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Abstract
Symbolic tree automata allow transitions to carry predicates over
rich alphabet theories, such as linear arithmetic, and therefore ex-
tend finite tree automata to operate over infinite alphabets,such as
the set of rational numbers. Existing tree automata algorithms rely
on the alphabet being finite, and generalizing them to the symbolic
setting is not a trivial task.

In this paper we study the problem of minimizing symbolic tree
automata. First, we formally define and prove the basic properties
of minimality in the symbolic setting. Second, we lift existing min-
imization algorithms to symbolic tree automata. Third, we present
a new algorithm based on the following idea: the problem of min-
imizing symbolic tree automata can be reduced to the problemof
minimizing symbolic (string) automata by encoding the treestruc-
ture as part of the alphabet theory. We implement and evaluate all
our algorithms against existing implementations and show that the
symbolic algorithms scale to large alphabets and can minimize au-
tomata over complex alphabet theories.

1. Introduction
Tree automata are used in a variety of applications in software
engineering, including analysis of XML programs [24], software
verification [2], and natural language processing [27]. While tree
automata are of immense practical use, they suffer from a major
drawback: in the most common forms they can only handle finite
and small alphabets.

Symbolic automata allow transitions to carry predicates over
a specified alphabet theory, such as linear arithmetic, and there-
fore extend finite tree automata to operate over infinite alphabets,
such as the set of rational numbers [14, 16]. Symbolic automata are
therefore more general and succinct than their finite-alphabet coun-
terparts. Traditional algorithms for finite string and treeautomata
do not immediately generalize to the symbolic setting, making the
design of algorithms for symbolic automata challenging. A notable
example appears in [15]: while allowing finite state automata tran-
sitions to read multiple adjacent inputs does not add expressiveness,
in the symbolic case this extension makes problems such as check-
ing equivalence undecidable.

Symbolic tree automata (s-TA) are closed under Boolean oper-
ations and enjoy decidable equivalence if the alphabet theory is de-
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cidable and forms a Boolean algebra [32]. s-TAs have been used
in combination with symbolic tree transducers to analyze com-
plex tree-manipulating programs such as HTML sanitizers and aug-
mented reality taggers. In these applications keeping the automata
“small” is crucial for scalability, but to the best of our knowledge,
no algorithms have been proposed to minimize s-TAs. Minimiza-
tion of symbolicbottom-uptree automata is the topic of this paper.

Minimization of tree automata. Minimization of tree automata
has been studied extensively [5, 12, 19, 22], although not asthor-
oughly as minimization of finite string automata. Recently the topic
has received new interest [3]. For a deterministic bottom-up tree au-
tomatonA to be minimal, all distinct statesp andq of A have to
be distinguishable: for some termt(x) with a single variablex,
and two treestp andtq accepted by the statesp andq respectively,
the treet(tp) is accepted byA if and only if the treet(tq) is not
accepted byA. Most minimization algorithms start with an under-
approximation of the set of distinguishable states and iteratively
refine it using a fix-point computation.1 In the case of finite alpha-
bets, minimization algorithms refine the under-approximation by
looping over the alphabet and checking whether on the same sym-
bol two transitions lead to two distinguishable states. Since sym-
bolic finite automata operate over infinite alphabets, this operation
cannot be performed.

One solution is tofinitizethe alphabet and then use existing min-
imization algorithms. This is done by treating the set of allinequiv-
alent satisfiable Boolean combinations of the predicates appearing
in the automaton as the alphabet. Unfortunately, thisfinitization
procedure is exponential in the number of transitions. Efficient al-
gorithms for minimizing symbolic (string) automata that avoid the
alphabet finitization are proposed in [14], but they do not generalize
to symbolic tree automata.

Minimization of symbolic tree automata. We propose two new
algorithms for minimizing symbolic tree automata and provetheir
correctness.

Our first algorithm, STAPart, is a symbolic extension of the
algorithm presented in [8] for minimizing tree automata. The al-
gorithm builds on the following property: if two statesq and
q′ are distinguishable, and there exists a symbola and transi-
tions (q1, . . . , qi, . . . , qn)

a
−→ q and (q1, . . . , q

′
i, . . . , qn)

a
−→ q′,

then qi and q′i are distinguishable. This notion nicely translates
to the symbolic setting: if two statesq and q′ are distinguish-
able, and there exist transitions(q1, . . . , qi, . . . , qn)

ϕ
−→ q and

(q1, . . . , q
′
i, . . . , qn)

ψ
−→ q′, such thatSat(ϕ ∧ ψ), then qi and

q′i are distinguishable The algorithm uses a fixpoint computation
based on this definition to compute all the pairs of distinguish-
able states. Like most algorithms for symbolic automata, the algo-

1 A notable exception is Brzozowski’s algorithm, which does not explicitly
build the set of distinguishable states [7].



rithm requires that checking satisfiability of the predicateϕ ∧ ψ is
decidable. Practically, this is checked using a decidable effective
Boolean algebra as a solver. The algorithm operates onpartial au-
tomata and avoids computing the costly automata completion. The
algorithm is based on the idea that only a few transitions added by
the completion operation are used when refining the set of distin-
guishable states.

