

Parallelizing Sequential Algorithms

Madan Musuvathi Microsoft Research

joint work with Saeed Maleki, Univ. of Illinios, Urbana-Champaign Todd Mytkowicz, Microsoft Research

Hardware is Parallel

But, many important algorithms are 'inherently sequential'

Motivating Problem

Grep terabytes in seconds

Sequentially reading terabytes from disk takes hours Grep implementations are sequential

Breaking Sequential Dependences

Two Parallel Algorithms

Finite State Machines

30x faster on 12 cores

Dynamic Programming

Fastest software Viterbi decoder

Higher throughput on 16 cores than a commercial FPGA implementation

Parallel Finite State Machines

FSM Applications

- grep (regex matching)
- lex (tokenization)
- Dictionary-based decoding (e.g. Huffman decoding)
- Text encoding/decoding (e.g. UTF8)

Data Dependence limits ILP, SIMD, and multicore parallelism

Т	/	*	X
а	b	а	a
b	b	С	а
С	С	d	d
d	а	d	С

Breaking Dependences with Enumeration

Convergence Reduces the Cost of Enumeration

Convergence Reduces the Cost of Enumeration

Convergence for Worst-Case Inputs

Single-Core Performance when using SIMD

Multicore Performance for Bing Tokenization

Parallelizing Dynamic Programming

Optimization Problems Solved using Dynamic Programming

$$p_{i,j} = \max_{k} (p_{i-1,k} * t_{k,j})$$

 $C_{i-1,j-1} \qquad C_{i-1,j}$ $C_{i,j-1} \qquad C_{i,j}$ $C_{i,j} \qquad C_{i,j}$ Stage

$$C_{i,j} = \max \begin{cases} C_{i-1,j-1} + \delta_{i,j} \\ C_{i,j-1} \\ C_{i-1,j} \end{cases}$$

Viterbi

diff

Parallelize Across Stages

Assume recurrence is of the form
$$s_i[j] = \min_k (C_{ijk} + s_{i-1}[k])$$

Optimization problem = Finding shortest path in some graph

Break Dependences with All-Pair Shortest Paths

source to all boundary nodes

all boundary nodes to destination

Overhead **∝** stage size

All-Pair Shortest Paths Converge

Convergence in LCS

Results – Viterbi Decoder

Conclusions

Parallel algorithms for FSMs and dynamic programming Using dynamic convergence properties

Can we break dependences for other algorithms?

Parsing

Iterative machine learning

Graph algorithms

Can we automatically parallelize across dependences?

Save the planet and return your name badge before you leave (on Tuesday)

