
Equivalence of Finite-Valued Symbolic Finite

Transducers

Margus Veanes and Nikolaj Bjørner

Microsoft Research
{margus,nbjorner}@microsoft.com

Abstract. Symbolic Finite Transducers, or SFTs, is a representation of
finite transducers that annotates transitions with logical formulas to de-
note sets of concrete transitions. This representation has practical advan-
tages in applications for web security analysis, where it provides ways to
succinctly represent web sanitizers that operate on large alphabets. More
importantly, the representation is also conducive for efficient analysis
using state-of-the-art theorem proving techniques. Equivalence checking
plays a central role in deciding properties of SFTs such as idempotence
and commutativity. We show that equivalence of finite-valued SFTs is
decidable, i.e., when the number of possible outputs for a given input is
bounded by a constant.

1 Introduction

State machines, such as automata and transducers typically use finite alphabets.
This is both helpful when formulating the main algorithms and it is realistic when
considering applications from text processing. Furthermore, implementations can
apply compression algorithms on the transition functions when the alphabet is
large. In symbolic analysis of automata, however, there are practical advantages
to formulating transitions directly as predicates, and sometimes it is beneficial
to use character types possibly even with an infinite domain, e.g., integers. We
are interested in transducers that arise from applications such as web sanitizers
and string encoders [1], that work over large alphabets like Unicode. The focus
here is on the class of SFTs that, for a given input sequence, can output a finite
number of possible outputs sequences.

A concrete example is an Html sanitizer that may either use a decimal or a
hexadecimal encoding of characters codes, see Figure 1. Other typical parameters
are, whether to use a “safe list” (of characters not to be encoded) or not, or
whether to use shorthands such as "&" for encoding "&" and other common
characters. Viewed as an SFT, a given input string such as "=" may be encoded
as "=" or as "=", corresponding to the value of the second parameter
of EncodeHtml, but there is an upper bound on how many different outputs
an input sequence may be mapped into (two in this case), i.e., the underlying
SFT is finite-valued. Our main result is that equivalence of SFTs is decidable
in the finite-valued case. This is a nontrivial extension of decidability of SFT

1: static string EncodeHtml(string strInput, bool useDecimal = false)
2: {
3: if (strInput == null) return null;

4: if (strInput.Length == 0) return string.Empty;
5: StringBuilder b = new StringBuilder();

6: foreach (char c in strInput)
7: if (((‘a’ <= c) && (c <= ‘z’)) || (c == ‘,’) ||

8: ((‘A’ <= c) && (c <= ‘Z’)) || (c == ‘ ’) ||
9: ((‘0’ <= c) && (c <= ‘9’)) || (c == ‘.’) ||
10: (c == ‘-’) || (c == ‘ ’) || (c == ‘;’))
11: b.Append(c);
12: else {
13: b.Append(string.Format(useDecimal ? "&#{0}" : "&#x{0:X}",(int)c));
14: b.Append(";");

15: }
16: return b.ToString();
17: }

Fig. 1. Html sanitizer with decimal or hexadecimal formatting.

equivalence in the single-valued case [2] and enables analysis scenarios that are,
in general, not expressible with single-valued SFTs. SFTs do not have a notion
of parameters other than the actual input. Instead, the use of parameters can
be abstracted by considering finite-valued transducers.

2 Examples and an Application to Web Sanitizers

We here illustrate the use of SFT analysis on web security analysis. Cross site
scripting (XSS) attacks are a major concern in web applications, and happen as a
result of untrusted data leaking across web sites. Part of data may be interpreted
as code (e.g. JavaScript) by a browser, that may end up being executed in the
browser of another user. The first line of defense against XSS attacks is the use
of sanitizers in web servers, that escape or remove potentially harmful strings.
Although sanitizers are typically small programs, in the order of tens of lines of
code, writing them correctly is difficult [3]. We represent a sanitizer program as
a symbolic finite transducer. It uses transduction functions.

Example 1 (Transduction Functions). In most modern programming languages,
strings correspond to character sequences where characters use Unicode (UTF16)
encoding. Assume that there is a sort bvk, for k ≥ 1, and that Ubvk is the domain
of k-bit bit-vectors. The elements of Ubvk correspond to k-bit binary encodings
of nonnegative integers from 0 to 2k − 1. A natural representation of Unicode
characters for symbolic analysis is as elements in Ubv16 . Assume the following
operations, where k = 16:

<: bvk × bvk → bool,
πnm : bvk → bvk, for 0 ≤ m < n ≤ k,
⊕ : bvk × bvk → bvk,

where < corresponds to the underlying integer order and matches the lexico-
graphic order over characters; πnm projects bits m through n − 1 and pads the
result with k − n+m zeros; ⊕ is addition modulo 2k. Then

hj(c)
def

= Ite(9 < π4j+4
4j (c), π4j+4

4j (c)⊕55, π4j+4
4j (c)⊕48)

extracts the j’th nibble (half-byte) of c, 0 ≤ j ≤ 3, and maps it to its hexadecimal
representation (‘0’,‘1’,. . . ,‘9’,‘A’,. . . ,‘F’).