Our second algorithm, SFARed, is based on the following idea:
the problem of minimizing s-TAs can be reduced to the problem
of minimizing symbolic finite automata over strings. This intuition
is inspired by Abdulla et al. [2], where a similar notion is used to
compute bisimulations of non-deterministic tree automata. Thanks
to this reduction we can directly use the efficient s-FA minimiza-
tion algorithmMin

N
SFA presented in [14]. A novel aspect of this re-

duction is that the reduced s-FA operates over a different alphabet
theory from the one used by the input s-TA. However, we show
that the resulting alphabet theory is not only decidable, but can also
be efficiently implemented with an off-the-shelf SMT [18] solver.
On the other hand, if one did not use a symbolic representation
of the reduced alphabet the reduction would cause an exponential
blow-up. What is remarkable is that the separation of concerns be-
tween the alphabet theory and the automata structure allowsus to
use symbolic automata not only to model string and tree languages
over complex alphabets, but also to design new elegant algorithms.

We compare the performance of the two algorithms using: 1) a
large set of tree automata over small finite alphabets taken from the
VATA library for non-deterministic tree automata [26]; 2) aset of
s-TAs over large finite alphabets aimed at showing the exponential
blow-up caused by the alphabet finitization; and 3) a set of ran-
domly generated s-TAs over a complex alphabet theory. In experi-
ments 1 and 2 we also compare the performance of our algorithms
against the Lethal library [11] and the tree automata minimization
implementation described in Carrasco et al. [8]. Our experiments
show that our algorithms are comparable to state-of-the-art finite-
alphabet implementations in the case of small finite alphabets and
scale to large alphabets that existing tree automata implementations
cannot handle. In the case of complex alphabet theories our two al-
gorithms have comparable performances.

Contributions. Our contributions are the following.

• A formal study of the notion of minimality of symbolic tree
automata (s-TAs) (§ 3);

• A new algorithm for minimizing s-TAs, STAPart, which is
based on existing algorithms for minimizing tree automata over
finite alphabets (§ 4);

• A new efficient algorithm, SFARed, based on a reduction to
symbolic (string) automata minimization (§ 5);

• An implementation and a comprehensive evaluation of the al-
gorithms over a variety of benchmarks (§ 6).

2. Motivating Example: Analysis of
Tree-Manipulating Programs

In this section we introduce s-TAs using informal examples and
show how minimization can be used to speed-up the analysis of
tree-manipulating programs written in FAST, a language that has
been used to prove properties of HTML sanitizers, functional pro-
grams over trees, and augmented reality taggers [16]. In allthese
applications the alphabets are infinite and using symbolic tree au-
tomata is therefore necessary. To analyze programs, FAST uses a
variety of symbolic tree automata and transducer algorithms includ-
ing intersection, complement, functional composition, and domain
automaton computation. When many of these algorithms are ap-
plied in sequence, the s-TAs tend to become too large, causing the

running time to be impractical. The minimization techniques pro-
posed in this paper are vital in keeping the s-TAs small and making
the analyses scalable. The following example adapted from the case
study in [16, Fig. 2] and it is used throughout the paper to illustrate
definitions and concepts.2

2.1 Symbolic Tree Automata in FAST

Consider the following algebraic datatypeHtml that describes (a
simplified form of) abstract syntax of HTML documents wherestr
is a predefined type for strings:

Html = empty | node str Attrs Html Html
Attrs = none | attr str Values Attrs
Values = nil | cons str Values

We group all thenon-tree-typearguments together into a single
label typeℓ as a disjoint union of named tuples:

ℓ = empty|none|nil|node str|attr str|cons str

and define testers overℓ, e.g.,IsNode(node("ab")) is true. Let
HTML be an STA that accepts the set of trees representing correct
HTML documents using the following transitions,

∆HTML = {()
IsNil
−−−→ qV, ()

IsNone
−−−−→ qA, ()

IsEmpty
−−−−→ qH,

(qV)
IsCons
−−−−→ qV, (qV, qA)

IsAttr
−−−−→ qA, (qA, qH, qH)

IsNode
−−−−→ qH}

wherestatesqV, qA, qH represent typesValues, Attrs, Html with
qH as afinal state. Intuitively,∆HTML is a conditional term rewrite
system. A treet is acceptedby HTML (in symbolst ∈ L(HTML)) iff
t can be reduced toqH, e.g.,

node("div")

attr("style")

cons("center")

nil

none

empty empty

⇛ node("div")

attr("style")

cons("center")

qV

qA

qH qH

⇛ node("div")

attr("style")

qV qA

qH qH

⇛ node("div")

qA qH qH

⇛ qH

2.2 The Importance of Minimization in FAST

FAST allows the user to define arbitrary s-TAs and to compose
them. This can be seen in action when writing a FAST program
that analyzes an HTML sanitizer. An HTMLsanitizeris a program
that parses rich HTML markup and removes executable content.
When analyzing an HTML sanitizerS, we check thatS can only
produce safe HTML trees (for example, those that do not contain
script nodes). To check this property the user can define an s-TA
IsSafe that accepts the set of allsafeHTML trees thatS should
output. Keeping the s-TAIsSafe minimal is crucial for scalability.
We show how a typical version of the s-TAIsSafe can be large in
practice. A simple set of safe HTML trees is defined by the s-TA
IsSafe1 which accepts all the trees that do not contain a"script"
node. The s-TAIsSafe1 has a single stateq (that is also final) and
the transitions:

{()
⊤
−→ q, (q)

⊤
−→ q, (q, q)

⊤
−→ q, (q, q, q)

safe
−−→ q}

wheresafe
def
= λx:ℓ.(IsNode(x) ∧ x[1] 6= "script") and⊤

def
=

λx:ℓ.true. As new possible vulnerabilities arise, the user will cre-
ate new s-TAsIsSafei, 1 < i ≤ n, aimed at further restricting
the set of HTML trees. The final definition ofIsSafe is HTML ∩

2 The reader may also consult this example using the online version of FAST

athttp://rise4fun.com/Fast/Lxu.



