX ← X>(XX>)−1X, t← 0, b0 ← 0

3: while
∥∥bt − bt−1

∥∥
2
> ε do

4: bt+1 ← HTGk
(
PXbt + (I − PX)y

)
5: t← t+ 1
6: end while
7: return wt ← (XX>)−1X(y − bt)

ŵ = (XX>)−1X(y − b̂). Plugging this expression for ŵ into the formulation allows us to reformulate the
RLSR problem.

min
‖b‖0≤k∗

f(b) =
1

2
‖(I − PX)(y − b)‖22 (2)

where PX = X>(XX>)−1X. This greatly simplifies the problem by casting it as a sparse parameter
estimation problem instead of a data subset selection problem. CRR directly optimizes (2) by using a form
of iterative hard thresholding. At each step, CRR performs the following update: bt+1 = HTk(bt−∇f(bt)),
where k is a parameter for CRR. Any value k ≥ k∗ suffices to ensure convergence and consistency. The hard
thresholding operator is defined below.

Definition 2 (Hard Thresholding). For any v ∈ Rn, let the permutation σv ∈ Sn order elements of v
in descending order of their magnitudes. Then for any k ≤ n, we define the hard thresholding operator as
v̂ = HTk(v) where v̂i = vi if σ−1

v (i) ≤ k and 0 otherwise.

We note that CRR functions with a fixed, unit step length, which is convenient in practice as it avoids
step length tuning, something most IHT algorithms [9, 10] require. For the RLSR problem, we will consider
data sets that are Gaussian ensembles i.e. xi ∼ N (0,Σ). Since CRR interacts with the data only using the
projection matrix PX , one can assume , without loss of generality, that the data points are generated from
a standard Gaussian i.e. xi ∼ N (0, Id×d). Our analysis will take care of the condition number of the data
ensemble whenever it is apparent.

3.2 Convergence and Consistency Guarantees

Theorem 3. Let xi ∈ Rd, 1 ≤ i ≤ n be generated i.i.d. from a Gaussian distribution and let yi’s be
generated using (1) for a fixed w∗ and let σ2 be the noise variance. Let the number of corruptions k∗ be s.t.
k∗ ≤ k ≤ n/10000. Then, with probability at least 1− δ, CRR, after O(log(‖b∗‖2 /n) + log(n/(σ · d))) steps,

ensures that ‖wt −w∗‖2 ≤ O(σ
√
d/n log(nd/δ)).

The above result establishes consistency of the CRR method with Õ(σ
√
d/n) error rates that are known

to be statistically optimal, notably in the presence of gross and unbounded outliers. We reiterate that to
the best of our knowledge, this is the first instance of a poly-time algorithm being shown to be consistent
for the RLSR problem. It is also notable that the result allows the corruption index to be k∗ = Ω(n), i.e.
allows upto a constant factor of the total number of data points to be arbitrarily corrupted, while ensuring
consistency, which existing results [5, 16] do not ensure.

For our analysis, we will divide CRR’s execution into two phases – a coarse convergence phase and
a fine convergence phase. CRR will enjoy a linear rate of convergence in both phases. However, the
coarse convergence analysis will only ensure ‖wt −w∗‖2 = O (σ). The fine convergence phase will then
use a much more careful analysis of the algorithm to show that in at most O (log n) more iterations, CRR

4

ensures ‖wt −w∗‖2 = Õ(σ
√
d/n), thus establishing consistency of the method. Existing methods, including

Torrent, are able to reach an error level O (σ), but no further.
Let λt := (XX>)−1X(bt−b∗), g := (I−PX)ε, and vt = X>λt+g. Let S∗ := supp(b∗) true locations of

the corruptions and It := supp(bt) ∪ supp(b∗). Let MDt = supp(b∗)\supp(bt), FAt = supp(bt)\supp(b∗),
and CIt = supp(bt)∩supp(b∗) respectively denote the coordinates that were missed detections, false alarms,
and correctly identifications.

Coarse convergence: Here we establish a result that guarantees that after a certain number of steps
T0, CRR identifies the corruption vector with a relatively high accuracy i.e.

∥∥wT0 −w∗
∥∥

2
≤ O (σ).

Lemma 4. For any data matrix X that satisfies the SSC and SSS properties such that
2Λk+k∗

λn
< 1, CRR,

when executed with a parameter k ≥ k∗, ensures that after T0 = O
(

log
‖b∗‖2√

n

)
steps,

∥∥bT0 − b∗
∥∥

2
≤ 3e0,

where e0 = O
(
σ
√

(k + k∗) log n
δ(k+k∗)

)
for standard Gaussian designs.

Using Lemma 17 (see the appendix), we can translate the above result to show that
∥∥wT0 −w∗

∥∥
2
≤ 0.95σ,

assuming k = k∗ ≤ n
150 . However, Lemma 4 will be more useful in the following analysis.

Fine convergence: We now show that CRR progresses further at a linear rate to achieve a consistent
solution. First Lemma 5 will show that

∥∥λt∥∥
2

can be bounded, apart from diminishing or negligible terms,

by the amount of mass that is present in the false alarm coordinates MDt. Lemma 6 will next bound this
quantity. For all analyses hereon, we will assume t > T0.

Lemma 5. Suppose k∗ ≤ k ≤ n/10000. Then with probability 1 − δ, at every time instant t > T0, CRR

ensures that ‖λt+1‖2 ≤ 1
100‖λ

t‖2 + 2σ
√

2d
n log d

δ + 2.001
λn
‖XFAt+1(X>

FAt+1λ
t + gFAt+1)‖2.

We note that in the RHS above, the first term diminishes at a linear rate and the second term is a
negligible quantity since it is Õ(

√
d/n). In the following we bound the third term.

Lemma 6. For k∗ ≤ k ≤ n/10000, with probability at least 1−δ, CRR ensures at all t > T0, 2.001
λn

∥∥XFAt+1(X>
FAt+1λ

t + gFAt+1)
∥∥

2
≤

0.98
∥∥λt∥∥

2
+ C · σ

√
d
n log nd

δ for some constant C.

Putting all these results together establishes Theorem 3. See Appendix A for a detailed proof.

4 Robust Time Series Estimation

Similar to RLSR, we formulate the Robust Time Series Estimation (RTSE) with additive outliers (AO)
problem, propose our CRTSE algorithm, and prove its consistency and robustness guarantees.

Problem Formulation and Notation: Let (x−d+1, . . . , xn) be the “clean” time series which is a sta-
tionary and stable AR (d) process defined as xt = xt−1w

∗
1 + · · ·+ xt−dw

∗
d + εt where εt ∼ N (0, σ2) are i.i.d.

noise values chosen independently of the data and the model. We compactly represent this AR (d) process
as,

y∗ = X
>

w∗ + ε,

where y∗ = (x1, . . . , xn)
> ∈ Rn, xi = (xi−1, . . . , xi−d)

>, and X = [x1, . . . ,xn] ∈ Rd×n. However, we do not
observe the “clean” time series. Instead, we observe the time series (y−d+1, . . . , yn) which contains additive
corruptions. Defining y ∈ Rn, X ∈ Rd×n using (y−d+1, . . . , yn) in similar manner as y∗ and X are defined
using (x−d+1, . . . , xn), we have the resulting AO model as follows:

y = y∗ + e∗ = X>w∗ + ε + b∗, (3)

where e∗ is the actual corruption vector (k∗-sparse), and b∗ is the resulting model corruption vector (with
at most k∗-blocks of size d being non-zero). See (19) (see Appendix B.2) for a clearer characterization of the
y, X.

5

Now, given y, X, our goal will be to recover a consistent estimate of the parameter w∗. For our results
the following simple observation would be crucial: since supp(b∗) is a union of k∗ groups (intervals) of size

d, we have ‖b∗‖G0 ≤ 2k∗, where ‖b‖G0 is the Group-`0 pseudo-norm of b that we define below. For a set of
groups S, supp(S;G) = {Gi, i ∈ S}.

We now define certain quantities that are crucial in understanding the AR (d) process. The spectral
density of the “clean” AR (d) process y∗ is given by:

ρw∗ (ω) =
σ2(

1−
∑d
k=1 w∗ke

ikω
)(

1−
∑d
k=1 w∗ke

−ikω
) , for ω ∈ [0, 2π] . (4)

We define Mw∗ := supω∈[0,2π] ρw∗ (ω) and mw∗ := infω∈[0,2π] ρw∗ (ω). Another constant MW will also
appear in our results (see Appendix B.2 for a brief primer on AR (d) process).

For our analysis, we will also require notions of Sub-group Strong Convexity and Sub-group Strong Smooth-
ness for the time series which we define below. For any k ≤ n

d , we let SGk =
{

supp(S;G) : S ⊆
[
n
d

]
s.t. |S| = k

}
denote the set of all collections of k groups from G.

Definition 7 (SGSC/SGSS). A matrix X ∈ Rd×n satisfies the Subgroup Strong Convexity Property (resp.
Subgroup Strong Smoothness Property) at level k with strong convexity constant λk (resp. strong smoothness
constant Λk) if the following holds:

λk ≤ min
S∈SGk

λmin

(
XSX

>
S

)
≤ max

S∈SGk
λmax

(
XSX

>
S

)
≤ Λk.

4.1 CRTSE: A Block Sparse Hard Thresholding Approach to Consistent Robust
Time Series Estimation

We now present our CRTSE method for obtaining consistent estimates in the RTSE problem. By following

the similar approach as CRR, we begin with the RTSE formulation minw∈Rd,‖b‖G0≤k∗
1
2

∥∥X>w − (y − b)
∥∥2

2
,

and observe that for any given estimate b̂ of the corruption vector, the optimal model with respect to that
estimate is ŵ = (XX>)−1X(y − b̂). Then by plugging this expression for ŵ into the formulation, we
reformulate the RTSE problem as follows

min
‖b‖G0≤k∗

f(b) =
1

2
‖(I − PX)(y − b)‖22 (5)

where PX = X>(XX>)−1X. CRTSE uses a variant of iterative hard thresholding to optimize the above
formulation. At every iteration, CRTSE takes a step along the negative gradient of the function f and then
performs group hard thresholding to select the top k aligned groups (i.e. groups in G) of the resulting vector
and setting the rest to zero.

bt+1 = HTGk (bt −∇f(bt)),

where k ≥ 2k∗ and the group hard thresholding operator is defined below.

