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Aspects of Asymmetry

• Bandwidth: 10-1000 times more in forward direction

• Latency: asymmetric channel access and interfering
traffic

• Packet loss: more losses in one direction

Goal:  Analyze and evaluate how the network and traffic 
in one direction affect performance in the other
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Bandwidth Asymmetry

• Bandwidth-constrained reverse channel could
limit data throughput in forward direction
– contention for buffer space

– packet scheduling issues

• Several factors determine performance
– normalized bandwidth ratio

– reverse channel buffer size

– whether unidirectional or bidirectional traffic

• Solutions:
– end-to-end and/or router-based



End-to-End Solutions

• At receiver: ack congestion control
– extension of TCP delayed acks

– frequency of acks is varied adaptively depending
on level of congestion in the reverse channel

– congestion feedback
• from router (e.g., RED)

• from sender

• At sender:
– window growth tied to amount of data acked rather

than the number of ack packets received

– potentially large bursts broken up into smaller ones



Router-based Solutions

• Ack filtering
– older acks removed in favor of more recent ones

• in extreme case, all except most recent one removed

– where to place the acks that remain?

• Acks-first scheduling
– acks given higher priority than data packets



Simulation Model
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– Used ns simulator with Daedalus enhancements

– Parameters chosen to model Hybrid system

–  Metrics:
• aggregate throughput in each direction

• fairness index



Single One-Way Transfer
– Single TCP transfer in the forward direction

– Maximum window size set to 100 KB
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Competing One-Way Transfers
– Two forward-direction transfers with 28.8 Kbps

reverse channel with header compression

– ACC and AF help maintain free space in reverse
channel buffer

• fairness improves without degradation in throughput
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Two-way Transfers
– Reverse transfer is initiated some time after

forward transfer

– Maximum window size set to 100 KB



Two-way Transfers
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Two-way Transfers

• Interaction between ack and data packets

• High degree of unfairness with TCP Reno

• ACC helps reverse transfer by not congesting
reverse channel buffer

• Acks-first scheduling minimizes impact of
(large) data packets on acks
– 1 KB data packet takes 280 ms for transmission

– max. possible forward throughput is 2.9 Mbps

– throughput achieved is 2.67 Mbps



Ricochet Network Topology
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Media Access Issues

• Nodes in packet-radio network need to
synchronize before they can communicate
– poll/pollack procedure

– radio turnaround time

– exponential backoff if peer is busy

– simple ACK/NACK based ARQ protocol

• Per-packet overhead is large and variable
– increased packet count results in large and variable

latency

– in particular, the flow of acks adversely affects
latency for data packets



Solutions

• Decrease the number of acks entering the
packet radio network
– ack congestion control

– ack filtering

• Sender changes
– window increase is tied to amount of data

acknowledged

– potential bursts broken up



Simulation Model

– 2 or 3 wireless hops

– radio turnaround time of 12 ms

– radio queue size of 10 packets

– exponential backoff in multiples of 20 ms slots
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Results

Effect on RTT and throughput
– Ack filtering decreases the chances that the peer

radio is busy, so backoffs are less frequent

– 2 wireless hops
• Reno: mean RTT = 2.67 s, std dev = 1 s

• AF: mean RTT = 1.85 s, std dev = 0.6 s

• 25% higher throughput with AF (24 Kbps versus 19
Kbps)

– 3 wireless hops
• 34% higher throughput with AF (17.1 Kbps versus

12.7 Kbps)



Results

Effect on fairness
– simultaneous connections over 2-hop network

– ack filtering makes performance of each
connection more predictable
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Summary

• Flow of acks has a significant impact on TCP
performance

• A good solution has several components
– decreasing the frequency of acks when there is

congestion in the reverse direction (ACC or AF)

– priority scheduling of acks (acks-first)

– sender adaptation to combat infrequent acks



Future Work

• Performance with short transfers

• Receiver feedback to aid fast window growth
– receiver tells sender the rate at which it is receiving

data packets

• Sender-based detection of ack congestion

• Ack reconstructor to shield sender from effects
of infrequent acks
– inserts acks to bridge large gaps in sequence

– spaces apart bursts of acks

• Implementation and validation on testbed