⋂n
i=1 IsSafei. In a typical setting,n can be up to 20. Because of

the repeated intersections, the s-TAIsSafe can quickly grow in
size, making the analysis intractable. Minimization drastically re-
duces the size.

3. Symbolic Tree Automata
In this section we formally define symbolic (bottom-up) treeau-
tomata and their theory of minimality.

3.1 Effective Boolean Algebras

We use effective Boolean algebras in place of concrete alphabets.
An effective Boolean algebraA is a tuple(U,Ψ, [[ ]],⊥,⊤,∨,∧,¬)
whereU is a recursively enumerable (r.e.) set called theuniverse
of A. Ψ is a r.e. set ofpredicatesclosed under the Boolean con-
nectives,∨,∧ : Ψ × Ψ → Ψ, ¬ : Ψ → Ψ, and⊥,⊤ ∈ Ψ.
The denotation function[[ ]] : Ψ → 2U is r.e. and is such that,
[[⊥]] = ∅, [[⊤]] = U , for all ϕ,ψ ∈ Ψ, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]],
[[ϕ∧ψ]] = [[ϕ]] ∩ [[ψ]], and[[¬ϕ]] = U \ [[ϕ]].3 Forϕ ∈ Ψ, we write
Sat(ϕ) when[[ϕ]] 6= ∅ and say thatϕ is satisfiable. The algebraA
is decidableif Sat is decidable. We say thatA is infinite if U is
infinite. In practice, an (effective) Boolean algebra can beimple-
mented as an API with corresponding methods implementing the
operations. The following are examples of Boolean algebrasthat
we use in practice.

Example 1. We illustrate use of an SMT solver as an effec-
tive Boolean algebra. LetSMTτ denote(U,Ψ, [[ ]],⊥,⊤,∨,∧,¬),
whereτ is a fixed type,U is the set of all elements of typeτ . Ψ
is the set of all quantifier free formulas of the solver containing a
single uninterpreted constant (or variable)x : τ . ⊤ is x = x and
⊥ is x 6= x. The Boolean operations are the corresponding logical
connectives of the solver. The interpretation function[[ϕ]] is defined
using satisfiability checking and model generation features of the
solver: test ifϕ is satisfiable, if not then terminate else construct a
modelx 7→ v |= ϕ, yield v, and continue withϕ ∧ x 6= v. ⊠

Example 2. The BDD algebraB = (N,Ψ, [[ ]],⊥,⊤, |,&, · ) has
the set of natural numbersN as its universe andΨ is the Boolean
closure of BDDs [6]βi s.t. [[βi]] = {n|“the i’th bit of n is 1”}.
β3&β0 means “if bit3=1 then (if bit0=1 then⊥ else⊤) else⊥”
that denotes the set of numbers matching the binary bitpattern
* · · · *1**0, e.g.,8, 26 ∈ [[β3&β0]].4 We useB in Example 4. ⊠

3.2 Symbolic Tree Automata

A signatureΣ is an r.e. set of ranked function symbols. Forf ∈ Σ
we let♮(f) denote its rank. The set of all symbols of rankk in Σ is
denoted byΣ(k). The set of all terms overΣ is T (Σ). We assume
thatΣ(0) 6= ∅ so thatT (Σ) 6= ∅. Given a setS and rankk ≥ 0,
we writeSk for the cross product

∏k
i=1 S whereS0 def

= {()}.

Definition 1. A symbolic tree automaton(s-TA) M is a tuple
(A,Γ, Q, F,∆) whereA is an effective Boolean algebra called
the label alphabet, Γ is a finite signature ofconstructors, Q is a
finite set ofstates, F ⊆ Q is the set offinal states, and∆ ⊆⋃
k≥0 Γ(k)×Qk ×ΨA ×Q is a finite set oftransitions.

We fixM = (A,Γ, Q, F,∆), A = (U,Ψ, [[ ]],⊥,⊤,∨,∧,¬).

Definition 2. M is deterministicif for all (g1, p̄1, ψ1, q1) and
(g2, p̄2, ψ2, q2) in ∆, if g1 = g2 and p̄1 = p̄2 andSat(ψ1 ∧ ψ2)
thenq1 = q2.

3 The underlying Boolean algebra ofA corresponds to thefield of sets
(U, {[[ψ]] | ψ ∈ Ψ}) where elements ofU are calledpoints, using the
Representation Theorem of Boolean Algebras(cf. [9, Proposition 1.4.4]).
4 The underlying Boolean algebra of the BDD algebraB is isomorphic to
thecountable atomless Boolean algebra(cf. [9, Proposition 1.4.5]).

In this paper we are only concerned with deterministic s-TAs. We

writeg(p̄)
ψ

−→M q, org(p̄)
ψ

−→ q whenM is clear, for a transition
(g, p̄, ψ, q) ∈ ∆ and say that(g, p̄, ψ, q) hasrank ♮(g); g is the
constructor, p̄ the source, q the target, ψ the guard, and g(p̄)

the trigger of (g, p̄, ψ, q). We further abbreviateg(p̄)
ψ

−→ q by

p̄
ψ

−→ q wheng is the only constructor inΓ(♮(g)).

Example 3. Consider the typeℓ from Section 2 and let terms be in
the Boolean algebraSMTℓ from Example 1 by using correspond-
ing datatype constructors. LetHTML = (SMTℓ, {f0, f1, f2, f3},
{qV, qA, qH}, {qH},∆HTML) wherefi has ranki. HTML is determinis-
tic because all transitions have disjoint guards. ⊠

Definition 3. M is completeif for all g ∈ Γ, a ∈ U , and

p̄ ∈ Q♮(g), there isg(p̄)
ψ

−→ q with a ∈ [[ψ]]. Else,M is partial.