Definition 8 (Group Hard Thresholding). For any vector g ∈ Rn, let σg ∈ Sn
d

be the permutation s.t.∑
j∈Gσg(1)

|gj |2 ≥
∑
j∈Gσg(2)

|gj |2 ≥ . . . ≥
∑
j∈Gσg(n

d
)
|gj |2. Then for any k ≤ n

d , we define the group hard

thresholding operator as ĝ = HTGk (g) where

ĝi =

{
gi if σ−1

g (
⌈
i
d

⌉
) ≤ k

0 else

We note that this step can be done in quasi linear time. Due to the delicate correlations between data
points in the time series, in order to keep the problem well conditioned (see Theorem 22 and Remark 23),

6

we will perform a pre-processing step on the corrupted time series instances yi, i = −d+ 1, . . . , n as follows:
yi = max {min {yi, σ̂} ,−σ̂}, where σ̂ = O

(√
log nσ

)
. Note that since the clean underlying time series is a

Gaussian process εi ≤ O
(
σ
√

log n
)

and all its entries are, with high probability, bounded by σ̂. Thus we
will not clip any clean point because of the above step but ensure that we can, from now on, assume that
‖b∗‖∞ ≤ σ̂.

4.2 Convergence and Consistency Guarantees

We now present the estimation error bound for our CRTSE algorithm.

Theorem 9. Let y be generated using AR (d) process with k∗ additive outliers (see (3)). Also, let k∗ ≤ k ≤
C mw∗
Mw∗+MW

n
d logn (for some universal constant C > 0). Then, with probability at least 1− δ, CRTSE, after

O(log(‖b∗‖2 /n) + log(n/(σ · d))) steps, ensures that ‖wt −w∗‖2 ≤ O
(
σMw∗/mw∗

√
d log n/n log (d/δ)

)
.

The result does establish consistency of the CRTSE method as it offers convergence to Õ
(
σ
√
d log n/n

)
error levels. Also note that in typical time series data, d lies in the range 5 − 10. As in the case of CRR,
this is the first instance of a poly-time algorithm being shown to be consistent for the RTSE problem.

Following the similar approach of the consistency analysis for CRR, we will first ensure that ‖wt −w∗‖2 =
O (σ). Then in the fine analysis phase, we will show that after additionalO (log n) iterations, CRTSE ensures

‖wt −w∗‖2 = Õ
(
σ
√
d log n/n

)
.

Coarse convergence: Here we establish a result that after a certain number of iterations, CRTSE
identifies the corruption vector with a relatively high accuracy. Our analysis relies on a novel Theorem 22,
which is a key result that shows that the AR (d) process with AO indeed satisfies SGSC and SGSS properties
(see Definition 8), as long as the number of corruptions k∗ is small.

Theorem 10. For any data matrix X that satisfies the SGSC and SGSS properties such that 4Λk+k∗ <
λn
d

, CRTSE, when executed with a parameter k ≥ k∗, ensures that after T0 = O (log (‖b∗‖2 /
√
n)) steps,∥∥bT0 − b∗

∥∥
2
≤ 5e0. Additionally, if X is generated using our AR (d) process with AO (see (3)), then

e0 = O
(
σ
√

(k + k∗)d log n
δ(k+k∗)d

)
.

Note that if X is given by AR (d) process with AO model and if k is sufficiently small i.e. k∗ ≤
k ≤ C mw∗

Mw∗+MW

n
d logn (for some universal constant C > 0) and n is sufficiently large enough, then with

probability at least 1− δ, we have 4Λk+k∗ < λn
d

. See Remark 23 for more details.

Fine Convergence: As was the case in least squares regression, we will now sketch a proof that the
CRTSE algorithm indeed moves beyond the convergence level achieved in the coarse analysis and proceeds
towards a consistent solution at a linear rate. We begin by noting that by applying Lemma 24, we can derive
a result similar to Lemma 17. With high probability, we have for all t > 1

∥∥wt −w∗
∥∥

2
≤ C · Λn

λn

(
σ

√
d log n

n
log

d

δ
+
∥∥λt∥∥

2

)
, (6)

for a universal constant C. We note that for large enough n, Lemma 19 shows that Λn
λn

= O (1). Since
the first term in the bracket is a negligible term, one that does not hinder consistency, save log factors, we
are just left to establish the convergence of the iterates λt. We next note that Lemma 24, along with the
fact that the locations of the corruptions were decided obliviously and independently of the noise values
{εi}, allows us to also prove the following equivalent of Lemma 5 for the time series case as well: with high
probability, for every time instant t > T0, we have

∥∥λt+1
∥∥

2
≤ 1

100

∥∥λt∥∥
2

+ C ·

(
σ

√
d log n

n
log

d

δ
+

1

λn

(
1 +

Λn
λn

)∥∥XFAt+1(X>FAt+1λ
t + gFAt+1)

∥∥
2

)
, (7)

7

Number of Datapoints
0 5000 10000

‖
w

−
w

∗
‖
2

0

5

d = 500 sigma = 2 k = 0.3*n

OLS
TORRENT-FC
CRR

Dimensionality (d)
0 200 400 600 800

‖
w

−
w

∗
‖
2

0

5
n = 2000 sigma = 1 k = 600

OLS
TORRENT-FC
CRR

White Noise (sigma)
0 0.5 1 1.5 2

‖
w

−
w

∗
‖ 2

0

2

4
n = 2000 d = 500 k = 600

OLS
TORRENT-FC
CRR

Number of Datapoints
0 5000 10000

T
im

e
(i

n
 s

ec
)

0

10

20
d = 500 sigma = 7.5 k = 0.3*n

TORRENT-FC
CRR

(a) (b) (c) (d)
Figure 1: (a), (b) and (c) show variation of recovery error with varying n, d and σ. CRR and TORRENT show
better recovery properties than the non-robust OLS. These plots also ascertain the

√
n-consistency of CRR as is

shown in the theoretical analysis. (d) shows the average CPU run time of TORRENT and CRR with increasing
sample size. CRR can be upto 2x faster than TORRENT while ensuring similar recovery properties.

for some universal constant C. Noticing yet again that Λn
λn

= O (1) leaves us to prove a bound on

the quantity
∥∥XFAt+1(X>

FAt+1λ
t + gFAt+1)

∥∥
2
. We now notice that one can upper bound this quantity

by
∥∥∥XFAt+1(X>Stk

λt + gStk)
∥∥∥

2
by selecting the set Stk of the top k elements by magnitude in the vector

X>
S∗
λt + gS∗ . This allows us to establish the following result.

Lemma 11. Suppose k∗ ≤ k ≤ n/(C ′ρ(w∗)d log n) for some large enough constant C ′. Then with probability
at least 1− δ, CRR ensures at every time instant t > T0

C

λn

(
1 +

Λn
λn

)∥∥XFAt+1(X>FAt+1λ
t + gFAt+1)

∥∥
2
≤ 0.5

∥∥λt∥∥
2

+O

(
σ

√
d log n

n
log

1

δ

)

Above lemma with (7) suffices to establish Theorem 9. See Appendix B for details of all the steps sketched
above.

5 Experiments

Several numerical simulations were carried out on synthetically generated linear regression and AR (d) time-
series data with outliers. The experiments show that in the robust linear regression setting, CRR gives
a consistent estimator and is 2x times faster as compared with TORRENT [5] while in the robust AR (d)
time-series setting, CRTSE gives a consistent estimator and offers statistically better recovery properties as
compared with baseline algorithms.

5.1 Robust Linear Regression

Data: For the RLSR problem, the regressor w∗ ∈ Rd was chosen to be a random unit norm vector. The
data matrix was generated as each xi ∼ N (0, Id). The k∗ non-zero locations of the corruption vector b∗

were chosen uniformly at random from [n] and the value of the corruptions were set to b∗i ∼ U (10, 20).
The response variables y were then generated as yi = 〈xi,w∗〉 + ηi + b∗i where ηi ∼ N (0, σ2). All plots for
the RLSR problem have been generated by averaging the results over 20 random instances of the data and
regressor.

Baseline Algorithms: We compare CRR with two baseline algorithms: Ordinary Least Squares (OLS)
and TORRENT ([5]). All the three algorithms were implemented in Matlab and were run on a single core
2.4GHz machine with 8GB RAM.

Recovery Properties & Timing: As can be observed from Figure(1), CRR performs as well as
TORRENT in terms of the residual error ‖w−w∗‖2 and both their performances are better as compared with
the non-robust OLS method. Further, figures 1(a), 1(b) and 1(c) explain our near optimal recovery bound of

σ
√

d
n by showing the corresponding variation of the recovery error with variations in n, d and σ, respectively.

Figure 1(d) shows a comparison of variation of average CPU time (in secs) with increasing number of data
samples and shows that CRR can be upto 2x faster than TORRENT while provably guaranteeing consistent
estimates for the regressor.

8

Number of Points
200 400 600 800 1000

‖
w

−
w

∗
‖
2

0.1

0.15

d = 3 sigma = 0.05 k = 0.05*n
OLS
TORRENT-FC
CRR
CRTSE

Order of Time Series (d)
1 2 3 4 5

‖
w

−
w

∗
‖
2

0.2

0.3

0.4

n = 300 sigma = 0.5 k = 15
OLS
TORRENT-FC
CRR
CRTSE

Number of Corruptions (k)
10 20 30

‖
w

−
w

∗
‖
2

0.24
0.26
0.28
0.3

0.32

n = 300 d = 3 sigma = 0.5
OLS
TORRENT-FC
CRR
CRTSE

White Noise (sigma)
0 0.5 1

‖
w

−
w

∗
‖
2

0.2

0.25

0.3

n = 300 d = 3 k = 15

OLS
TORRENT-FC
CRR
CRTSE

(a) (b) (c) (d)
Figure 2: (a), (b), (c), and (d) show variation of recovery error with varying n, d, k and σ, respectively. CRTSE
outperforms OLS, and both the point-wise thresholding algorithms, TORRENT and CRR. Also, the decreasing error
with increasing n shows the consistency of our estimator in this regime.

