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Motivation

• Problem: support “live” streaming to a potentially 
large and highly dynamic population

• Motivating scenario: flash crowds
– often due to an event of widespread interest…
– … but not always (e.g., Webcast of a birthday party)
– can affect relatively obscure sites (e.g., www.cricket.org)

• site becomes unreachable precisely when it is popular!

• Streaming server can quickly be overwhelmed
– network bandwidth is the bottleneck



Solution Alternatives

• IP multicast:
– works well in islands (e.g., corporate intranets)
– hindered by limited availability at the inter-domain 

level
• Infrastructure-based CDNs (e.g., Akamai, RBN)

– well-engineered network ⇒ good performance
– but may be too expensive, even for the big sites 

• (e.g., CNN [LeFebvre 2002])
– uninteresting for CDN to support small sites

• Goal: solve the flash crowd problem without 
requiring new infrastructure!



Cooperative Networking (CoopNet)

• Peer-to-peer streaming
– clients serve content to other clients

• Not a new idea
– much research on application-level multicast (ALMI, ESM, 

Scattercast)
– some start-ups too (Allcast, vTrails)

• Main advantage: self-scaling
– aggregate system bandwidth grows with demand

• Main disadvantage: hard to provide “guarantees”
– P2P is not a replacement for infrastructure-based CDNs
– but how can we improve the resilience of P2P streaming?



Challenges

• Unreliable peers
– peers are far from being dedicated servers
– disconnections, crashes, reboots, etc.

• Constrained and asymmetric bandwidth
– last hop is often the bottleneck in “real-world” peers
– median broadband bandwidth: 900 Kbps/212 Kbps 

(PeerMetric study: Lakshminarayanan & Padmanabhan)
– congestion due to competing applications

• Reluctant users
– some ISPs charge based on usage

• Others issues:
– NATs: IETF STUN offers hope
– Security: content integrity, privacy, DRM



CoopNet Design Choices

• Place minimal demands on the peers
– peer participates and forwards traffic only for as 

long as it is interested in the content
– peer contributes only as much upstream 

bandwidth as it consumes downstream
– natural incentive structure

• enforcement is a hard problem!
• Resilience through redundancy

– redundancy in network paths
– redundancy in data
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Traditional Application-level Multicast

Vulnerable to node departures and failures



CoopNet Approach to Resilience

• Add redundancy in data…
– multiple description coding (MDC)

• … and in network paths
– multiple, diverse distribution trees 



Multiple Description Coding

• Unlike layered coding, there isn’t an ordering of the descriptions
• Every subset of descriptions must be decodable
• So better suited for today’s best-effort Internet
• Modest penalty relative to layered coding

MDC Layered coding



Multiple, Diverse Distribution Trees

Tree diversity provides robustness to node failures.
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Tree Management Goals

• Traditional ALM goals
– efficiency

• make tree structure match the underlying network topology
• mimic IP multicast?
• optimize over time

– scalability
• avoid hot spots by distributing the load

– speed
• quick joins and leaves

• But how appropriate are these for CoopNet?
– unreliable peers, high churn rate
– failures likely due to peers nodes or their last-mile
– resilience is the key issue 



Tree Management Goals (contd.)

• Additional goals for CoopNet:
– shortness

• fewer ancestors ⇒ less prone to failure
– diversity 

• different ancestors in each tree ⇒ robustness
• Some of the goals may be mutually conflicting

– shortness vs. efficiency
– diversity vs. efficiency
– speed vs. scalability

• Our goal is resilience
– so we focus on shortness, diversity, and speed
– we sacrifice a little on self-scaling
– efficiency is a secondary goal
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CoopNet Approach

Centralized protocol anchored at the server 
(akin to the Napster architecture)

• Nodes inform the server when they join and leave
– they indicate available bandwidth, delay coordinates

• Server maintains the trees
• Nodes monitor loss rate on each tree and seek new 

parent(s) when it gets too high
– single mechanism to handle packet loss and ungraceful 

leaves 



Pros and Cons

• Advantages:
– availability of resourceful server simplifies protocol
– quick joins/leaves: 1-2 network round-trips

• Disadvantages:
– single point of failure

• but server is source of data anyway
– not self-scaling

• but still self-scaling with respect to bandwidth
• tree manager can keep up with ~100 joins/leaves per second 

on a 1.7 GHz P4 box (untuned implementation)
• tree manager can be scaled up using a server cluster

– CPU is the bottleneck



Randomized Tree Construction

Simple motivation: randomize to achieve diversity!
• Join processing:

– server searches through each tree to find the highest k
levels with room

• need to balance shortness and diversity
• k is usually small (1 or 2)

– it randomly picks a parent from among these nodes
– informs parents & new node

• Leave processing:
– find new parent for each orphan node
– orphan’s subtree migrates with it

• Reported in our NOSSDAV ’02 paper



Why is this suboptimal?
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• We ask nodes to contribute only as 
much bandwidth as they consume

• So T trees ⇒ each node can support at 
most T children in total

• Q: how should a node’s out-degree be 
distributed?

• Randomized tree construction tends to 
distribute the out-degree randomly

• This results in deep trees that not 
very bushy



Deterministic Tree Construction

• Motivated by SplitStream work [Castro ‘03]
– a node need be an interior node in just one tree
– their motivation: bound outgoing bandwidth requirement
– our motivation: shortness!