Completeness ensures that for all labels and all constructors
there exists a transition from each state combination. Letq⊥ /∈ Q
be a newsinkstate and letQ⊥ = Q ∪ {q⊥}.

Definition 4. If M is partial, then thecompletion ofM is the s-
TA M⊥ def

= (A,Γ, Q⊥, F,∆ ∪ {(g, p̄, νg(p̄), q
⊥) | g ∈ Γ, p̄ ∈

(Q⊥)♮(g),Sat(νg(p̄))}) whereνg(p̄)
def
=

∧
∃q:(p̄,g,ψ,q)∈∆¬ψ.

Definition 5. We defineΣM
def
= Γ× U , and useg[a] to denote the

element(g, a) ∈ ΣM , and let♮(g[a])
def
= ♮(g).

We write Σ for ΣM when M is clear. We use the notions
from [9] regardinguniverse, interpretation, andmodel forΣ (or
Σ-model). We view a deterministic and complete s-TAM as a
Σ-model M whose universe isQ and whose interpretation for
g[a] ∈ Σ is the functiong[a]M that mapsp̄ ∈ Q♮(g) to the state

q ∈ Q such thatg(p̄)
ψ

−→M q anda ∈ [[ψ]]. For deterministic
partial M we let theΣ-model ofM be theΣ-model ofM⊥.

Definition 6. Let M be deterministic. Forq ∈ Q, the down-
language ofq in M is L↓

M (q)
def
= {t ∈ T (Σ) | tM = q}. The

language ofM is the setL(M)
def
=

⋃
q∈F L↓

M (q). Let N be a
deterministic s-TA. ThenM is equivalentwith N , M ≃ N , if
L(M) = L(N) andAM = AN andΓM = ΓN .

Example 4. We use the BDD algebraB from Example 2 and let
Γ = {c, f}, ♮(c) = 0, ♮(f) = 2. LetMi,j be the s-TA

qβi|βj
βi|βj

1

2

Mi,j = (B, {c, f}, {q}, {q}, {c()
βi|βj
−→ q, f(q, q)

βi|βj
−→ q}). The

figure uses1 and 2 to identify the respective arguments of the
constructorf [a] ∈ ΣM . Recall from Example 2 that the predicate
βi|βj says that if thei’th bit of the label is 1 then thej’th bit
must also be 1.Mi,j accepts a tree iff all of its labels satisfy this
condition. To be concrete lett = f [8](c[4], f [6](c[3], c[0])). For
examplet ∈ L(M0,1) but t /∈ L(M1,0) because of label6. The
completionM⊥

i,j of Mi,j looks as follows

qβi|βj
βi|βj

1,2

q⊥βi&βj

⊤

1,2
βi&βj

1,2

1

⊤

⊤
2

1

2

M⊥
i,j can be used to construct the s-TA accepting the complement

of L(Mi,j) by makingq⊥ final andq nonfinal.5 ⊠

5 The example arises when mapping S2Ssubset relations to tree au-
tomata [21].



∃

o

s.t.

tp

∈L(M) ⇔

tq

/∈L(M)

Figure 1. Distinguishability of statesp andq in M .

3.3 Minimality of Symbolic Tree Automata

Our notion of minimality is based on the generalization of the
Myhill-Nerode theoremto trees [13, Section 1.5]. The following
notion of context is central to our definition of minimality.Recall
Definition 5.

Definition 7. Let o be a fixed constant,o /∈ Σ. A Σ-contextis a
tree inT (Σ ∪ {o}) with exactly one occurrence ofo.

If t(o) is a Σ-context andu is a term thent(u) is the term
obtained by substitutingo in t(o) by u.

Definition 8. A stateq is accessibleif L↓
M (q) 6= ∅; tq denotes a

fixed term inL↓
M (q).M is reducedif all states inQ are accessible.

A stateq is usefulif q is accessible and there exists a contextt(o)
such thatt(tq) ∈ L(M).M is cleanif all states inQ are useful.

Useless states can be eliminated using standard algorithms. The
prerequisite is that there are no transitions with unsatisfiable
guards, which requires use ofA. Observe that ifM is partial then in
M⊥ the sink stateq⊥ is useless although it is accessible. Minimal-
ity uses the following context based indistiguishabililtyrelation.

Definition 9. For all u, v ∈ T (Σ), defineu ≡L(M) v iff for all
Σ-contextst(o): t(u) ∈ L(M) ⇔ t(v) ∈ L(M).

Definition 10. AssumeM is deterministic and reduced. Forp, q ∈
Q definep ≡M q iff tp ≡L(M) tq; we say thatp and q are
distinguishablein M whenp 6≡M q.

The definition of≡M is well-defined becauseM is reduced (tp
and tq exist) and defines an equivalence relation overQ because
M is deterministic. Distinguishability is illustrated in Figure 1. We
write≡ for ≡M if M is clear.

Definition 11. M is normalizedif it has no two distinct transitions
with equal triggers and targets.

Normalizetakes a setT of transitions and combines any distinct
(g, p̄, ϕ, q) and(g, p̄, ψ, q) in T into (g, p̄, ϕ ∨ ψ, q).

Definition 12. M/≡
def
= (A,Γ, Q/≡ , F/≡ ,Normalize(∆/≡))

where∆/≡ = {(g, q̄/≡ , ϕ, p/≡) | (g, q̄, ϕ, p) ∈ ∆}.