The transduction function allows defining a symbolic transducer.

Example 2 (Transducer Guards). The SFT below represents a so-called “string
sanitizer”, where certain characters c in the input string, not satisfying the con-
dition

ϕ(c) : (‘a’ ≤ c ∧ c ≤ ‘z’) ∨ (‘A’ ≤ c ∧ c ≤ ‘Z’) ∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’ ∨ c = ‘.’ ∨
c = ‘,’ ∨ c = ‘-’ ∨ c = ‘ ’ ∨ c = ‘;’

are in the output string replaced by their hexadecimal representation:

q0 q0 q1

ϕ(c)/[c]

ǫ/[‘;’]

¬ϕ(c)/[‘&’, ‘#’, ‘x’] · pcq

where pcq is the (up-to) four-character encoding of c:

pcq
def

= Ite(h3(c) 6= ‘0’, [h3(c),h2(c),h1(c),h0(c)],
Ite(h2(c) 6= ‘0’, [h2(c),h1(c),h0(c)],
Ite(h1(c) 6= ‘0’, [h1(c),h0(c)], [h0(c)])))

with hj ’s as defined in Example 1. It is also straight-forward to rewrite the
conditions into four transitions with simple guards and a fixed number of outputs
each.

The work in [1] introduces a domain specific languageBek based on SFTs for
writing and analyzing sanitizers. The main application of SFTs in the context
of Bek is to formally verify key security properties of sanitizers. Two examples
of such properties are idempotence (to determine if applying the same sanitizer
twice matters) and commutativity (to determine if the order of applying differ-
ent sanitizers matters). Since sanitizers are functions that take arbitrary input
strings and (other optional parameters) the corresponding SFTs are consequently
finite-valued and often total, i.e., produce at most some bounded number of out-
put strings for each input string and accept all input strings.

3 Preliminaries

We recall the definition of a finite transducer [4]. Intuitively, a finite transducer
is a generalization of a Mealy machine that may omit inputs and outputs and
may be nondeterministic. We use ǫ as a special symbol denoting the empty word.

Definition 1. A finite transducer (FT) A is a six-tuple (Q, q0, F, I, O, δ), where
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, I is the input alphabet, O is the output alphabet, and δ is a finite transition
function from Q× (I ∪ {ǫ}) to 2Q×O∗

.

There exist several alternative definitions of FTs. By using the standard form
theorem of FTs [4, Theorem 2.17], Definition 1 is easily seen to be equivalent to
those definitions.

We indicate a component of an FT A by using A as a subscript. We often
use the technically more convenient view of δA as a set of transitions ∆A and

write p
a/v
−−→A q for (q, v) ∈ δA(p, a). We omit the subscript A when it is clear

from the context.

∆A
def

= ∆ǫ
A ∪∆ǭ

A

∆ǭ
A

def

= {p
a/v
−−→ q | (q, v) ∈ δA(p, a), a ∈ IA}

∆ǫ
A

def

= {p
ǫ/v
−−→ q | (q, v) ∈ δA(p, ǫ)}

Given a set V of elements, we write v = [v0, . . . , vn−1], for v ∈ V ∗. For
v, w ∈ V ∗, v · w denotes the concatenation of v with w. (Both [] and ǫ denote
the empty sequence.)

Given qi
ui/vi
−−−→A qi+1 for i < n we write q0

u/v
 A qn where u = u0 ·u1 ·. . .·un−1

and v = v0 · v1 · . . . · vn−1. We write also q
ǫ/ǫ
 A q.

Definition 2. An FT A induces the transduction,

TA(u)
def

= {v | ∃q ∈ FA (q0A
u/v
 q)}.

Two FTs A and B are equivalent if TA = TB.

We define d(A) as the underlying nondeterministic finite automaton with
epsilon moves (ǫNFA) that is obtained from the FT A by eliminating outputs
on all transitions. We write L(B) for the language accepted by an ǫNFA B.

Definition 3. An FT A is finite-valued if there exists k such that for all u ∈ I∗A,
|TA(u)| ≤ k; A is single-valued if for all u ∈ I∗A, |TA(u)| ≤ 1.

Definition 4. An FT A is a generalized sequential machine or GSM 1

if ∆ǫ
A = ∅. We say A is input-ǫ-free.

Definition 5. An FT A is deterministic if d(A) is deterministic.

There exist single-valued FTs for which there exists no equivalent determin-
istic FT (e.g., an FT that removes all input symbols after the last occurrence of a
given symbol.) Conversely, determinism does not imply single-valuedness, since
several transitions with same input but distinct outputs may collapse into single
transitions in d(A). Other definitions of deterministic FTs (allowing input-ǫ) are
used by some authors [5]. Definition 5 is consistent with [4].

1 Definition 4 is consistent with [4, 5]. However, the definition of a GSM is not stan-
dardized in the literature. Some sources define GSMs without a dedicated set of final
states [6].

