



Paul Smolensky Cognitive Science Dept Johns Hopkins Univ

Symbolic roles in vectorial computation



### Vectorial encoding of symbolic structure

— in contrast to hybrid symbolic/vectorial representations

A single vector encodes (i) all the (vectorial) labels **and** (ii) the (discrete) structure in which they reside

Motivation:

vector ~ neural state



Socher, Manning & Ng 2010

# Vectorial encoding of symbolic structure

#### TYPE: Decompose structure into roles $\{r_k\}$

Approach 1: Absolute position

[Approach 2: Contextual (~ n-gram)]

Each  $r_k$  is assigned a vector encoding  $\mathbf{r}_k \in R$  (linearly indep.)

— designed or learned

### INSTANCE: Specific fillers for roles

Let  $\mathbf{f}_k \in F$  (linearly indep.) be the label in role  $r_k$ 

- $\mathbf{f}_k$  may be a vector encoding of a symbol  $f_k \in A$
- designed or learned

ENCODING: 
$$\mathbf{v} = \sum_{k} \mathbf{f}_{k} \square \mathbf{r}_{k}$$

Can be recursive:  $r_x$   $r_{0x} = r_{1x}$ 

$$\mathbf{r}_{0x} = \mathbf{r}_0 \square \mathbf{r}_x$$
$$R = \square_d R^{(d)}$$

Size: linear in number of roles Tensor Product Representations (TPRs: 1990)

## Summary: TPRs

TYPE: Decompose structure into roles  $\{r_k\}$ 

Each  $r_k$  is assigned a vector encoding  $\mathbf{r}_k \in R$  (linearly indep.)

#### INSTANCE: Specific fillers for roles

Let  $\mathbf{f}_k \in F$  (linearly indep.) be the label in role  $r_k$ 

—  $\mathbf{f}_k$  may be a vector encoding of a symbol  $f_k \in A$ 

ENCODING: 
$$\mathbf{v} = \sum_{k} \mathbf{f}_{k} \square \mathbf{r}_{k}$$

NOTE: Turns out to have important implications for grammatical theory

## Computability theory over TPRs

What symbolic functions can be computed over TPRs using neural computation?

The functions in the following classes are computable in a linear neural network:

- $\Box$  = base of in-place symbol mappings
- C = closure under composition of [tree-manipulating primitives  $\cup \mathcal{B}$ ]
- P ~ "primitive recursive"

```
'Primitive recursive': C \subset P
g, h \in P \Rightarrow f \in P \text{ when}
f(s) = \begin{cases} g(s) & \text{if atom } (s) \\ h(f(ex_0(s)), f(ex_1(s))) & \text{otherwise} \end{cases}
```

# Decoding TPRs

#### INSTANCE v: Inner product

$$\mathbf{f}_k = \mathbf{v} \cdot \mathbf{r}_k^+$$
 — given  $\{\mathbf{r}_k\}$ 

#### SAMPLE $\{\mathbf{v}^{(\alpha)}\}$ : Generative model

Hypothesis:  $\{\mathbf{v}^{(\alpha)}\}$  is a collection of TPRs, each encoding an instance of a symbol structure of a single type

$$\mathbf{v}^{(\alpha)} = \sum_{k} \mathbf{f}_{k}^{(\alpha)} \square \mathbf{r}_{k}$$
 — where  $\mathbf{f}_{k}^{(\alpha)}$  encodes a symbol  $\mathbf{f}_{k}^{(\alpha)}$ 

Learning algorithms: derived from generative model

TYPE: What are  $\{\mathbf{r}_k\}$  and  $\{\mathbf{f}_k\}$ ?

INSTANCE: For a given  $\alpha$ ,

which symbol  $f_k^{(\alpha)} \in A$  fills each role  $r_k$ ?

APPLICATION: Decoding neuroimages of combinatorial stimuli (e.g., sentences, words). Instance bindings  $\{f_k^{(\alpha)}/r_k\}$  of stimuli are known, so only need learn the TYPE encoding

# Vectorial encoding of symbolic structure

### TYPE: Decompose structure into roles $\{r_k\}$

Approach 1: Absolute position

Approach 2: Contextual (~ n-gram)

Each  $r_k$  is assigned a vector encoding  $\mathbf{r}_k \in R$  (linearly indep.)

— designed or learned

#### INSTANCE: Specific fillers for roles

Let  $\mathbf{f}_k \in F$  (linearly indep.) be the label in role  $r_k$ 

- $\mathbf{f}_k$  may be a vector encoding of a symbol  $f_k \in A$
- designed or learned

ENCODING: 
$$\mathbf{v} = \sum_{k} \mathbf{f}_{k} \square \mathbf{r}_{k}$$



Approach 1: [filler] □ [position]

Approach 2:  $[filler_1] \square [filler_2]$ 