Proposition 1. AssumeM is deterministic and reduced. Then
M ≃ M/≡ andM/≡ represents the unique (up to isomorphism)
Σ-model with the smallest number of states that acceptsL(M).

A direct proof of Proposition 1 can be given by generalizing Brain-
erd’s theorem [5, Theorem 5.7] to an infinite alphabetΣ. The tree
version of Myhill-Nerode theorem [13] can also be generalized to
an infiniteΣ to prove Proposition 1.

Definition 13. AssumeM is deterministic. ThenM is minimal if
|QM | ≤ |QN | and |∆M | ≤ |∆N | for all deterministic s-TAsN
such thatM ≃ N .

Observe that ifM is partial and clean then the inducedΣ-model
always has the extra sink stateq⊥. ThenM⊥

/≡ has also the extra
stateq⊥/≡ , whileM/≡ does not.

Proposition 2. AssumeM is deterministic and clean. ThenM/≡

is minimal.

Proposition 2 follows from Proposition 1 and normalization.
While for finite alphabets the definitions of minimality directly
lead to minimization algorithms, this is not true when dealing
with infinite alphabets such asB in Example 2. We discuss
our minimization algorithms for symbolic tree automata in the
next sections and we will use the following additional defini-
tions. Given a non-empty sequencex̄ of length k, xi stands for
the i’th element of x̄ for 1 ≤ i ≤ k, and, given elementy,
x̄i:y

def
= (x1, . . . , xi−1, y, xi+1, . . . , xk).

Definition 14. Givenk ≥ 1 and two sequences̄x andȳ of length
k, andi, 1 ≤ i ≤ k, then,x̄ ≏i ȳ is defined as̄xi:yi = ȳ and
xi 6= yi. And x̄ ≏ ȳ means̄x ≏i ȳ for somei.

In other words,̄x ≏ ȳ means that̄x andȳ are equal in all but one
position. For example,(1, 2, 3, 4) ≏3 (1, 2, 5, 4).

Definition 15. For a contextt(o) let theo-depth, ⌊t(o)⌋, of t(o)
be the distance ofo in t(o) from the root of t(o). For a pair
(p, q) ∈ 6≡M define⌊p, q⌋ as the smallesto-depth⌊t(o)⌋ such that
t(tp) ∈ L(M) ⇔ t(tq) /∈ L(M)

E.g.,⌊f(t, g(u,o), v)⌋ = 2 and⌊p, q⌋ = 0 whenp ∈ F ⇔ q /∈ F .

4. Minimization of s-TAs
Completion of s-TAs is expensive and should be avoided if possi-
ble. It may be infeasible to represent∆ so that for all ranks and̄q
there is a transition from̄q. A similar problem arises when min-
imizing unranked tree automata over finite alphabets where the
completion is not computable [8]. In the following we introduce
an algorithm that can avoid completion by computing an under-
approximation ofM⊥ that suffices for distinguishability.

LetM be deterministic and clean. We letq⊥ /∈ Q be a newsink
state. (Recall the definitionνg(x̄) from Definition 4.) We approxi-
mateM⊥ by using the following set∆⊥ of transitions. We write
lhs(∆) for the set of all triggers of transitions in∆.

∆⊥ def
= ∆⊥

1 ∪∆⊥
2

∆⊥
1

def
= {g(x̄)

νg(x̄)
−→ q⊥ | g(x̄) ∈ lhs(∆) ∧ Sat(νg(x̄))}

∆⊥
2

def
= {g(x̄i:y)

⊤
−→ q⊥ | g(x̄) ∈ lhs(∆) ∧ i∈[1..♮(g)]∧

y∈Q ∧ xi 6=y ∧ g(x̄i:y)/∈lhs(∆) ∧ (y ∈ F ⇔ xi ∈ F )}

Observe that ifM is complete then∆⊥ = ∅. Else, the set∆⊥
1

contains the completion of all the triggers appearing in∆, and the
set∆⊥

2 contains transitions to the sink stateq⊥ from all the new
possible triggers that can be generated by replacing exactly one
state in an existing trigger. A final state can only be replaced by a
final state, and similarly for non-final states. LetF c = Q\F . Treat
〈p, q〉 below as an unordered pair.

STAPart (Partial s-TA state distinguishability).

Input: deterministic clean s-TAM , Output: 6≡M .

1. D := {〈p, q〉 | p ∈ F ∧ q ∈ F c}; Frontier := D;

if ∆⊥ 6= ∅ add{〈q, q⊥〉 | q ∈ Q} to Frontier;

2. whileFrontier 6= ∅:

(a) pop〈p′, q′〉 from Frontier;

(b) for all g(p̄)
ϕ

−→ p′, g(q̄)
ψ

−→ q′ ∈ ∆ ∪∆⊥ such

thatp̄ ≏i q̄ and〈pi, qi〉 /∈ D andSat(ϕ ∧ ψ):

add〈pi, qi〉 toD and push〈pi, qi〉 to Frontier;

3. returnD.

If m = maxrank(Γ), the size of∆⊥ isO(m · |Q| · |∆|), which
is in sharp contrast toO(|Q|m · |∆|) if ∆ would be completed.



Theorem 3. If A is decidable, andM is deterministic and clean,
then STAPart computes6≡M .

Proof. First we show termination. The effectiveness of step 2(b)
depends onA being decidable and on the number of choices for
givenp′ andq′ in 2(b) being finite. Latter follows from finiteness of
∆ ∪∆⊥. Effective construction of∆⊥ depends on finiteness of∆
and finiteness ofQ and effective use ofA for the construction and
satisfiability checking ofνg(x̄) (recall Definition 4). Termination
follows becauseQ is finite and only new elements fromQ × Q
that have not been inFrontier before are added toFrontier and one
element is removed fromFrontier at each iteration of step 2.