• Fertile nodes and sterile nodes
– every node is fertile in one and only one tree
– deterministically pick fertile tree for a node
– deterministically pick parent at the highest level with room
– may need to “migrate” fertile nodes between trees

• Diversity
– set of ancestors are guaranteed to be disjoint
– unclear how much it helps when multiple failures are likely



Randomized vs. Deterministic 
Construction
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Multiple Description Coding

• Key point: independent descriptions
– no ordering of the descriptions
– any subset should be decodable

• Old idea dating back to the 1970s
– e.g., “voice splitting” work at Bell Labs

• A simple MDC scheme for video
– every Mth frame forms a description
– makes inter-frame coding less efficient

• Can do better
– e.g., Puri & Ramchandran ’99, Mohr ‘00
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• MDC using FEC
– Puri & Ramchandran ‘99

• Combine: 
– layered coding 
– Reed-Solomon coding 
– priority encoded 

transmission 
– optimized bit allocation

• Easy to generate if the 
input stream is layered

• M = R*G/P
• Adapt rate-points based 

on loss distribution



Scalable Feedback

• Optimize rate points based on loss distribution
– source needs to know p(m) distribution
– individual reports from each node might overwhelm the 

source
• Scalable feedback

– a small number of trees are designated to carry feedback
– each node maintains a local h(m) histogram
– the node adds up histograms received from its children…  
– …and periodically passes on the composite histogram for 

the subtree to its parent
– the root (source) then computes p(m) for the entire group



Scalable Feedback
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Flash Crowd Traces

• MSNBC streaming logs from Sep 11, 2001
– join time and session duration
– assumption: session termination ⇒ node stops participating

• Live streaming: 100 Kbps Windows Media Stream
– up to ~18,000 simultaneous clients
– ~180 joins/leaves per second on average 
– peak rate of ~1000 per second
– ~70% of clients tuned in for less than a minute 

• high churn possibly because of flash crowd congestion



Flash Crowd Dynamics

911 Trace: Number of Clients Vs. Time
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Simulation Parameters

Server bandwidth: 20 Mbps
Peer bandwidth: 160 Kbps
Stream bandwidth: 160 Kbps
Packet size: 1250 bytes
GOF duration: 1 second
# desciptions: 16
# trees: 1, 2, 4, 8, 16
Repair interval: 1, 5, 10 seconds



Video Data

• We don’t have the actual MSNBC video content 
• Standard MPEG test sequences (10 seconds each)
• QCIF (176x144), 10 frames per second

Akiyo Foreman Stefan



Questions

• Benefits of multiple, diverse trees
• Randomized vs. deterministic tree construction
• Variation across the 3 video clips
• MDC vs. pure FEC
• Redundancy introduced by MDC
• Impact of repair time
• Impact of network packet loss

• What does it look like?



Impact of Number of Trees
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Multiple, diverse trees help significantly.
Much of the benefit is achieved with 8 trees.



Impact of Number of Trees
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Randomized vs. Deterministic Tree 
Construction
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Deterministic algorithm results in shorter trees that 
are less prone to disruption



Comparison of Video Clips

PSNR Comparison for 3 MPEG Test Sequence Video Clips
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Clips with high motion suffer worse quality. 
But CoopNet helps in all cases. 



MDC vs. Pure FEC
MDC vs. FEC vs. Single Tree
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MDC is better able to adapt to a wide spatial 
distribution in packet loss than pure FEC. 



Redundancy vs. Tree Failure Rate
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because loss of many descriptions becomes less likely  



What it looks like

Single-tree Distribution CoopNet Distribution 
with FEC (8 trees)

CoopNet Distribution 
with MDC (8 trees)
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Heterogeneity & Congestion Control

• Motivated by RLM [McCanne ’96] 
• Layered MDC

– base layer descriptions and enhancement layer descriptions
– forthcoming paper at Packet Video 2003

• Congestion response depends on location of problem
• Key questions:

– how to tell where congestion is happening?
– how to pick children to shed?
– how to pick parents to shed?

• Tree diversity + layered MDC can help
– infer location of congestion from loss distribution
– parent-driven dropping: shed enhancement-layer children
– child-driven dropping: shed enhancement-layer parent in 

sterile tree



Related Work

• Application-level multicast 
– ALMI [Pendarakis ’01], Narada [Chu ’00], Scattercast

[Chawathe’00]
• small-scale, highly optimized

– Bayeux [Zhuang ’01], Scribe [Castro ’02]
• P2P DHT-based
• nodes may have to forward traffic they are not interested in
• performance under high rate of node churn?

– SplitStream [Castro ’03]
• layered on top of Scribe
• interior node in exactly one tree ⇒ bounded bandwidth usage

• Infrastructure-based CDNs
– Akamai, Real Broadcast Network, Yahoo Platinum
– well-engineered network but for a price

• P2P CDNs
– Allcast, vTrails



Related Work (Contd.)

• Coding and multi-path content delivery
– Digital Fountain [Byers ‘98] 

• focus on file transfers
• repeated transmissions not suitable for live streaming

– Parallel downloads [Byers ’02]
• take advantage of lateral bandwidth
• focus on speed rather than resilience

– MDC for on-demand streaming in CDNs
[Apostolopoulos ’02]

• what if last-mile to the client is the bottleneck?
– Integrated source coding & congestion control 

[Lee ’00]



Summary

• P2P streaming is attractive because it has 
the potential of being self-scaling

• Resilience to peer failures, departures, 
disconnections is a key concern

• CoopNet approach: 
– minimal demands placed on the peers
– redundancy for resilience

• multiple, diverse distribution trees
• multiple description coding



Ongoing and Future Work

• Layered MDC
• Congestion control framework
• On-demand streaming

• More info: 
research.microsoft.com/projects/coopnet/

• Includes papers on:
– case for P2P streaming: NOSSDAV ’02
– layered MDC: Packet Video ’03
– resilient P2P streaming: MSR Tech. Report
– P2P Web content distribution: IPTPS ‘02