5.2 Robust Time Series with Additive Corruptions

Data: For the RTSE problem, the regressor w∗ ∈ Rd was chosen to be a random vector with O(1√
d
) norm

(to avoid the time-series from diverging). The initial d points of the time-series are chosen as xi ∼ N (0, 1)
for i = 1 . . . d. The time-series, generated according AR (d) model with regressor w∗, was then allowed to
stabilize for the next 100 time-steps. We consider the points generated in the next n time steps as xi for
i = 1 . . . n. The k∗ non-zero locations of the corruption vector b∗ were chosen uniformly at random from
[n] and the value of the corruptions were set to b∗i ∼ U (10, 20). The observed time series is then generated
as yi = xi + b∗i . All plots for the RTSE problem have been generated by averaging the outcomes over 200
random runs of the above procedure.

Baseline Algorithms: We compare CRTSE with three baseline algorithms: Ordinary Least Squares
(OLS) , TORRENT ([5]) and CRR. For TORRENT and CRR, we set the thresholding parameter k = 2k∗d
and compare results with CRTSE. All simulations were done on a single core 2.4GHz machine with 8GB
RAM.

Recovery Properties: Figure 2 shows the variation of recovery error ‖w −w∗‖2 for the AR (d) time-
series with Additive Corruptions. CRTSE outperforms all three competitor baselines: OLS, TORRENT
and CRR. Since CRTSE uses a group thresholding based algorithm as compared with TORRENT and
CRR which use point-wise thresholding, CRTSE is able to identify blocks which contain both response and
data corruptions and give better estimates for the regressor. Also, figure 2(a) shows that the recovery error
goes down with increasing number of points in the time-series, as is evident from our consistency analysis of
CRTSE.

9

References

[1] Jan Ámos Vĩsek. The least trimmed squares. Part I: Consistency. Kybernetika, 42:1–36, 2006.

[2] Jan Ámos Vĩsek. The least trimmed squares. Part II:
√
n-consistency. Kybernetika, 42:181–202, 2006.

[3] Oren Anava, Elad Hazan, and Assaf Zeevi. Online time series prediction with missing data. In Proceedings of
the 32nd International Conference on Machine Learning (ICML-15), pages 2191–2199, 2015.

[4] Sumanta Basu and George Michailidis. Regularized Estimation in Sparse High-dimensional Time Series Models.
The Annals of Statistics, 43(4):1535–1567, 2015.

[5] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust Regression via Hard Thresholding. In 29th Annual
Conference on Neural Information Processing Systems (NIPS), 2015.

[6] Thomas Blumensath and Mike E. Davies. Iterative Hard Thresholding for Compressed Sensing. Applied and
Computational Harmonic Analysis, 27(3):265–274, 2009.

[7] Yudong Chen, Constantine Caramanis, and Shie Mannor. Robust Sparse Regression under Adversarial Corrup-
tion. In 30th International Conference on Machine Learning (ICML), 2013.

[8] Christophe Croux and Kristel Joossens. Robust estimation of the vector autoregressive model by a least trimmed
squares procedure. In COMPSTAT 2008, pages 489–501. Springer, 2008.

[9] Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative algorithm for sparse recovery
with restricted isometry property. In 26th International Conference on Machine Learning (ICML), 2009.

[10] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On Iterative Hard Thresholding Methods for High-
dimensional M-estimation. In 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014.

[11] Ricardo A. Maronna, R. Douglas Martin, and Victor J. Yohai. Robust Statistics: Theory and Methods. J. Wiley,
2006.

[12] R. Douglas Martin. Robust estimation for time series autoregressions. In ROBERT L. LAUNER and GRA-
HAM N. WILKINSON, editors, Robustness in Statistics, pages 147 – 176. Academic Press, 1979.

[13] R. Douglas Martin and Judy Zeh. Robust generalized m-estimates for autoregressive parameters: smallsample
behavior and applications. Technical Report 214, University of Washington, Seattle, 1978.

[14] Igor Melnyk and Arindam Banerjee. Estimating structured vector autoregressive model. arXiv:1602.06606
(math.ST), 2016.

[15] Nora Muler, Daniel Pena, and Victor J. Yohai. Robust estimation for arma models. The Annals of Statistics,
37(2):816–840, 2009.

[16] Nam H. Nguyen and Trac D. Tran. Exact recoverability from dense corrupted observations via L1 minimization.
IEEE Transaction on Information Theory, 59(4):2036–2058, 2013.

[17] Peter J. Rousseeuw. Least Median of Squares Regression. Journal of the American Statistical Association,
79(388):871–880, 1984.

[18] Mark Rudelson and Roman Vershynin. Hanson-Wright Inequality and Sub-gaussian Concentration. Electronic
Communications in Probability, 18(82):1–9, 2013.

[19] Ohad Shamir. A variant of azuma’s inequality for martingales with subgaussian tails. arXiv:1110.2392 (cs.LG),
2011.

[20] Norbert Stockinger and Rudolf Dutter. Robust time series analysis: A survey. Kybernetika, 23(7):1–3, 1987.

[21] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and G. Kutyniok,
editors, Compressed Sensing, Theory and Applications, chapter 5, pages 210–268. Cambridge University Press,
2012.

[22] John Wright and Yi Ma. Dense Error Correction via `1 Minimization. IEEE Transaction on Information Theory,
56(7):3540–3560, 2010.

[23] Tong Zhang. Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations. IEEE Trans.
Inf. Theory, 57:4689–4708, 2011.

10

A Supplementary Material for Consistent Robust Regression

A.1 SSC/SSS guarantees

In this section we restate some results from [5] which are required for the convergence analysis of the RLSR
problem.

Definition 12. A random variable x ∈ R is called sub-Gaussian if the following quantity is finite

sup
p≥1

p−1/2 (E [|x|p])1/p
.

Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x and denoted
as ‖x‖ψ2

.

Definition 13. A vector-valued random variable x ∈ Rp is called sub-Gaussian if its unidimensional
marginals 〈x,v〉 are sub-Gaussian for all v ∈ Sp−1. Moreover, its sub-Gaussian norm is defined as fol-
lows

‖X‖ψ2
:= sup

v∈Sp−1

‖〈x,v〉‖ψ2

Lemma 14. Let X ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian distri-
bution i.e. xi ∼ N (0, I). Then for any ε > 0, with probability at least 1− δ, X satisfies

λmax(XX>) ≤ n+ (1− 2ε)−1

√
cnp+ c′n log

2

δ

λmin(XX>) ≥ n− (1− 2ε)−1

√
cnp+ c′n log

2

δ
,

where c = 24e2 log 3
ε and c′ = 24e2.

Theorem 15. Let X ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any γ > 0, with probability at least 1− δ, the matrix X satisfies the
SSC and SSS properties with constants

Λγ ≤ γn
(

1 + 3e

√
6 log

e

γ

)
+O

(√
np+ n log

1

δ

)

λγ ≥ n− (1− γ)n

(
1 + 3e

√
6 log

e

1− γ

)
− Ω

(√
np+ n log

1

δ

)
.

Lemma 16. Let X ∈ Rp×n be a matrix with columns sampled from some sub-Gaussian distribution with
sub-Gaussian norm K and covariance Σ. Then, for any δ > 0, with probability at least 1 − δ, each of the
following statements holds true:

λmax(XX>) ≤ λmax(Σ) · n+ CK ·
√
pn+ t

√
n

λmin(XX>) ≥ λmin(Σ) · n− CK ·
√
pn− t

√
n,

where t =
√

1
cK

log 2
δ , and cK , CK are absolute constants that depend only on the sub-Gaussian norm K of

the distribution.

11

A.2 Convergence Proofs for CRR

Theorem 3. For k∗ ≤ k ≤ n/10000 and Gaussian designs, with probability at least 1 − δ, CRR, after

O
(

log
‖b∗‖2
n + log n

d

)
steps, ensures that ‖wt −w∗‖2 ≤ O

(
σ

λmin(Σ)

√
d
n log nd

δ

)
.

Proof. Putting Lemmata 5 and 6 establishes that

∥∥λt+1
∥∥

2
≤ 0.99

∥∥λt∥∥
2

+ Cσ

√
d

n
log

nd

δ
,

which ensures a linear convergence of the terms
∥∥λt∥∥

2
to a value O

(
σ
√

d
n log nd

δ

)
. Applying Lemma 17

then finishes off the result.

Lemma 4. For any data matrix X that satisfies the SSC and SSS properties such that
2Λk+k∗

λn
< 1, CRR,

when executed with a parameter k ≥ k∗, ensures that after T0 = O
(

log
‖b∗‖2√

n

)
steps,

∥∥bT0 − b∗
∥∥

2
≤ 3e0,

where e0 = O
(
σ
√

(k + k∗) log n
δ(k+k∗)

)
for standard Gaussian designs.

Proof. We start with the update step in CRR, and use the fact that y = X>w∗ + b∗ + ε to rewrite the
update as

bt+1 ← HTk(PXbt + (I − PX)(X>w∗ + b∗ + ε)).

Since X> = PXX
>, we get, using the notation set up before,

bt+1 ← HTk(b∗ +X>λt + g).

Since k ≥ k∗, using the properties of the hard thresholding step gives us∥∥bt+1
It+1 − (b∗It+1 +X>It+1λ

t + gIt+1)
∥∥

2
≤
∥∥b∗It+1 − (b∗It+1 +X>It+1λ

t + gIt+1)
∥∥

2
=
∥∥X>It+1λ

t + gIt+1

∥∥
2
.