Next, we show thatD in step 3 equals6≡M . We proceed in two
stages: A) we prove the statement under the assumption thatM is
complete and reduced; B) we extend the proof to the case whenM
is partial and clean.

A) Assume M is complete and reduced. (M does not have to be
clean.) Note that∆⊥ = ∅. Let Df be the value of variableD in
step 3. We prove thatDf = 6≡M . GivenDn = D before executing
step 2(b) letDn+1 be the value afterD has been updated. Initially
D0 isD. LetL = L(M).

CaseDf ⊆ 6≡M : We showDn ⊆ 6≡M by induction overn.
Base case: D0 ⊆ 6≡M by definition.
Induction case: We show thatDn+1 ⊆ 6≡M . The IH is Dn ⊆
6≡M . From 2(a) and IH it follows thatp′ 6≡M q′, so there exists
a Σ-contextt(o) such thatt(tp′) ∈ L ⇔ t(tq′) /∈ L, where
tp′ andtq′ exist becauseM is reduced. Fixt(o). AssumeDn
is updated in Step 2(b). So there are transitionsg(p̄)

ϕ
−→ p′

andg(q̄)
ψ

−→ q′ ∈ ∆ such thatp̄ ≏i q̄ and 〈pi, qi〉 /∈ Dn
andSat(ϕ∧ψ). Fix such transitions. It follows that there exists
aΣ-contextg[a](ū · o · v̄) for somea ∈ [[ϕ ∧ ψ]], and where
ū = (tpj )

i−1
j=1, and v̄ = (tpj )

♮(g)
j=i+1 since all states in̄p are

accessible.
Now letw(o) be the composedΣ-contextt(g[a](ū · o · v̄)). So
w(o) is such that, usingM as aΣ-modelM, let f = g[a],

w(tp)
M = t(f(ū · tp · v̄))

M = t(tp′)
M ∈ F

⇔ w(tq)
M = t(f(ū · tq · v̄))

M = t(tq′)
M /∈ F

SoDn+1 ⊆ 6≡M whereDn+1 = Dn ∪ {〈p, q〉}.
CaseDf ⊇ 6≡M : We show the statement by induction over⌊p, q⌋

for 〈p, q〉 ∈ 6≡M .
Base case: If ⌊p, q⌋ = 0 thenp ∈ F ⇔ q /∈ F , so〈p, q〉 ∈ D0

and thus〈p, q〉 ∈ Df .
IH : ∀〈r, s〉 ∈ 6≡M : (⌊r, s⌋ ≤ i⇒ 〈r, s〉 ∈ Df ).
Induction case: We show that the statement holds fori + 1.
Assume⌊p, q⌋ = i + 1. So there is a contextw(o) such that
⌊w(o)⌋ = i+ 1, usingM as aΣ-modelM,
w(tp)

M ∈ F ⇔ w(tq)
M /∈ F, w(o) = t(f(ū · o · v̄))

for some contextst(o) andg[a](ū · o · v̄) (let f = g[a]), where
⌊t(o)⌋ = i and⌊f(ū · o · v̄)⌋ = 1. Let q′, p′ ∈ Q be such that
f(ū · tp · v̄)

M = p′ andf(ū · tq · v̄)M = q′. It follows from the
choice ofw, that
t(tp′)

M = w(tp)
M ∈ F ⇔ w(tq)

M = t(tq′)
M /∈ F

and thus, sinceM is complete,

g(p̄)
ϕ

−→M p′, g(q̄)
ψ

−→M q′, a∈[[ϕ∧ψ]], p̄ ≏i q̄ (∗)

wherepi = p andqi = q. Sop′ 6≡M q′ and by IH we have
〈p′, q′〉 ∈ Df because⌊p′, q′⌋ ≤ ⌊t(o)⌋ = i. In other words,
at some point⌊p′, q′⌋ was added toFrontier because all newly
discovered distinguishable pairs are added. Consider the stepn
at which⌊p′, q′⌋ is removedfrom Frontier, so 〈p′, q′〉 ∈ Dn
and assume that〈p, q〉 6∈ Dn (or else we are done with the
induction case). Then the for-all loop is enabled for the choices

in (∗) and so〈p, q〉 ∈ Dm for somem > n. Thus,〈p, q〉 ∈ Df ,
that proves the induction case.

The two cases imply thatDf = 6≡M .

B) Assume M is partial and clean. SinceM⊥ is complete and
reduced we can use (A) to show that the algorithm computes6≡M⊥

givenM⊥ as input. We show that we can lift that proof toM . Let
D⊥ = {〈q, q⊥〉 | q ∈ Q}.

Here we letDn stand for the value ofD ∪D⊥ during iteration
n and we letDf be the value ofD ∪D⊥ in step 3. Initially,D0 is
the value ofFrontier.

We prove thatDf = 6≡M⊥ . M must be clean. IfQ would
include an accessible but useless state this would violate the base
caseD0 ⊆ 6≡M⊥ . The proof for the caseDf ⊆ 6≡M⊥ is otherwise
identical for the proof in (A).