3.1 Background Structure and Models

We work modulo a background structure U over a language ΓU that is multi-
sorted. We also write U for the universe (domain) of U . For each sort σ, Uσ

denotes a nonempty sub-domain of U . There is a Boolean sort bool, Ubool =
{true, false}, and the standard logical connectives are assumed to be part of
the background. Terms are defined by induction as usual and are assumed to be
well-sorted. Function symbols with range sort bool are called relation symbols.
Boolean terms are called formulas or predicates. A term without free variables
is closed.

An uninterpreted function symbol of arity n ≥ 1 is a function symbol f /∈ ΓU

with a domain sort σ1 × · · · × σn and a range sort σ. An interpretation for f is
a function from Uσ1 × · · · × Uσn to Uσ. An uninterpreted constant is a constant
c /∈ ΓU of some sort σ. An interpretation for c is an element of Uσ. By convention,
a constant is also called a function symbol of arity 0.

We write Σ(t) for the set of all uninterpreted function symbols that occur
in a term t. Given a set of uninterpreted function symbols Σ, t is a term over
Σ, or a Σ-term if Σ(t) ⊆ Σ. We say Σ-model for an expansion of U to ΓU ∪Σ.
The interpretation of a closed Σ-term t in a Σ-model M , is denoted by tM

and is defined by induction as usual. There is a background function (symbol)
Ite:bool×σ×σ → σ for each sort σ and Ite(ϕ, t, f)M = if ϕM then tM else fM

Let ϕ be a closed Σ-formula. A Σ-model M satisfies ϕ or ϕ is true in M or
M �ϕ, if ϕM = true; ϕ is satisfiable if it has a model, denoted by IsSat(ϕ); ϕ
is true if ϕM = true for all Σ-models M .

For each sort σ let cσ stand for a default fixed uninterpreted constant of sort
σ. We omit the sort σ when it is clear from the context. Let T σ(Σ) denote the
set of all closed terms of sort σ only using uninterpreted symbols from Σ, T σ

stands for T σ(Σ) where Σ is an infinite set of uninterpreted constants of some
fixed sort. Unless stated otherwise, we assume that T σ is quantifier free, closed
under substitutions, Boolean operations, and equality. F stands for T bool.

4 Symbolic Finite Transducers

Symbolic automata provide a representation of automata where several transi-
tions from a given source state to a given target state may be combined into a
single transition with a symbolic label denoting multiple concrete labels. This
representation naturally separates the finite state graph from the character rep-
resentation.

Definition 6. A Symbolic Finite Transducer (SFT) A over Γ with input sort

ι and output sort o, or A
ι/o
Γ , is a six-tuple (Q, q0, F, ι, o,∆), where Q is a finite

set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, ι is the
input sort, o is the output sort, and ∆ = ∆ǭ ∪∆ǫ,

∆ǭ : Q×F(cι)× (T o(cι))
∗ ×Q

∆ǫ : Q× {ǫ} × (T o)∗ ×Q

is a finite symbolic transition relation.

A single transition (p, ϕ,u, q) ∈ ∆A is also denoted by p
ϕ/u
−−→A q or p

ϕ/u
−−→ q

when A is clear from the context; ϕ is called the input condition or guard of the
transition and u is called the output sequence of the transition. Let IA denote
the set of non-epsilon input conditions in ∆A. Let OA denote the set of output
terms in ∆A.

The definition of a symbolic finite automaton (SFA) is the special case of an

SFT whose outputs are empty. A transition of an SFA Aι is denoted by p
ϕ
−→ q

where ϕ ∈ IA ∪ {ǫ}.
We lift the interpretation of terms to apply to sequences of terms. Given

u = [ui]i<n ∈ (T γ(Σ))∗, for n ≥ 0, and a Σ-model M , uM
def

= [uMi]i<n ∈ (Uγ)∗.

Definition 7. An SFT Aι/o denotes the concrete FT

[[A]]
def

= (QA, q
0
A, FA,U

ι,Uo, ∆ǭ ∪∆ǫ), where

∆ǭ = {p
cMι /uM

−−−−−→ q | p
ϕ/u
−−→ q ∈ ∆ǭ

A, M �ϕ},

∆ǫ = {p
ǫ/uU

−−−→ q | p
ǫ/u
−−→ q ∈ ∆ǫ

A},

where M ranges over {cι}-models. Let TA
def

= T[[A]].

Example 3. Consider the SFT A in Example 2. Then |∆ǭ
[[A]]| = 216. For example,

[[A]] has the following transitions:

q0
‘b’/[‘b’]
−−−−→ q0, q0

‘ö’/[‘&’,‘#’,‘x’,‘F’,‘6’]
−−−−−−−−−−−−→ q1

ǫ/[‘;’]
−−−→ q0

So TA(“böb”) = {“böb”}.

The following basic property of SFTs is important in the context of algorithm
design for SFTs.

Definition 8. An SFT A is clean if IsSat(ϕ) for ϕ ∈ IA.

Other properties of SFTs are defined in terms of their denotations as FTs:
SFT A is deterministic, resp. single-valued, input-ǫ-free, if [[A]] is deterministic,
resp. single-valued, input-ǫ-free. The following proposition follows from Defini-
tions 5 and 7.