This, upon applying the triangle inequality, gives us∥∥bt+1 − b∗
∥∥

2
≤ 2

∥∥X>It+1λ
t + gIt+1

∥∥
2
.

Now, using the SSC and SSS properties ofX, we can show that
∥∥X>It+1λ

t
∥∥

2
=
∥∥X>It+1(XX>)−1X>It(b

t − b∗)
∥∥

2
≤

Λk+k∗

λn
‖bt − b∗‖2.

Since ε is a Gaussian vector, using tail bounds for Chi-squared random variables (for example, see [5,

Lemma 20]), for any set S of size k + k∗, we have with probability at least 1 − δ ,‖εS‖22 ≤ σ2(k + k∗) +

2eσ2
√

6(k + k∗) log 1
δ . Taking a union bound over all sets of size (k + k∗) and

(
n
k

)
≤
(
en
k

)k
gives us, with

probability at least 1− δ, for all sets S of size at most (k + k∗),

‖εS‖2 ≤ σ
√

(k + k∗)

√
1 + 2e

√
6 log

en

δ(k + k∗)

Using tail bounds on Gaussian random variables1, we can also show that for every i, with probability

at least 1 − δ, we have ‖(Xε)i‖2 ≤ σ
∥∥(X>)i

∥∥
2

√
2 log 1

δ . Taking a union bound gives us, with the same

confidence, ‖Xε‖22 ≤ 2σ2 ‖X‖2F log d
δ ≤ 2σ2dΛn log d

δ . This allows us to bound ‖gIt+1‖2

‖gIt+1‖2 =
∥∥εIt+1 −X>It+1(XX>)−1Xε

∥∥
2

1 1
√
2π

∫ ∞
x

e−t2/2dt ≤
1
√
2π

∫ ∞
x

t

x
e−t2/2dt =

1

x
√
2π
e−x2/2

12

≤ σ
√

(k + k∗)

√
1 + 2e

√
6 log

en

δ(k + k∗)
+ σ

√
Λk+k∗Λn

λn

√
2d log

d

δ

≤ σ
√

(k + k∗)

√
1 + 2e

√
6 log

en

δ(k + k∗)︸ ︷︷ ︸
e0

(
1 +

√
2d

n
log

d

δ

)

= 1.0003e0,

where the second last step is true for Gaussian designs and sufficiently large enough n. Note that e0 does
note depend on the iterates and is thus, a constant. This gives us∥∥bt+1 − b∗

∥∥
2
≤ 2Λk+k∗

λn

∥∥bt − b∗
∥∥

2
+ 2.0006e0.

For data matrices sampled from Gaussian ensembles, whose SSC and SSS properties will be established

later, assuming n ≥ d log d, we have e0 = O
(
σ
√

(k + k∗) log n
δ(k+k∗)

)
. Thus, if

2Λk+k∗

λn
< 1, then in

T0 = O
(

log
‖b∗‖2
e0

)
= O

(
log
‖b∗‖2√

n

)
steps, CRR ensures that

∥∥bT0 − b∗
∥∥

2
≤ 2.0009e0.

Lemma 17. Let λmin(Σ) be the smallest eigenvalue of the covariance matrix of the distribution N (0,Σ) that

generates the data points. Then at any time instant t, we have ‖wt −w∗‖2 ≤
2

λmin(Σ)

(
2σ
√

d
n log d

δ +
∥∥λt∥∥

2

)
.

Proof. As described in Algorithm 1, wt = (XX>)−1X(y− bt) = w∗ + (XX>)−1X(ε + b∗ − bt). Thus, we
get ∥∥wt −w∗

∥∥
2
≤ 1

λmin(XX>)

∥∥X>(wt −w∗)
∥∥

2

≤ 1

nλmin(Σ)− CΣ
√
n

∥∥X>(wt −w∗)
∥∥

2

≤ 1

nλmin(Σ)− CΣ
√
n

∥∥∥X>(XX
>

)−1X(ε + b∗ − bt)
∥∥∥

2

≤ Λn
nλmin(Σ)− CΣ

√
n

∥∥∥(XX
>

)−1X(ε + b∗ − bt)
∥∥∥

2

≤ 2

λmin(Σ)

(
2σ

√
d

n
log

d

δ
+
∥∥λt∥∥

2

)
,

where the second step follows from results on eigenvalue bounds for data matrices drawn from non-spherical
Gaussians, where CΣ is a constant dependent on the subGaussian norm of the distribution, and the last step
assumes n ≥ 2CΣ

λmin(Σ) and uses the proof technique used in Lemma 4 to get∥∥∥(XX
>

)−1Xε
∥∥∥

2
≤ σ
√

Λn
λn

√
2d log

d

δ
≤ 2σ

√
d

n
log

d

δ
.

Lemma 5. Suppose k∗ ≤ k ≤ n/10000. Then with probability 1 − δ, at every time instant t > T0, CRR

ensures that
∥∥λt+1

∥∥
2
≤ 1

100

∥∥λt∥∥
2

+ 2σ
√

2d
n log d

δ + 2.001
λn

∥∥XFAt+1(X>
FAt+1λ

t + gFAt+1)
∥∥

2
.

Proof. We have bt+1 = HTk(b∗ + X>λt + g). To analyze λt+1 = (XX>)−1X(bt+1 − b∗), we start by
looking at X(bt+1−b∗) = XMDt+1(bt+1

MDt+1 −b∗
MDt+1) +XFAt+1(bt+1

FAt+1 −b∗
FAt+1) +XCIt+1(bt+1

CIt+1 −b∗
CIt+1).

We then have

XMDt+1(bt+1
MDt+1 − b∗MDt+1) = XMDt+1(−b∗MDt+1)

13

XCIt+1(bt+1
CIt+1 − b∗CIt+1) = XCIt+1(X>CIt+1λ

t + gCIt+1)

XFAt+1(bt+1
FAt+1 − b∗FAt+1) = XFAt+1(X>FAt+1λ

t + gFAt+1).

This gives us upon completing the terms, and using CIt+1]MDt+1 = S∗,

X(bt+1−b∗) = XFAt+1(X>FAt+1λ
t + gFAt+1) +XS∗(X

>
S∗λ

t + gS∗)−XMDt+1(b∗MDt+1 +X>MDt+1λ
t + gMDt+1).

Now due to the hard thresholding operation, we have
∥∥b∗

MDt+1 +X>
MDt+1λ

t + gMDt+1

∥∥
2
≤
∥∥X>

FAt+1λ
t + gFAt+1

∥∥
2
.

This gives us∥∥XMDt+1(b∗MDt+1 +X>MDt+1λ
t + gMDt+1)

∥∥
2

=
∥∥X(b∗MDt+1 +X>MDt+1λ

t + gMDt+1)
∥∥

2

≤ Λn
∥∥b∗MDt+1 +X>MDt+1λ

t + gMDt+1

∥∥
2

≤ Λn
∥∥X>FAt+1λ

t + gFAt+1

∥∥
2

≤ Λn
λn

∥∥X(X>FAt+1λ
t + gFAt+1)

∥∥
2

=
Λn
λn

∥∥XFAt+1(X>FAt+1λ
t + gFAt+1)

∥∥
2

≤ 1.001
∥∥XFAt+1(X>FAt+1λ

t + gFAt+1)
∥∥

2
,

where the last step uses a large enough n so that the data matrix X is well conditioned. Thus,∥∥λt+1
∥∥

2
=
∥∥(XX>)−1X(bt+1 − b∗)

∥∥
2

≤ 1

λn

∥∥XS∗(X
>
S∗λ

t + gS∗)
∥∥

2
+

2.001

λn

∥∥XFAt+1(X>FAt+1λ
t + gFAt+1)

∥∥
2

≤ 1

100

∥∥λt∥∥
2

+ 2σ

√
2d

n
log

d

δ
+

2.001

λn

∥∥XFAt+1(X>FAt+1λ
t + gFAt+1)

∥∥
2
,

where the third step follows by observing that the columns of X are (statistically equivalent to) i.i.d. samples
from a standard Gaussian, the fact that the support of the corruptions S∗ is chosen independently of the
data and the noise, and requiring that k∗ ≤ n

100 .

Lemma 6. Suppose k∗ ≤ k ≤ n/10000. Then with probability at least 1 − δ, CRR ensures at every time
instant t > T0, for some constant C

2.001

λn

∥∥XFAt+1(X>FAt+1λ
t + gFAt+1)

∥∥
2
≤ 0.98

∥∥λt∥∥
2

+ Cσ

√
d

n
log

nd

δ

Proof. For this we first observe that, since entries in the set FAt+1 survived the hard thresholding step, they
must have been the largest elements by magnitude in the set S∗ i.e.

X>FAt+1λ
t + gFAt+1 = HT|FAt+1|(X

>
S∗
λt + gS∗)

Note that
∣∣FAt+1

∣∣ ≤ k and S∗ is a fixed set of size n− k∗ with respect to the data points and the Gaussian

noise. Thus, if we denote by Stk, the set of top k coordinates by magnitude in S∗ i.e.

X>Stk
+ gStk = HTk(X>

S∗
λt + gS∗),

then
∥∥XFAt+1(X>

FAt+1λ
t + gFAt+1)

∥∥
2
≤
∥∥∥XStk

(X>Stk
λt + gStk)

∥∥∥
2
. Thus, all we need to do is bound this term.

In the following, we will, for sake of simplicity, omit the subscript S∗.
Before we move ahead, we make a small change to notation for convenience. At the moment, we are

defining λt = (XX>)−1(bt − b∗) and g = (I − X>(XX>)−1X)ε and analyzing the vector X>λt + g.