For the caseDf ⊇ 6≡M⊥ we need to show that it suffices to
use the transitions in∆ ∪ ∆⊥. Consider the induction case in the
proof of case ‘⊇’ in (A). Assume thatq′ = q⊥ in (∗), or else, if
q′, p′ ∈ Q then both transitions in(∗) are in∆. It is enough to
show that the transition with targetq′ = q⊥ exists in∆⊥. Since
p̄ ≏i q̄ andpi ∈ Q and〈pi, qi〉 /∈ D we know thatqi 6= pi and
qi 6= q⊥, i.e.,qi ∈ Q. We know thatνg(q̄) =

∧k
j=1 ¬γj for some

k ≥ 0 where theγj are the guards of the transitions whose trigger
in ∆ is g(q̄). There are two sub-cases:

1. If k = 0 we have thatg(q̄) does not occur as a trigger in∆ but
g(p̄) = g(q̄i:pi) does occur becausep′ ∈ Q. We also know that
(qi ∈ F ⇔ pi ∈ F ) or else〈qi, pi〉 ∈ D0. So, by definition of

∆⊥
2 , g(q̄)

⊤
−→ q′ ∈ ∆⊥

2 .
2. If k > 0 theng(q̄) occurs as a trigger in∆. This means that

Sat(νg(q̄)), ψ = νg(q̄), andg(q̄)
ψ

−→ q′ ∈ ∆⊥
1 above.

It follows that the use of∆∪∆⊥ covers all the transitions from
∆M⊥ that are needed to complete the induction step in(∗). Thus,
the proof ofDf ⊇ 6≡M⊥ is complete.

We have shown thatDf = 6≡M⊥ in case (B). Therefore the
final value ofD is (Df \D⊥) = 6≡M in case (B).

This completes the proof of the theorem.

Complexity. We assume thatM is normalized. Letm = |∆| be
the number of transitions,k = |Γ| be the number of constructors,
r be the maximum rank, andℓ be the size of the largest guard
appearing in any transition in∆. Given a predicateϕ of size l
in the Boolean algebraA, let f(l) be the complexity of decid-
ing satisfiability ofϕ. ∆⊥ containsO(mkr) transitions and each
transition has a guard of sizeO(mℓ). STAPart has complexity
O(m2k2r2f(mℓ)).

5. Reduction to Minimization of s-FAs
In this section we present the most important contribution of this
paper: the problem of minimizing s-TAs can be reduced to the prob-
lem of minimizing symbolic finite automata over words. Thanks to
this reduction we can use existing s-FA minimization algorithms
from [14].

5.1 Review of Symbolic Finite Automata

Definition 16. A symbolic finite automaton(s-FA) S is a tuple
(A, Q, q0, F, δ) whereA is an effective Boolean algebra,Q is a
finite set ofstates, q0 ∈ Q is theinitial state, F ⊆ Q is the set of
final states, andδ ⊆ Q×ΨA ×Q is a finite set oftransitions.

We also denote a transition(p, ϕ, q) ∈ δ by p
ϕ
−→ q. A word

w = a1 . . . ak ∈ U∗
A is accepted from a stateq ∈ Q, denoted

w ∈ L
r
S(q), if there existspi−1

ϕi−→ pi for 1 ≤ i ≤ k, andk ≥ 0,



such thatai ∈ [[ϕi]], p0 = q andpk ∈ F . Thelanguage accepted by

S is L(S)
def
= L

r
S(q0). S is deterministicif for any two transitions

p1
ϕ1−−→ q1 andp2

ϕ2−−→ q2 in δ, if p1 = p2 andSat(ϕ1 ∧ ϕ2) then
q1 = q2. We refer the reader to [14] for more details.

5.2 Reduction to s-FA Minimization

In this section we show how s-TA transitions can be modeled ass-
FA transitions without compromising state distinguishability. Our
reduction is inspired by Abdulla et al. [2] where it is shown that
the computation of bisimulation equivalence for non-deterministic
tree automata can be reduced to computingword bisimulation
equivalence on transition systems derived from the automata.

The reduction is, in part, based on the relation≏ that we pre-
sented in Definition 14. Observe that step 2(b) of STAPart does
the following: when applying the step from a given pair of targets
〈p′, q′〉, find two triggersg(q̄) andg(p̄) such that̄q ≏ p̄ having two

transitionsg(q̄)
ϕ

−→ q′ andg(p̄)
ψ

−→ p′ with Sat(ϕ∧ψ). The key
point behind the reduction is to represent the condition that p̄ ≏ q̄
andSat(ϕ ∧ ψ) as a combined predicate over an extension ofA
that is able to symbolically describe the possible tree contexts. In
other words, we want to represent the s-TA transitions

g(q̄)
ϕ

−→ q′ g(p̄)
ψ

−→ p′

whereq̄ ≏i p̄ as corresponding s-FA transitions

qi
φi〈ϕ,〈g,q̄〉〉
−−−−−−→ q′ pi

φi〈ψ,〈g,p̄〉〉
−−−−−−−→ p′

whereφi〈ϕ,〈g,q̄〉〉 andφi〈ψ,〈g,p̄〉〉 are predicates over an extended

Boolean algebrâA of A so thatSat(φi〈ϕ,〈g,q̄〉〉 ∧φi〈ψ,〈g,p̄〉〉) iff the
condition 2(b) of STAPart holds (i.e.̄p ≏i q̄, andSat(ϕ ∧ ψ)). If
pi 6= qi then the combined conditionφi〈ϕ,〈g,q̄〉〉∧φi〈ψ,〈g,p̄〉〉 should
be equivalent tōpi:o = q̄i:o ∧ ϕ ∧ ψ, whereo is a new constant.6

We illustrate one possible way to define the extended effective
Boolean algebraÂ to achieve the effect described above. We use
the property that aCartesian product algebraof two effective
Boolean algebras is also an effective Boolean algebra. First, let
Q̂ = Q ∪ {q0, o} where q0, o 6∈ Q are new states7 and let
G = {〈g, q̄〉 | g ∈ Γ, q̄ ∈ Q̂♮(g)}. Let the power set algebra2G

be represented by an effective Boolean algebraG.8 Forg ∈ Γ, q̄ ∈
Q̂♮(g), let Is〈g,q̄〉 ∈ ΨG be such that

[[Is〈g,q̄〉]]G = {〈g, q̄〉}.