Proposition 1. A is deterministic if and only if A is input-ǫ-free and for all

p
ϕ/u
−−→ q, p

ψ/v
−−→ r ∈ ∆A, if q 6= r then ϕ ∧ ψ is unsatisfiable.

4.1 Alphabets of SFTs

In order to base the definitions of SFTs on classical formal language theory, the
concrete alphabets U ι and Uo need to be finite. For example, in Example 2,
|Ubv16 | = 216. However, for the symbolic representation the main concern is

decidability and complexity of the character theory, rather than finiteness of
the underlying domain. This point becomes more transparent when we discuss
algorithms for SFTs. When considering an input or output sort whose domain
is infinite, e.g. integers, all algorithms on SFTs remain intact, while SFTs are in
this case strictly more expressive than FTs.

Example 4. Consider the sort int for integers and the following SFT Aint/int:

q0 q0

true/[c, c]

The image of TA is {[n, n] | n ∈ U int}∗ that is not accepted by any SFA, since
infinitely many states are required, contrary to the image of a finite transduction
(also called rational transduction) that is a regular language.

Example 4 is an instance of the general case when Aι/o is a clean SFT where
both U ι and Uo are infinite, A has a transition whose output sequence contains
cι in other than the first output term and denotes infinitely many concrete
transitions. In this case the image of TA cannot be recognized using a finite
number of states.

5 Equivalence

Our main theorem is Theorem 1, it builds on Lemma 5 as our main technical
result. The theorem generalizes the decidability of equivalence of single-valued
SFTs [1]. The main reason why the technique for checking equivalence of single-
valued SFTs does not generalize to checking equivalence of finite-valued SFTs
is that the dependency from inputs to outputs does not remain functional in
the finite-valued case. In the single-valued case one can detect inequivalence
during an incremental product construction using local satisfiability checks, by
essentially detecting non-single-valuedness of the product [1, Lemma 2]; this is
nonsensical in the finite-valued case.

We use several lemmas to prove Theorem 1. The main ones are Lemma 4
and Lemma 5. Lemma 4 is used to transform the SFTs into a normal form that
considerably simplifies the proof of Lemma 5. The main construction used in
Lemma 5 is a product construction of the given SFTs. The product construction
uses multiple outputs. The number of states in the product is bounded by the
product of the number of states of the component SFTs. The key idea is to
exhaustively detect conflict-states that represent product states at which point
we know that there exists an input element that will at some point cause different
outputs be yielded by the SFTs.

Proposition 2. Let A be a finite-valued SFT such that TA(ǫ) = ∅. There is an
input-ǫ-free SFT that is effectively equivalent to A.

Proof. First, assume that A is clean, has no epsilon-loops, no dead-ends, and no

unreachable states. Second, note that A cannot have input-epsilon loops p
ǫ/u
 p,

u 6= ǫ, because A is finite-valued.
Let ∆A(p) denote the set of all transitions in ∆A starting from p. Similarly

for ∆ǫ
A and ∆ǭ

A.
The idea is to transform A repeatedly, each time decreasing the number

of states p, such that ∆ǫ
A(p) 6= ∅, while preserving equivalence. The following

transformation is repeated until ∆ǫ
A(p) = ∅ for p ∈ QA \ {q0A}.

1. Choose a non-initial state q such that ∆ǫ
A(q) 6= ∅.

2. For each transition p
ϕ/u
−−→ q in A add the new transitions

{p
ϕ/u·v
−−−−→ r | q

ǫ/v
−−→ r ∈ ∆ǫ

A(q)}

to A. Note that r 6= q and if ϕ = ǫ then p 6= q. Also, the semantics of v is
not affected because Σ(v) = ∅.

3. Remove the transitions ∆ǫ
A(q) from A.

Equivalence of the transformed A to the original one follows by using absence of
input-epsilon loops and that q 6= q0A. Eliminate all dead-ends that were created.

Finally, transitions in ∆ǫ
A(q

0
A) are eliminated one by one as follows. Fix

q0A
ǫ/u
−−→ p. Since TA(ǫ) = ∅ we know that p /∈ FA and since p is not a dead-

end ∆A(p) 6= ∅. We know also that q0A 6= p. Replace the transition q0A
ǫ/u
−−→ p

by

{q0A
ϕ/u·v
−−−−→ r | p

ϕ/v
−−→ r ∈ ∆A(p)}

Repeat the step until ∆ǫ
A(q

0
A) = ∅. �

Note that if A in Proposition 2 is not clean, then more transitions may be
added during the transformations but whose guards remain unsatisfiable and
the statement remains correct. If A is clean then the transformed SFT is also
clean, since guards are not modified.

Example 5. Consider the SFT in Example 2. Input-epsilon elimination yields
the following equivalent SFT:

q0 q0
ϕ(c)/[c]
¬ϕ(c)/c̄

where c̄ stands for [‘&’, ‘#’, ‘x’] · pcq · [‘;’].

We say that a state of an SFT is relevant if it is reachable from the initial state
and not a dead-end. We use the following pumping lemma over word equations.