14

However, this is a bit cumbersome since g is not distributed as a spherical Gaussian, something we would
like to be able to use in the subsequent proofs. To remedy this, we simply change notation to denote
λt = (XX>)−1(bt − b∗) − (XX>)−1Xε and g = ε. This will not affect the results in the least since we

have, as shown in the proof of Lemma 4,
∥∥(XX>)−1Xε

∥∥
2
≤ σ

√
2d
n log d

σ because of which we can set n large

enough so that
∥∥λt∥∥

2
≤ σ

100 still holds. Given this, we prove the following result:

Lemma 18. Let X = [x1,x2, . . . ,xn] be a data matrix consisting of i.i.d. standard normal vectors i.e
xi ∼ N (0, Id×d), and g ∼ N(0, σ2 · In×n) be standard normal vector drawn independently of X. For any
λ ∈ Rd such that ‖λ‖2 ≤

σ
100 , define v = X>λ + g. For any τ > 0, define the vector z such that zi = vi if

|vi| > τ and zi = 0 otherwise. Then, with probability at least 1 − δ, for all λ ∈ Rd with norm at most σ
100 ,

we have 1
λn
‖Xz‖2 ≤M(τ) ‖λ‖2 + 2.02σ

√
d
n log nd

δ , where M(τ) < 0.808
σ

(
τ + 1

τ

)
exp

(
− τ2

2.001σ2

)
.

Proof. We will first prove this result by first assuming that λ is a fixed d-dimensional vector with small
norm and X and ε are chosen independently of λ. We will then generalize to all small norm vectors in Rd
by taking a suitably fine ε-net over them. Let us denote the ith row of X as Xi, and the entry at the jth

column in this row as Xi
j . Then (Xz)i = z>Xi =

∑n
j=1X

i
jzj . Note that vj = x>j λ + gj and hence vj and

vj′ are independent for j 6= j′. Because of this, Xi
jzj is also independent from Xi

j′zj′ .

We also note that vj |Xi
j ∼ N (Xi

jλi, σ
2 +
∑
i′ 6=i λ

2
i′). Let σ̃2 := σ2 +

∑
i′ 6=i λ

2
i′ . Note that zi = I {|vi| > τ}·

vi. Using a simpler notation temporarily x := Xi
j , z := zj and v := vj lets us write

E [xz] =

∫
R\[−τ,τ]

∫
R
xv p(x, v) dx dv.

Let Di :=
(
I +

λ2
i

σ2

)1/2

. Then for any fixed v, we have∫
R
xv p(x, v) dx =

∫
R
xv p(x)p(v|x) dx

=
1

σ̃(
√

2π)2

∫
R
xv exp

(
−x

2

2

)
exp

(
− (v − xλi)2

2σ̃2

)
dx

=
vD−2

i

σ̃(
√

2π)2

∫
R
u exp

(
−u

2

2
+
v2

σ̃2
− 2vuD−1

i λi
σ̃2

)
du

=
vD−2

i exp
(
− v2

2σ̃2 +
v2D−2

i λ2
i

2σ̃4

)
σ̃(
√

2π)2

∫
R
u exp

(
−1

2

(
u− vD−1

i λi
σ̃2

)2
)
du

=
v2D−3

i λi exp
(
− v2

2σ̃2 +
v2D−2

i λ2
i

2σ̃4

)
σ̃3
√

2π

≤
v2D−3

i λi exp
(
− v2

2.001σ2

)
1.001σ3

√
2π

,

where in the third step, we perform a change of variables u = Dix and in the last step, we use the fact that
σ̃2 ≤ σ2 + σ2/10000 since ‖λ‖2 ≤ σ/100, as well as λ2

i ≤ ‖λ‖
2
2. Plugging this into the expression for E [xz]

and using elementary manipulations such as integration by parts gives us

E
[
Xi
jzj
]

= M(τ)λi, i.e., E
[
λTxjzj

]
= M(τ)‖λ‖22,

where M(τ) < 0.8
(
τ
σ + σ

τ

)
exp

(
− τ2

2.001σ2

)
. This gives us E

[∑n
j=1 λ

Txjzj

]
= nM(τ)‖λ‖22. Moreover,

for any j, λTxj is a ‖λ‖2-subGaussian random variable and zj is a 2σ-subGaussian random variable as

15

‖λ‖2 ≤ σ/100. Hence, λTxjzj is a sub-exponential random variable with sub-exponential norm 2σ‖λ‖2.
Using the Bernstein inequality for subexponential variables [21], then allows us to arrive at the following
result, with probability at least 1− δ.

n∑
j=1

λTxjzj ≤ nM(τ)‖λ‖22 + 2
√
σ‖λ‖2

√
n log

2

δ
.

Taking a union bound over an ε-net over all possible values of λ (i.e. which satisfy the norm bound), for
ε = 1/100 gives us, with probability at least 1− δ, for all λ ∈ Rd satisfying ‖λ‖2 ≤

σ
100 ,

1

λn
λTXz ≤ 1.01M(τ) ‖λ‖22 + 2.02

√
σ‖λ‖2

√
d

n
log

200

δ
. (8)

Now, again consider a fixed λ and a fixed unit vector v ∈ Rd s.t. λTv = 0. In this case, vTxj is independent
of zj . Hence, E [[] vTxjzj] = 0. Moreover, vTxjzj is a 2σ-subexponential random variable. Moreover,

number of fixed λ and v in their ε-net is 1
ε

d · 1
ε

d−1
. Hence, using the subexponential Bernstein inequality

and using union bound over all v and λ, we get (w.p. ≥ 1− δ):

max
v,λ

1

λn
vTXz ≤ 2.02

√
σ
d

n
log

200

δ
. (9)

Lemma now follows by using ‖Xz‖22 = 1
‖λ‖22

(λTXz)2 + maxv,‖v‖2=1,vTλ=0(vTXz)2 with (8) and (9).

This establishes the claimed result.

Although Lemma 18 seems to close the issue of convergence of the iterates λt, and hence the convergence
of wt and consistency, it is not so. The reason is twofold – firstly Lemma 18 works with a value based
thresholding whereas CRR uses a cardinality based thresholding. Secondly, in order to establish a linear
convergence rate for λt, we need to show that the constant M(τ) is smaller than 98/100 so that we can

ensure that
∥∥λt+1

∥∥
2
≤
(

1
100 + 0.98

) ∥∥λt∥∥
2
≤ 0.99

∥∥λt∥∥
2

+ Õ
(√

d
n

)
, thus ensuring a linear convergence for

λt, save negligible terms. We do both of these in the subsequent discussion.
We address both the above issues by showing that while thresholding the vector X>λt + g (recall that

for sake of notational convenience we are still omitting the subscript S∗), the kth top element in terms of
magnitude will be large enough. Thus, thresholding at that value will recover the top k elements. If we are
able to get a sample independent bound on the magnitude of this element then we can set τ to this in the
analysis of Lemma 18 and be done. Of course, it will still have to be ensured that for this value of τ , we
have M(τ) < 1.

To simplify the discussion and calculations henceforth, we shall assume that σ = 1, δ = 1, and k = k∗.
We stress that all our analyses go through even for non-unit variance noise, projection parameters that differ
from the true corruption sparsity (i.e. k 6= k∗), as well as can be readily modified to give high confidence
bound. However, these assumptions greatly simplify our analyses.

We notice that the vector being thresholded has two components X>λt and g. Whereas g has a nice
characterization, being a standard Gaussian vector, there is very little we can say about the vector X>λt

other than that the norm of the vector λt is small. This is because the vector λt is dependent on previous
iterations and hence, dependent on X as well as g. The way out of this is to show that the kth largest
element in g is reasonably large and X>λt, on account of its small norm, cannot diminish it.

To proceed in this direction, we first recall the coarse convergence analysis. Letting α := k∗

n and making

the assumptions stated above we know that ‖λT0‖2 ≤ C(α) where

C(α) = 2.001
√

2α

√
1 + 2e

√
6 log

e

2α
.

16

Note that limα→0 C(α) = 0, as well as that
∥∥∥X>λT0

∥∥∥
2
≤ C(α) ·

√
n. This bound gives us an idea about

how much weight lies in the vector X>λt in the iterations t > T0. Next we look at the other component g.
For any value η > 0, the probability of a Gaussian variable exceeding that value in magnitude is given by√

2 · erfc(η/
√

2), where erfc is the complimentary error function. By an application of Chernoff bounds, we
can then conclude that in any ensemble of n such Gaussian variables, with probability at least 1−exp(−Ω(n))

at least a 0.99 · erfc
(
η√
2

)
fraction (as well as at most a 1.01 · erfc

(
η√
2

)
fraction) of points will exceed the

value η.
We also recall the quantity

M(ζ) < 0.8

(
ζ +

1

ζ

)
exp

(
− ζ2

2.001

)
,

and notice that, in order for M(ζ) to get less than 98/100, ζ must be greater than 0.99. Now the previous
estimate for bounds on Gaussian variables tells us that with probability at least 1− exp(−Ω(n)), at least a
β = 1/25 fraction of values in the vector g, which is a standard Gaussian (since we have assumed σ = 1 for
sake of simplicity) will exceed the value 1.98.

Let Sβ denote the set of coordinates of g which exceed the value 1.98. Let us call a coordinate i ∈ Sβ
corrupted if

∣∣∣(X>λT0)i

∣∣∣ ≥ 0.98. Now we notice that if this happens for (β −α) · n points in the set Sβ , then∥∥∥X>λT0

∥∥∥
2
≥ 0.98

√
(β − α)n. Thus, we set C(α) ·

√
n < 0.98

√
(β − α)n = 0.98

√
(0.04− α)n to prevent this

from happening. We note that for all values of α < 1
10000 this is true. This ensures that at least k∗ = α · n

points in the set S are of magnitude at least 1 and thus we can set τ = 1 in Lemma 18 which then finishes
the proof since M(1) < 0.98.

B Supplementary Material for Consistent Robust Time Series Es-
timation

B.1 Main Result

Theorem 9. Let y be generated using AR (d) process with k∗ additive outliers (see (3)). Also, let k∗ ≤ k ≤
C mw∗
Mw∗+MW

n
d logn (for some universal constant C > 0). Then, with probability at least 1− δ, CRTSE, after

O(log(‖b∗‖2 /n) + log(n/(σ · d))) steps, ensures that ‖wt −w∗‖2 ≤ O
(
σMw∗/mw∗

√
d log n/n log (d/δ)

)
.

Proof. Putting together the Lemma 11 and the equation (7) establishes that

∥∥λt+1
∥∥

2
≤ 0.51

∥∥λt∥∥
2

+O

(
σ

√
d log n

n
log

d

δ

)
,

which ensures a linear convergence of the terms
∥∥λt∥∥

2
to a value O

(
σ
√

d logn
n log d

δ

)
. Applying the equation

(6), then finishes off the result.

B.2 Back ground on Time Series

AR (d) process is defined as

xt = xt−1w
∗
1 + · · ·+ xt−dw

∗
d + εt where εt ∼ N (0, σ2). (10)

17

Note that xt ∼ N (0,Γ(0)), where Γ (h) = E [xtxt+h] is the auto-covariance function of the time series. Then
we have x1

...
xn

 =

 x0 · · · x−d+1

...
...

xn−1 · · · xn−d

 ·
w∗1

...
w∗d

+

ε1

...
εn


y∗ = X

>
w∗ + ε. (11)

The spectral density of this AR (d) process can be given as

ρw∗ (ω) =
σ2(

1−
∑d
k=1 w∗ke

ikω
)(

1−
∑d
k=1 w∗ke

−ikω
) , for ω ∈ [0, 2π] . (12)

Observe that any column vector of the matrix X is distributed as Xi ∼ N (0, CX), where

CX =


Γ (0) Γ (1) · · · Γ (d− 1)
Γ (1) Γ (0) · · · Γ (d− 2)

...
...

. . .
...

Γ (d− 1) Γ (d− 2) · · · Γ (0)

 .
Since CX is a block-Toeplitz matrix, we have

mw∗ := inf
ω∈[0,2π]

ρw∗ (ω) ≤ Λmin [CX] ≤ Λmax [CX] ≤ sup
ω∈[0,2π]

ρw∗ (ω) =:Mw∗ . (13)

The columns of X can be viewed as a d-variate of VAR (1) process as follows


xi
xi−1

...
xi−(d−1)

 =


w∗1 w∗2 · · · w∗d−1 w∗d
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ·

xi−1

xi−2

...
xi−d

+


εi
0
...
0


X̂i = WX̂i−1 + Ei, for i = 1, . . . , n. (14)

By letting

u∗ =

X̂1

...

X̂n

 ∈ Rnd, U =

 X̂0

...

X̂n−1

 ∈ Rnd, and E =

E1...
En

 ∈ Rnd

the above VAR (1) process can be compactly written as follows

u∗ = WU + E .

Then the spectral density of the above VAR (1) process is given by

ρW (ω) =
(
I −We−iω

)−1
Σε

[(
I −We−iω

)−1
]∗
, for ω ∈ [0, 2π] ,

where

Σε =


σ2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

18

The covariance matrix of vector U is given by

CU = E
[
UU>

]
=


E
[
X̂0X̂

>
0

]
E
[
X̂0X̂

>
1

]
· · · E

[
X̂0X̂

>
n−1

]
E
[
X̂1X̂

>
0

]
E
[
X̂1X̂

>
1

]
· · · E

[
X̂1X̂

>
n−1

]
...

...
. . .

...

E
[
X̂n−1X̂

>
0

]
E
[
X̂n−1X̂

>
1

]
· · · E

[
X̂n−1X̂

>
n−1

]

 .

Since CU is a block-Toeplitz matrix, we have

Λmax [CU] ≤ sup
ω∈[0,2π]

ρW (ω) =
σ2

infω∈[0,2π] Λmin [(I −W>eiω) (I −We−iω)]
=:MW . (15)

Consider a vector q = X
>

a ∈ Rn for any a ∈ Sd−1. Since each element X
>
i a ∼ N

(
0,a>CXa

)
, it follows

that q ∼ N (0, Qa) where Qa =
(
In ⊗ a>

)
CU (In ⊗ a). From this we can note that

trace (Qa) = na>CXa ≤ nΛmax [CX] ≤ nMw∗ (16)

‖Qa‖2 ≤ ‖a‖22 Λmax [CU] ≤ MW (17)

‖Qa‖F =
√

trace (QaQa) ≤
√
‖Qa‖2 trace (Qa) ≤

√
nMWMw∗ . (18)

Additive Corruptions: Now consider the following additive corruption mechanism (at most k∗ data
points):

yi = y∗i + e∗i = xi + e∗i for i = 1, . . . , n.

Since we observe the corrupted time series data (y−d+1, . . . , y0, y1, . . . , yn), we have
y0 y−1 · · · y−d+1

y1 y0 · · · y−d+2

y2 y1 · · · y−d+3

...
...

...
yn−1 yn−2 · · · yn−d

 =


x0 x−1 · · · x−d+1

x1 x0 · · · x−d+2

x2 x1 · · · x−d+3

...
...

...
xn−1 xn−2 · · · xn−d

+


0 0 · · · 0
e∗1 0 · · · 0
e∗2 e∗1 · · · 0
...

...
...

e∗n−1 e∗n−2 · · · e∗n−d


X> = X

>
+ E> (19)

Thus the observed time series can be modeled as follows

y = y∗ + e∗

= X
>

w∗ + ε + e∗

= (X> − E>)w∗ + ε + e∗

= X>w∗ + ε + b∗e∗,w∗ , (20)

where e∗ = (e∗1, . . . , e
∗
n)> is k∗-sparse, and b∗e∗,w∗ = e∗ − E>w∗ is k∗-block-sparse with block size of d + 1

(since Ew∗ is k∗-block-sparse with block size of d).

B.3 Singular values of X

Lemma 19. Let X be a matrix whose columns are sampled from a stationary and stable VAR (1) process
given by (14) i.e. Xi ∼ N (0, CX). Then for any ε > 0, with probability at least 1− δ, X satisfies

λmax

(
XX

>) ≤ nMw∗ + (1− 2ε)−1
{√

nα1(d, δ, ε)MWMw∗ + α1(d, δ, ε)MW

}
19

λmin

(
XX

>) ≥ nmw∗ − (1− 2ε)−1
{√

nα1(d, δ, ε)MWMw∗ + α1(d, δ, ε)MW

}
,

where α1(d, δ, ε) = c log 2
δ + cd log 3

ε for some universal constant c.

Proof. Using the results from [4, 14], we first show that with high probability,∥∥∥XX> − nCX∥∥∥
2
≤ ε1

for some ε > 0. Doing so will automatically establish the following result

nΛmin [CX]− ε1 ≤ λmin

(
XX

>) ≤ λmax

(
XX

>) ≤ nΛmax [CX] + ε1.

Let Cd−1 (ε) ⊂ Sd−1 be an ε-cover of Sd−1 ([21], see Definition 5.1). Standard constructions ([21], see Lemma

5.2) guarantee such a cover of size at most
(
1 + 2

ε

)d ≤ (3
ε

)d
. Further by Lemma 5.4 from [21], we have∥∥∥XX> − nCX∥∥∥

2
≤ (1− 2ε)−1 sup

u∈Cd−1(ε)

∣∣∣u> (XX> − nCX)u
∣∣∣ .

By following the analysis given in [4, 14], we can provide a high probability bound on
∣∣∣u> (XX> − nCX)u

∣∣∣.
For any u ∈ Sd−1, let q = X

>
u ∼ N (0, Qu) where Qu =

(
In ⊗ u>

)
CU (In ⊗ u). Note that u>XX

>
u =

q>q = z>Quz, where z ∼ N (0, In). Also, u>nCXu = E
[
z>Quz

]
. So, by the Hanson-Wright inequality of

[18], with ‖zi‖ψ2
≤ 1 since zi ∼ N (0, 1), we get

P
[∣∣∣u> (XX> − nCX)u

∣∣∣ > λ
]

= P
[∣∣z>Quz− E

[
z>Quz

]∣∣ > λ
]

≤ 2 exp

(
−1

c
min

{
λ2

‖Qu‖2F
,

λ

‖Qu‖2

})
.

Setting λ =
√
α1(d, δ, ε) ‖Qu‖F + α1(d, δ, ε) ‖Qu‖2, and taking a union bound over all Cd−1 (ε), we get

P

[
sup

u∈Cd−1(ε)

∣∣∣u> (XX> − nCX)u
∣∣∣ >√α1(d, δ, ε) ‖Qu‖F + α1(d, δ, ε) ‖Qu‖2

]

≤ 2

(
3

ε

)d
exp

(
−1

c
min

{
λ2

‖Qu‖2F
,

λ

‖Qu‖2

})
≤ δ.

This implies that probability at least 1− δ,∥∥∥XX> − nCX∥∥∥
2
≤ (1− 2ε)−1

{√
α1(d, δ, ε) ‖Qu‖F + α1(d, δ, ε) ‖Qu‖2

}
,

which (along with the bounds given in (16),(17), and (18)) gives us the claimed bounds on the singular

values of XX
>

.

B.4 Restricted Singular values of X

Lemma 20. Let X be a matrix whose columns are sampled from a stationary and stable VAR (1) process
given by (14) i.e. Xi ∼ N (0, CX). Then for any k ≤ n

d , with probability at least 1−δ, the matrix X satisfies
the SGSC and SGSS properties with constants

Λk ≤ k

{
dMw∗ +

√
dMWMw∗

1

c
log

en

kd
+MW log

en

kd

}

20

+O
(√

kdα2(d, δ)MWMw∗

)
+O (α2(d, δ)MW)

λk ≥ nmw∗ −
(n
d
− k
){

dMw∗ +

√
dMWMw∗

1

c
log

en

n− kd
+ log

en

n− kd
MW

}

− Ω

((
1 +

√
n− kd
n

)√
nα2(d, δ)MWMw∗

)
− Ω (α2(d, δ)MW) ,

where α2(d, δ) = log 1
δ + d and c is some universal constant.