Lemma 1. For all u1, u2, v1, v2, w1, w2, z1, z2: if u1 · u2 = v1 · v2, u1 · w1 · u2 =
v1 · z1 · v2 and u1 · w2 · u2 = v1 · z2 · v2 then u1 · w1 · w2 · u2 = v1 · z1 · z2 · v2.

Lemma 2. Let A be a finite-valued SFT. For all u, v, w, and relevant p ∈ QA,

if p
u/v
 A p and p

u/w
 A p then v = w.

Proof. Suppose there exist u, v, w, and p such that p
u/v
 A p and p

u/w
 A p and

v 6= w. Then for any k, by Lemma 1, there exist u1, u2, v1 and v2 and m such
that TA(u1 · u

m · u2) ≥ k, contradicting finite-valuedness of A. �

Definition 9. An SFT A is a component if it is strongly connected and FA =
{q0A}, q

0
A is called the anchor of A. An SFT A is a sequence (of components) if it

consists of disjoint components Ai for 0 ≤ i ≤ n such that q0A = q0A0
, FA = FAn

,
and there is a single transition q0Ai

→ q0Ai+1
for 0 ≤ i < n.

Definition 10. The union of a set A of SFTs is an SFT with a new initial state
and epsilon moves to the initial states of SFTs in A.

Definition 11. An SFT is in sequence normal form (SNF) if it is a union of
pairwise disjoint sequences.

Lemma 3. All SFTs have an effectively equivalent SNF.

Proof. Let A be an SFT. The sequences are constructed by considering all loop-
free paths from the initial state of A to some final state, possibly creating extra
states if a strongly connected component of A is entered and exited through
different states. �

The following lemma is used to simplify the proof of Lemma 5 by normalizing
the representation of SFTs.

Lemma 4. Every finite-valued SFT has an effectively equivalent SNF with single-
valued sequences.

Proof. By using Lemma 3 we assume, without loss of generality, that the SFT
is a single sequence. Moreover, by using Proposition 2, we assume that the SFT
is input-ǫ-free.

We apply the following algorithm to transform the SFT into a set of single-
valued sequences. First, note that if the SFT is a single component then it is
already single-valued by Lemma 2. Next, we describe the algorithm for the case
when the SFT has the form AαB, where A and B are two components with
anchors p and q and α is a nonempty path p q. The case when either A or
B have no transitions follows also from Lemma 2. So assume that both A and
B contain nonempty paths p p and q q. Different outputs may arise by
ambiguous parses of an input sequence u through AαB that must allow paths:

r s

p q
v/y

a/w b/z

a/x1 v/y1 b/x2v/y2

and u has the form am ·a ·v ·v ·b ·bn causing the conflict x1 ·y1 ·y ·z 6= w ·y ·y2 ·x2
in the output. We can rule out the case when a = b = ǫ or else there exist
either unboundedly many different outputs for vk, by increasing k, contradicting
finite-valuedness, or just a single output, independent of the parse, e.g. when
y1 = y2 = ǫ. So assume a 6= ǫ (the case b 6= ǫ is symmetrical). The idea is to
resolve the conflict by replacing AvB with (A \ {av, v}∗)vB, AavvB and AavB.

In order to detect and resolve such conflicts symbolically, extract the sequence
ϕ̄ of guards on the path α and search for the corresponding symbolic paths in
A and B by checking satisfiability of the corresponding guard sequences for
which there exist different output sequences. The maximum length of the paths
corresponding to a and b that need to be considered is |QA||QB|.

For example, let α = p
ψ/t
−−→ q. And suppose there exist transitions p

ϕ1/u1

−−−−→

p
ϕ′

1/u
′

1−−−−→ r
ψ1/t1
−−−→ p in A and transitions q

ϕ2/u2

−−−−→ q
ψ2/t2
−−−→ s

ϕ′

2/u
′

2−−−−→ q in B. Let
θi = {c 7→ ci} where ci is fresh. Assume the following formula is satisfiable:

ϕ1θ1 ∧ ψθ2 ∧ ψ2θ3 ∧ ϕ′
2θ4 ∧ ϕ

′
1θ1 ∧ ψ1θ2 ∧ ψθ3 ∧ ϕ2θ4

∧u1θ1 · tθ2 · t2θ3 · u′2θ4 6= u′1θ1 · t1θ2 · tθ3 · u2θ4

Then there exist u with different outputs. Construct the SFA D for the guard
sequences {[ϕ1 ∧ϕ

′
1], [ϕ1 ∧ϕ

′
1, ψ1]}

∗, in particular accepting {a, a · v}∗ as above.
Let D̄ be the complement of D. Let A′ = A↾D̄ (thus removing the conflicts

from A). Let α1 be the path p
ϕ1∧ϕ

′

1/u1

−−−−−−→ p1
ψ/t
−−→ q and let α2 be the path

p
ϕ1∧ϕ

′

1/u
′

1−−−−−−→ r2
ψ1/t1
−−−→ p2

ψ/t
−−→ q. Now replace AαB with the SFTs A′αB, Aα1B

and Aα2B. Note that A′αB is now single-valued and can be transformed to SNF.
It follows that the union of the new sequences is equivalent to AαB. Repeat the
transformation on Aα1B and Aα2B. Termination follows from that both have
fewer nonequivalent conflicts remaining and that the length of paths α causing
conflicts is effectively bounded by the size of the original SFT. The proof can be
generalized to the case of sequences of arbitrary length. �

The following lemma is our main technical result. Some details of the proof
have been omitted but can be found in [7]. It generalizes the decidability of
equivalence of single-valued SFTs [1]. For a single-valued SFT A write A(u) = v
when TA(u) = {v}.

Lemma 5. Let Aι/o, B
ι/o
1 , . . . , B

ι/o
k be input-ǫ-free single-valued SFTs for some

k ≥ 1 then the problem ∃x (
∧k
i=1 TA(x) 6= TBi

(x)) is decidable if F is decidable.

Proof. Case k = 1 is [1, Theorem 2]. We prove the case for k = 2. Generalization
to k > 2 is technically more involved but straightforward. Let B = B1, C = B2.
We only need to consider inputs in L = L(d(A)) ∩ L(d(B)) ∩ L(d(C)). For
example, if u ∈ L(d(A)) \ L(d(B)) and u ∈ L(d(C)) then TA(u) 6= TB(u) and
the problem reduces to equivalence of A↾d(B) and C, where the construction of
A↾d(B) is effective. The other cases are similar.

For the case L construct the product D = A×B × C that has states QA ×
QB ×QC and 3-output-transitions

(p, q, r)
ϕ∧ψ1∧ψ2/(u,v,w)
−−−−−−−−−−−→ (p′, q′, r′),

for p
ϕ/u
−−→A p

′, q
ψ1/v
−−−→B q′, r

ψ2/w
−−−→C r′

such that IsSat(ϕ∧ψ1∧ψ2). Note that L(d(D)) = L. The unreachable states and

the dead-ends are eliminated from D. D(u)
def

= (A(u), B(u), C(u)), Let p0 = q0A,
q0 = q0B and r0 = q0C . We write s0 for (p0, q0, r0) and sf for some (pf , qf , rf) ∈
FA × FB × FC .

Given u ∈ L and D(u) = (a,b, c), there are two (possibly overlapping) cases
for a B-conflict a 6= b (symmetrically for a C-conflict a 6= c):

1. there is a B-length-conflict : |a| 6= |b|, or
2. there is a B-character-conflict : for some i, a[i] 6= b[i].

We say that a state s ∈ QD is a B-length-conflict-state if there exists a simple

loop (a loop without nested loops) s
u/(v,w,)
 s such that |v| 6= |w|. The state-

ments below make implicit use of the assumption that D contains no unreachable
states and no dead-ends.

(*) There are two ways how a B-length-conflict can arise.
1.a) There exists a B-length-conflict state s in D.

1.b) There exists a loop-free path s0
u/(v,w,)
 sf such that |v| 6= |w|.

Proof of (*): We show that cases 1.a and 1.b are exhaustive. Consider any
u ∈ L such that D(u) = (v, w,) and |v| 6= |w| and suppose 1.b is false. Then
there must exist u1, u

′, u2, v1, v
′, v2, w1, w

′, w2 such that

u = u1 · u
′ · u2, v = v1 · v

′ · v2, w = w1 · w
′ · w2,

and a loop s
u′/(v′,w′,)
 s where |v′| 6= |w′|, or else |v| = |w| since 1.b is false.

Now suppose the loop is not simple.
Then there exist u′1, u

′′, u′2, v
′
1, v

′′, v′2, w
′
1, w

′′, w′
2 such that

u′ = u′1 · u
′′ · u′2, v

′ = v′1 · v
′′ · v′2, w

′ = w′
1 · w

′′ · w′
2,

and a state s′,

s s′

u
′

1/(v
′

1, w
′

1,)

u
′′
/(v

′′
, w

′′
,)

u
′

2/(v
′

2, w
′

2,)

If |v′′| = |w′′| then |v′1 · v
′
2| 6= |w′

1 · w
′
2| and

s u′

1 · u′

2/(v
′

1 · v′2, w
′

1 · w′

2,)

and repeat the argument for the shorter path if it is not simple. Otherwise,
if |v′′| 6= |w′′| and the loop through s′ is not simple apply the argument for
s′. �

In the case of 1.a we have that for any path

s0
u1/(v1,w1,)
 s

u2/(v2,w2,)
 sf

there exists u, v, w, |v| 6= |w|, and a large enoughm ≥ 0, such that, for all n ≥ m,

D(u1 · un · u2) = (v1 · vn · v2, w1 · wn · w2,),
|v1 · vn · v2| 6= |w1 · wn · w2|

Note that the problems of deciding 1.a and 1.b are decidable. In order to
decide if a state s is a B-length-conflict-state consider all the possible simple
loops s s: for each such path check if the outputs lengths for A and B are
different. There are finitely many such paths. Similarly for 1.a.

Next, we proceed by case analysis, showing that we can effectively decide all
the different combinations of possible B-conflicts and C-conflicts that can arise.
We write B.1.a for the case when there exists a B-length-conflict-state, similarly
for the other cases.