Proof. One can easily observe that considering the columns-restricted matrix XS wouldn’t impact the anal-
ysis of Lemma 19. Thus for any fixed S ∈ SGk , Lemma 19 guarantees the following bound (since |S| = kd)

λmax

(
XSX

>
S

)
≤ kdMw∗ + (1− 2ε)−1

{√
kdα1(d, δ, ε)MWMw∗ + α1(d, δ, ε)MW

}
.

Taking a union bound over SGk and noting that
∣∣SGk ∣∣ ≤ (enkd)k, gives us with probability at least 1− δ

Λk ≤ kdMw∗ + (1− 2ε)−1M,

where

M =

√(
α1(d, δ, ε) + ck log

en

kd

)
kdMWMw∗ +

(
α1(d, δ, ε) + ck log

en

kd

)
MW

≤
√
α1(d, δ, ε)kdMWMw∗ + k

√
cd log

en

kd
MWMw∗ +

(
α1(d, δ, ε) + ck log

en

kd

)
MW .

If c < 1 (which can be ensured by scaling), by setting ε = 1
2 (1 − c) and noting that Θ

(
1
cα1

(
d, δ, 1−c

2

))
=

Θ
(
log 1

δ + d
)
, we get

Λk ≤ k

{
dMw∗ +

√
dMWMw∗

1

c
log

en

kd
+MW log

en

kd

}

+O

(√
kd

(
log

1

δ
+ d

)
MWMw∗

)
+O

((
log

1

δ
+ d

)
MW

)
.

For the second bound, we use the equality

XSX
>
S = XX

> −XSX
>
S ,

which provides the following bound for λk,

λk ≥ λmin

(
XX

>)− max
T∈SGn

d
−k

λmax

(
XTX

>
T

)
= λmin

(
XX

>)− Λn
d−k.

Using Lemma 19 to bound the first quantity and the first part of this theorem to bound the second quantity
gives us, with probability at least 1− δ,

λk ≥ nmw∗ −
(n
d
− k
){

dMw∗ + (1− 2ε)−1

(√
cd log

en

n− kd
MWMw∗ + c log

en

n− kd
MW

)}
− (1− 2ε)−1

{(
1 +

√
n− kd
n

)√
nα1(d, δ, ε)MWMw∗ + 2α1(d, δ, ε)MW

}
.

21

By setting ε = 1
2 (1− c) we get the following bound

λk ≥ nmw∗ −
(n
d
− k
){

dMw∗ +

√
dMWMw∗

1

c
log

en

n− kd
+ log

en

n− kd
MW

}

− Ω

((
1 +

√
n− kd
n

)√
n

(
log

1

δ
+ d

)
MWMw∗

)
− Ω

((
log

1

δ
+ d

)
MW

)
.

Remark 21. Note that Mw∗ ,MW and mw∗ will depend only on the actual model parameter vector w∗

and σ (not on the realized data). Moreover Mw∗ and MW are closely related. For example, for AR(1)

time-series with 0 < w∗1 < 1, we have Mw∗ = MW = σ2

(1−w∗1)2 and mw∗ = σ2

(1+w∗1)2 . Then for sufficiently

large enough n so that
√
n� n, the restricted singular value bounds of X from Lemma 20 can be simplified

as follows

Λk ≤ O
(
k

{
dMw∗ +

√
dMw∗MW log

en

δkd
+MW log

en

δkd

})
and

λn
d
≥ Ω (nmw∗) .

B.5 Restricted Singular values of X

Theorem 22 (SGSS/SGSC in AR (d) with AO model). Let X be the matrix given in (3) (additive corrupted
AR (d) model setting). Then for any k ≤ n

d and sufficiently large enough n, with probability at least 1 − δ,
the matrix X satisfies the SGSC and SGSS properties with constants

Λk ≤ O
(
k

{
d log nMw∗ +

√
dMw∗MW log

en

δkd
+MW log

en

δkd

})
λn
d
≥ Ω (nmw∗) .

Proof. Recall that the matrix X can be decomposed as follows

X = X + E.

Since for any v ∈ Sn−1, ‖Ev‖22 =
∑d
i=1

〈
(E>)i,v

〉2 ≤ ∑d
i=1

∥∥(E>)i
∥∥2

2
‖v‖22 ≤ d ‖e∗‖22, we get ‖E‖2 ≤√

d ‖e∗‖2. By using the inequality
∥∥XS −XS

∥∥
2
≤ ‖ES‖2 ≤ ‖E‖2 we get

Λmin

[
XS

]
− ‖E‖2 ≤ Λmin [XS] ≤ Λmax [XS] ≤ Λmax

[
XS

]
+ ‖E‖2 .

Since e∗ is k∗-sparse and e∗i ≤ σ̂ = O(
√

log nσ), we have ‖e∗‖2 ≤ O(
√
k∗ log nσ). Thus from Lemma 20

and Remark 21, for sufficiently large enough n (with probability at least 1− δ) we get

√
Λk ≤ O

√k{dMw∗ +

√
dMw∗MW log

en

δkd
+MW log

en

δkd

}+O(
√
k∗d log nσ)

≤ O

√k{d log nMw∗ +

√
dMw∗MW log

en

δkd
+MW log

en

δkd

}
√
λn
d
≥ Ω (

√
nmw∗)− Ω(

√
k∗d log nσ) ≥ Ω (

√
nmw∗) ,

which completes the proof.

22

Remark 23. Using Theorem 22, we can bound

√
Λk+k∗

λn
d

(which is required for the coarse convergence analysis

of CRTSE) as follows (with probability at least 1− δ, and sufficiently large enough n)√
Λk+k∗

λn
d

≤ O

 1

nmw∗

√
k

{
d log nMw∗ +

√
dMw∗MW log

en

δkd
+MW log

en

δkd

}
=

f(w∗, σ)
√

log n

n

√
(k + k∗)

(
d+ 2e

√
6d log

en

δ(k + k∗)d

)
,

for some positive function f(w∗, σ) (suppressing Mw∗ ,MW and mw∗).
From Theorem 22, it can also be observed that, if k ≤ C mw∗

Mw∗+MW

n
d logn (for some universal constant

C > 0), then with probability at least 1− δ, we get
Λk+k∗

λn
d

≤ Λ2k

λn
d

≤ 1
4 .

B.6 Bound on ‖Xε‖2
Lemma 24. Let X be the matrix given in (3) (additive corrupted AR (d) model setting). Then with proba-
bility at least 1− δ,

‖Xε‖2 ≤ 2σ

√
n
√

log nc′d log
2d

δ
.

for some constant c′ > 0.

Proof. We first bound the absolute value of (Xε)i =
∑n
j=1 εjxj−i for i = 1, . . . , d. Let zj := εjxj−i. Since

E [zj |ε1, . . . , εj−1] = 0, {zj : j ∈ [n]} is a martingale difference sequence w.r.t {εj : j ∈ [n]}. Also note that
for any j, (zj |ε1, . . . , εj−1) ∼ N (0, x2

j−iσ
2). Then using the tail bounds on Gaussian random variables we

have

P [|zj | > t|ε1, . . . , εj−1] ≤
√

2

π

1

|xj−i|σ
exp

(
−t2

2x2
j−iσ

2

)
≤
√

2

π

1

c
√

log nσ2
exp

(
−t2

2c2 log nσ4

)
,

since supi∈[n] |xi| ≤ O
(√

log nσ
)

with high probability. Then by using Theorem 2 from [19], we get

P

 n∑
j=1

zj > nε

 ≤ exp

 − 1
2c2 lognσ4nε

2

28
√

2
π

1
c
√

lognσ2

 = exp

(
−nε2

c′
√

log nσ2

)
,

for some constant c′. Similarly we also have

P

 n∑
j=1

zj < −nε

 ≤ exp

(
−nε2

c′
√

log nσ2

)
.

Then by using the union bound we get (for any δ > 0)

P

∣∣∣∣∣∣
n∑
j=1

zj

∣∣∣∣∣∣ > nε

 ≤ 2 exp

(
−nε2

c′
√

log nσ2

)
= δ.

That is with probability at least 1− δ we have

∣∣(Xε)i
∣∣ ≤ nε ≤ σ√n√log nc′ log

2

δ
.

23

Taking a union bound gives us, with the same confidence,∥∥Xε
∥∥2

2
≤ σ2n

√
log nc′d log

2d

δ
.

Now we bound the absolute value of (Eε)i =
∑n
j=1 εjEi,j for i = 1, . . . , d. Let zj := εjEi,j . Note that

for any j, (zj |ε1, . . . , εj−1) ∼ N (0, E2
i,jσ

2) and supi,j∈[n] |Ei,j | ≤ σ̂ = O
(√

log nσ
)
. Then by following the

similar analysis as above, we have with probability at least 1− δ,

‖Eε‖22 ≤ σ
2n
√

log nc′d log
2d

δ
.

Then using the triangular inequality, with probability at least 1− δ,

‖Xε‖2 ≤
∥∥Xε

∥∥
2

+ ‖Eε‖2 ≤ 2σ

√
n
√

log nc′d log
2d

δ
.

B.7 Coarse Convergence Analysis

Theorem 10. For any data matrix X that satisfies the SGSC and SGSS properties such that
4Λk+k∗

λn
d

< 1,

CRTSE, when executed with a parameter k ≥ k∗, ensures that after T0 = O
(

log
‖b∗‖2√

n

)
steps,

∥∥bT0 − b∗
∥∥

2
≤

5e0, where e0 = O
(
σ
√

(k + k∗)d log n
δ(k+k∗)d

)
for standard Gaussian AR (d) process. If k is sufficiently

small i.e. k∗ ≤ k ≤ C mw∗
Mw∗+MW

n
d logn (for some universal constant C > 0) and n is sufficiently large

enough, then with probability at least 1− δ, we have
4Λk+k∗

λn
d

< 1.