Case (B.1.a, C.1.a): Check if there exist sB and sC such that sB is a B-
length-conflict-state and sC is a C-length-conflict state and sB sC . Then
there exists a path

s0 sB sC sf

u1/(v1, w1, z1)

u2/(v2, w2, z2)

u3/(v3, w3, z3)

u4/(v4, w4, z4)

u5/(v5, w5, z5)

where |v2| 6= |w2| and |v4| 6= |z4|. It follows that there exist m and n such that

|v1 · vm2 · v3 · vn4 · v5| 6= |w1 · wm2 · w3 · wn4 · w5|
|v1 · vm2 · v3 · vn4 · v5| 6= |z1 · zm2 · z3 · zn4 · z5|

Thus there exists u = u1 ·um2 ·u3 ·un4 ·u5 ∈ L such that D(u) is a B-conflict and
a C-conflict. There are finitely many such combinations. The case sC sB is
symmetrical. No other simultaneous combinations of (B.1.a, C.1.a) are possible.

Case (B.1.a, C.1.b): Check if there exists a B-length-conflict-state s and a
loop-free path s0 s sf that causes a C-length conflict, i.e., there exists a
path

s0 s sf

u1/(v1, w1, z1) u3/(v3, w3, z3)

such that |v1 · v3| 6= |z1 · z3|. There exists u2 such that s
u2/(v2,w2,z2)
 s where

|v2| 6= |w2|. Thus, there exists m such that

|v1 · v
m
2 · v3| 6= |w1 · w

m
2 · w3|, |v1 · v

m
2 · v3| 6= |z1 · z

m
2 · z3|

Thus there exists u = u1 · um2 · u3 ∈ L such that D(u) is a B-conflict and a
C-conflict. There are finitely many such combinations. No other simultaneous

combinations of (B.1.a, C.1.b) are possible. The case (B.1.b, C.1.a) is symmet-
rical.

Case (B.1.b, C.1.b): Check if there exists a loop-free path s0 sf that
causes both a B-length-conflict and and a C-length-conflict. Then there exists
u such that D(u) is a B-conflict and a C-conflict. There are finitely many such
paths and no other simultaneous occurrences of (B.1.b, C.1.b) are possible.

Case (B.2, C.1): Assume, by previous cases, that (B.1, C.1) is not possible.
Let ℓ be the length of the longest possible output from either A, B or C on
any loop-free path. Clearly, ℓ can be computed effectively. Suppose there exists
a C-length-conflict-state s. Consider all paths

ρm : s0 (s s)m sf , m ≤ 2ℓ

Since B.1.a is not possible, we know that for all loops s s the A-output
and the B-output have the same length. For each ρm check if a simultaneous
B-character-conflict and C-length-conflict exists.

If no such simultaneous conflicts exist it follows from the following argument
that no such simultaneous conflicts exist in any longer paths. We may assume
that all such loops have nonempty A (and thus B) outputs, since empty outputs
neither cause nor remove any character conflicts.

– Suppose some ρm, ℓ ≤ m < 2ℓ, contains a B-character conflict. Then, by
choice of ℓ and since all the A and B-outputs are nonempty, there exist
ui, vi, wi, zi, 1 ≤ i ≤ 2, such that

s0 s sf

u1/(v1, w1, z1) u2/(v2, w2, z2)

and either the character conflict occurs in the prefixes of v1, w1 or in the suf-
fixes of v2, w2 (i.e., the conflict is not in the overlap). Thus, the B-character-
conflict remains in

s0 s s sf

u1/(v1, w1, z1) u′/(v′, w′, z′) u2/(v2, w2, z2)

for any s
u′/(v′,w′,z′)
 s, where |v′| = |w′| and |v′| 6= |z′|. We now have a

contradiction, because either ρm or ρm+1 must cause a simultaneous C-
length-conflict, i.e., either |v1 · v2| 6= |z1 · z2| or |v1 · v′ · v2| 6= |z1 · z′ · z2|.

– Thus, in particular, ρℓ and ρℓ+1 do not cause any B-character-conflicts. It
now follows from Lemma 1 that for all m ≥ ℓ, in ρm the outputs of A and
B will be equal.

There are finitely many symbolic paths in D that correspond to the concrete
ρm’s above. For each such path construct a formula in F that is satisfiable iff a
B-character-conflict exists. For example, for a symbolic path

s0
ϕ1/(v1,w1,)
−−−−−−−−→ s

ϕ2/(v2,w2,)
−−−−−−−−→ sf ,

given substitution θi = {cι 7→ ci} where ci is a fresh uninterpreted constant the
formula is:

ϕ1θ1 ∧ ϕ2θ2 ∧ v1θ1 · v2θ2 6= w1θ1 · w2θ2

The case C.1.b is covered by considering all loop-free paths. It follows that the
case (B.2, C.1) is decidable. The case (B.1, C.2) is symmetrical. Case (B.2, C.2)
is proved in [7]. One can show that the above cases are exhaustive. Decidability
follows for k = 2. �

The proof of the lemma uses arbitrarily many uninterpreted constants of sort
ι, i.e., it assumes decidability of F while the proof of the case for k = 1 uses at
most two distinct constants of sort ι and assumes decidability of F({c : ι, d : ι})

Theorem 1. Equivalence of finite-valued SFTs is decidable provided that F is
decidable.

Proof. Let A and B be finite-valued SFTs. Assume D = L(d(A)) = L(d(B)), or
else A and B are not equivalent. By using Lemma 4 assume A and B are on SNF
containing single-valued SFTs. Assume, without loss of generality that A and B
do not accept the empty string and that all component sequences in A and B
are input-ǫ-free. To decide A ∼= B, we check that for all v ∈ D, TA(v) ⊆ TB(v)
and TB(v) ⊆ TA(v). Conversely, A ≇ B iff either (1) or (2) holds for some v ∈ D:

1. for some A1 in A and all B1 in B, TA1
(v) 6= TB1

(v).
2. for some B1 in B and all A1 in A, TA1

(v) 6= TB1
(v).

Decidability of (1) and (2) follows now from Lemma 5. �

6 Related Work

Equivalence checking of FTs is undecidable in general [8], and is undecidable al-
ready for GSMs. The special case of equivalence checking of single-valued SFTs
over decidable character background is shown to be decidable in [2]. This result
is substantially generalized here (Theorem 1) to finite-valued SFTs. This re-
sult generalizes also the decidability of equivalence of finite-valued FTs [9, 5, 10,
11]. Lemma 4 is a symbolic generalization of a decomposition technique studied
in [11]. A fundamental simplifying assumption compared to SFTs is that the
range of an FT is always regular. Equivalence of single-valued extended SFTs
(SFTs with lookahead) is studied in [12], the motivation there is to analyze
decoders, and it gives an orthogonal extension of decidability of equivalence of
single-valued SFTs. Besides the work on Bek [1], finite state transducers have
been used for dynamic and static analysis to validate sanitization functions in
web applications in [3], by an over-approximation of the strings accepted by
the sanitizer using static analysis of existing PHP code. Other security analysis
of PHP code, e.g., SQL injection attacks, use string analyzers to obtain over-
approximations (in form of context free grammars) of the HTML output by a
server [13–15].

7 Conclusion

We studied equivalence of finite-valued Symbolic Finite Transducers. Although
equivalence checking is in general undecidable the cause for undecidability is
subtle, and this paper identifies a boundary based on whether the transducer is
finite-valued (and satisfiability of guard formulas is decidable). The symbolic
representation of transducers is both convenient for applications and allows
for succinct representations. Basic automata algorithms lift in many cases in
a straight-forward way to this representation, and it allows leveraging state-
of-the-art theorem proving technology for analyzing the automata. Our main
motivation behind this work originates from analysis of sanitizers.

References

1. P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast and precise
sanitizer analysis with Bek,” in USENIX Security, 2011, pp. 1–16.

2. M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner, “Symbolic finite
state transducers: Algorithms and applications,” in POPL’12. ACM, 2012, pp.
137–150.

3. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Saner: Composing static and dynamic analysis to validate sanitization
in web applications,” in SP, 2008.

4. S. Yu, “Regular languages,” in Handbook of Formal Languages, G. Rozenberg and
A. Salomaa, Eds. Springer, 1997, vol. 1, pp. 41–110.

5. A. Demers, C. Keleman, and B. Reusch, “On some decidable properties of finite
state translations,” Acta Informatica, vol. 17, pp. 349–364, 1982.

6. M. A. Harrison, Introduction to Formal Language Theory. Addison-Wesley, 1978.
7. N. Bjørner and M. Veanes, “Symbolic transducers,” Microsoft Research, Technical

Report MSR-TR-2011-3, 2011.
8. O. Ibarra, “The unsolvability of the equivalence problem for Efree NGSM’s with

unary input (output) alphabet and applications,” SIAM Journal on Computing,
vol. 4, pp. 524–532, 1978.

9. M. P. Schützenberger, “Sur les relations rationnelles,” in GI Conference on Au-

tomata Theory and Formal Languages, ser. LNCS, vol. 33, 1975, pp. 209–213.
10. K. Culic and J. Karhumäki, “The Equivalence Problem for Single-Valued Two-Way

Transducers (on NPDT0L Languages) is Decidable,” SIAM Journal on Computing,
vol. 16, no. 2, pp. 221–230, 1987.

11. A. Weber, “Decomposing finite-valued transducers and deciding their equivalence,”
SIAM J. Comput., vol. 22, no. 1, pp. 175–202, Feb. 1993.

12. L. D’Antoni and M. Veanes, “Equivalence of extended symbolic finite transducers,”
in CAV’13. Springer, 2013, pp. 624–639.

13. Y. Minamide, “Static approximation of dynamically generated web pages,” in
WWW ’05: Proceedings of the 14th International Conference on the World Wide

Web, 2005, pp. 432–441.
14. G. Wassermann and Z. Su, “Sound and precise analysis of web applications for

injection vulnerabilities,” in PLDI. ACM, 2007, pp. 32–41.
15. G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su, “Dynamic

test input generation for web applications,” in ISSTA, 2008.