Proof. We start with the update step in CRTSE, and use the fact that y = X>w∗ + ε + b∗ to rewrite the
update as

bt+1 ← HTGk (PXbt + (I − PX)(X>w∗ + ε + b∗)),

where PX = X>(XX>)−1X. Since X> = PXX
>, we get

bt+1 ← HTGk (b∗ + PX(bt − b∗) + (I − PX)ε).

Let It := supp(bt) ∪ supp(b∗), λt := (XX>)−1X(bt − b∗), and g := (I − PX)ε. Since k ≥ k∗, using the
properties of the hard thresholding step gives us∥∥bt+1

It+1 − (b∗It+1 +X>It+1λ
t + gIt+1)

∥∥
2
≤
∥∥b∗It+1 − (b∗It+1 +X>It+1λ

t + gIt+1)
∥∥

2
=
∥∥X>It+1λ

t + gIt+1

∥∥
2
.

This, upon applying the triangle inequality, gives us∥∥bt+1
It+1 − b∗It+1

∥∥
2
≤ 2

∥∥X>It+1λ
t + gIt+1

∥∥
2
.

Now, using the SGSC and SGSS properties of X (since G-supp(It+1) ≤ k + k∗), we can show that∥∥X>It+1λ
t
∥∥

2
=
∥∥X>It+1(XX>)−1X>It(b

t − b∗)
∥∥

2
≤ Λk+k∗

λn
d

‖bt − b∗‖2.

Since ε is a Gaussian vector, using tail bounds for Chi-squared random variables (for example, see [5,

Lemma 20]), for any set S of size (k + k∗)d, we have with probability at least 1− δ ,‖εS‖22 ≤ σ2(k + k∗)d+

2eσ2
√

6(k + k∗)d log 1
δ . Taking a union bound over all sets of group size (k + k∗) and

(
n/d
k

)
≤
(
en
kd

)k
gives

us, with probability at least 1− δ, for all sets S of group size at most (k + k∗),

‖εS‖2 ≤ σ
√

(k + k∗)

√
d+ 2e

√
6d log

en

δ(k + k∗)d

24

From Lemma 24, with probability at least 1 − δ, we have ‖Xε‖2 ≤ 2σ
√
n
√

log nc′d log 2d
δ . This allows

us to bound ‖gIt+1‖2
‖gIt+1‖2 =

∥∥εIt+1 −X>It+1(XX>)−1Xε
∥∥

2

≤ σ
√

(k + k∗)

√
d+ 2e

√
6d log

en

δ(k + k∗)d
+ 2σ

√
Λk+k∗

λn
d

√
n
√

log nc′d log
2d

δ

≤ σ
√

(k + k∗)

√
d+ 2e

√
6d log

en

δ(k + k∗)d︸ ︷︷ ︸
e0

1 + 2f(w∗, σ)

√
c′d (log n)

3/2

n
log

2d

δ


= 1.0003e0,

where the second last step is due to Remark 23 for sufficiently large enough n so that
√
n � n. Note that

e0 does note depend on the iterates and is thus, a constant. This gives us∥∥bt+1 − b∗
∥∥

2
≤ 2Λk+k∗

λn
d

∥∥bt − b∗
∥∥

2
+ 2.0006e0.

For data matrices sampled from AO-AR(d) ensembles, whose SGSC and SGSS properties are established

in Theorem 22, assuming n ≥ d log d, we have e0 = O
(
σ
√

(k + k∗)d log n
δ(k+k∗)d

)
. Thus, if

Λk+k∗

λn
d

< 1
4

(which is guaranteed by Remark 23 with probability at least 1− δ for k∗ ≤ k ≤ C mw∗
Mw∗+MW

n
d logn), then in

T0 = O
(

log
‖b∗‖2
e0

)
= O

(
log
‖b∗‖2√

n

)
steps, CRTSE ensures that

∥∥bT0 − b∗
∥∥

2
≤ 4.0015e0.

B.8 Fine Convergence Analysis

Lemma 11. Suppose k∗ ≤ k ≤ n/(C ′d log n) for some large enough constant C ′. Then with probability at
least 1− δ, CRR ensures at every time instant t > T0

C

λn
(1 +

Λn
λn

)
∥∥XFAt+1(X>FAt+1λ

t + gFAt+1)
∥∥

2
≤ 0.5

∥∥λt∥∥
2

+O

(
σ

√
d log n

n
log

1

δ

)
Proof. As before, we change the problem so that instead of thresholding the top k elements of the vector
X>λt + g by magnitude, we threshold all elements which exceed a certain value τ in magnitude. Again as
before, we show that with high probability, for sufficiently small k, the kth largest element of the vector will
have a large magnitude.

Proving the second part of the result is relatively simple in the time series setting because of the error
tolerance bound k∗ ≤ n/(d log n) that we assume in this setting. For sake of simplicity, as well as without
loss of generality, assume as before that σ = 1. Then using the tail bounds for martingales with sub-Gaussian
entries from [19], we can yet again show that with probability at least 1−exp (Ω(n)), at least a 1/50 fraction
of points in the vector g will exceed the value 1.75 in magnitude.

Now, using the subset smoothness of the data matrix X from Theorem 22 on subsets of size 1 tells us that
maxi ‖Xi‖2 ≤ Λ1 ≤ O (d log n), where Xi is the ith column of the data matrix X. Note that this also includes

the influence of the error vector e∗. Thus, if we assume k∗ ≤ k < O
(

1
d logn

)
then ‖λT0‖2 ≤ 1

4 maxi‖Xi‖2
which gives us

∥∥X>λt∥∥∞ ≤ 1
4 . This assures us that for any k < n/50, the k largest elements by magnitude

in the vector X>λt + g will be larger than 1.5.
Having assured ourselves of this, we move on to the analysis assuming that thresholding is done by value

and not by cardinality. Let z = [z1, z2, . . . , zn] where zi = (X>i λ + gi) · I
{∣∣X>i λ + gi

∣∣ > τ
}

. We have

Xz =

n∑
j=1

Xjzj =

n∑
i=1

Xj(X
>
j λ + gj) · I

{∣∣X>j λ + gj
∣∣ > τ

}
,

25

where the previous result ensures that we can set τ ≥ 1.5, as well as safely assume that
∣∣X>j λ∣∣ ≤ 0.25. In

the following, we analyze the ith coordinate of the vector i.e.

(Xz)i =

n∑
i=1

Xi
j(X

>
j λ + gj) · I

{∣∣X>j λ + gj
∣∣ > τ

}
=:

n∑
i=1

ζi.

We notice that gi|Xi ∼ N (0, σ2) which allows us to construct the following martingale difference sequence

n∑
i=1

ζi − E [ζi|g1, g2, . . . , gi−1]

We also note that the elements of the above sequence are conditionally sub-Gaussian with the sub-Gaussian
norm at most O (log n). Then using the Azuma style inequality for martingales with sub-Gaussian tails from
[19] gives us, with high probability

n∑
i=1

ζi − E [ζi|g1, g2, . . . , gi−1] ≤
√

112 log n

n
log

1

δ

Note that E [ζi|g1, g2, . . . , gi−1] = Xi
j · E

[
(X>j λ + gj) · I

{∣∣X>j λ + gj
∣∣ > τ

}
|g1, g2, . . . , gi−1

]
. Also note that

(X>j λ + gj) is conditionally distributed as N (X>j λ, 1) as we have assumed σ = 1 for simplicity. For a
Gaussian variable Y ∼ N (µ, 1), we have

E [Y · I {|Y | > τ}] = µ− E [Y · I {|Y | ≤ τ}] =
φ(τ − µ)− φ(−τ − µ)

Φ(−τ − µ)− Φ(τ − µ)
,

where φ(·) and Φ(·) are respectively, the density and cumulative distribution functions of the standard normal
variable. Now, applying the mean value theorem gives us

|φ(τ − µ)− φ(−τ − µ)| = |φ(τ + µ)− φ(τ − µ)| = 2 |ηφ(η)µ| ,

for some η ∈ [τ−µ, τ+µ]. For the ensured values of τ = 1.25 and |µ| ≤ 0.25, we have |φ(τ − µ)− φ(−τ − µ)| <
0.25. For the same values we have Φ(−τ − µ)− Φ(τ − µ) ≥ 0.68. Putting these together, we get

|(Xz)i| ≤ Cτ ·

∣∣∣∣∣∣
n∑
j=1

Xi
jX
>
j λ

∣∣∣∣∣∣+D

where |Cτ | ≤ 0.4 and D ≤
√

112 logn
n log 1

δ . We note that this value of Cτ can be made arbitrarily small by

simply requiring that k∗ ≤ k < n
C′·d logn for a large enough constant C ′ > 0. In particular, we set k, k∗ such

that Cτ ≤ 0.9Λn
λn

. This gives us

1

λn
‖Xz‖2 ≤

Cτ
λn

∥∥XX>λ∥∥
2

+
d

λn
D ≤ 0.5 ‖λ‖2 +O

(√
d log n

n
log

1

δ

)
,

which concludes the proof.

26

	Introduction
	Related Works
	Robust Least Squares Regression
	CRR: A Hard Thresholding Approach to Consistent Robust Regression
	Convergence and Consistency Guarantees

	Robust Time Series Estimation
	CRTSE: A Block Sparse Hard Thresholding Approach to Consistent Robust Time Series Estimation
	Convergence and Consistency Guarantees

	Experiments
	Robust Linear Regression
	Robust Time Series with Additive Corruptions

	Supplementary Material for Consistent Robust Regression
	SSC/SSS guarantees
	Convergence Proofs for CRR

	Supplementary Material for Consistent Robust Time Series Estimation
	Main Result
	Back ground on Time Series
	Singular values of X
	Restricted Singular values of X
	Restricted Singular values of X
	Bound on "026B30D X "026B30D 2
	Coarse Convergence Analysis
	Fine Convergence Analysis