When ♮(g) = 0 we write Isg for Is〈g,()〉. Â is defined as the
Cartesian product algebraA× G of A andG. The universe ofÂ is
U × G. Forx = 〈a, b〉 ∈ U × G let x[1] = a andx[2] = b. ΨÂ
consists of all Boolean combinations ofλx.α(x[1]) andλx.γ(x[2])
for α ∈ ΨA andγ ∈ ΨG . Forα ∈ ΨA (similarly for γ ∈ ΨG) let

¬Â(λx.α(x[1]))
def
= λx.¬Aα(x[1]).

Givenψ ∈ ΨÂ, ψ has, without loss of generality, an equivalent
disjunctive normal form (DNF)

k∨

i=1

((λx.αi(x[1])) ∧ (λx.γi(x[2])))

6 The definition ofq̄i:o is similar to the notion ofenvironmentin [2].
7 The stateq0 is used below as theinitial state in the s-FA construction and
the stateo is used as acontext stateas explained in Definition 17 below.
Assuming thatq0 6= o is not necessary but intuitively useful.
8 There are several ways in whichG can be defined, one way is to use a
finite restriction of the BDD algebraB and encode〈g, q̄〉 as a number.

where allαi ∈ ΨA andγi ∈ ΨG . The denotation ofψ in Â is

[[ψ]]Â =

k⋃

i=1

[[αi]]A × [[γi]]G .

Proposition 4. Â is an effective Boolean algebra and ifA is
decidable thenÂ is decidable.

Proof. The property thatÂ is an effective Boolean algebra follows
from Morgan’s laws, laws of distributivity of Boolean connectives,
and thatA and G are effective Boolean algebras. AssumeA is
decidable.G is trivially decidable because it is finite. Deciding
satisfiability ofψ ∈ ΨÂ reduces effectively to satisfiability checks
in A andG as follows. Take the DNF ofψ as above. ThenSatÂ(ψ)
holds iff for somei bothSatA(αi) andSatG(γi) hold.

The following key construction is used to create the predicates
of the transitions in the s-FA.

Definition 17. Forg ∈ Γ, q̄ ∈ Q♮(g), andϕ ∈ ΨA, let

φ0
〈ϕ,g〉

def
=λz.ϕ(z[1]) ∧ Isg(z[2]), if ♮(g) = 0;

φi〈ϕ,〈g,q̄〉〉
def
=λz.ϕ(z[1]) ∧ Is〈g,q̄i:o〉(z[2]), for 1 ≤ i ≤ ♮(g).

Definition 18. Thes-FA ofM is M̂
def
= (Â, Q̂, q0, F, δ), where

δ = {(q0,φ0
〈ϕ,g〉, p) | g()

ϕ
−→M p} ∪

{(qi,φ
i
〈ϕ,〈g,q̄〉〉, p) | g(q̄)

ϕ
−→M p, 1 ≤ i ≤ ♮(g)}

Notice the duality between the transitions ofM and the tran-
sitions of M̂ . Recall that the concrete alphabet isΣ. There is a
close connection betweenΣ-contexts and words overUÂ. Namely,
a word overUÂ describes a path fromo to the root of the
Σ-context with precisely enough information to preserve state
(in)distinguishability.

Example 5. Consider the s-TAM = M0,1 with Mi,j as in
Example 4. In this casêM is as follows:

q
λz.β0|β1(z[1]) ∧ Isc(z[2])

q0

λz.β0|β1(z[1]) ∧ Is〈f,(o,q)〉(z[2])

λz.β0|β1(z[1]) ∧ Is〈f,(q,o)〉(z[2])

The transition fromq0 to q represents the transitions ofM that
read constructors of rank0. Sincec is the only constructor with
rank 0, the predicate on the transition checks that the constructor
componentz[2] is c (Isc(z[2])) and that the label componentz[1] of
the input symbol satisfiesβ0|β1 — i.e., the predicate of the original
transition inM . The looping transitions onq represent the original
transition fromq to q appearing inM . Sincef has rank2, there
are two transitions fromq to q in M̂ : one places the context on
the first child (Is〈f,(o,q)〉(z[2])) and one places the context on the
second child (Is〈f,(q,o)〉(z[2])). SinceM is already minimalM̂ is
also minimal up to normalization. ⊠

Observe thatq0 is always distinguishable from all the other
states inM̂ whenM is clean. This is because the predicateIsc,
wherec is a constant, is false for all transitions whose source is
different fromq0.

SFARed (s-TA state distinguishability via s-FA reduction)

Input: deterministic clean s-TAM , Output: 6≡M .

Return6≡M̂ \{〈q0, q〉 | q ∈ QM}.



Lemma 5. If M is deterministic thenM̂ is deterministic.

Proof. Assume thatM is deterministic. Consider two transitions
of M̂ with same source states. If the guards use testers of distinct
constructors then their conjunction is unsatisfiable. Assume that
they use testers for the same constructorg and that the conjunction
of their guards is satisfiable. We must show that the target states are
the same. Letk = ♮(g).

Assume first thatk = 0. Then theM̂ transitions have the form
(q0,φ0

〈ϕ,g〉, p) and(q0,φ0
〈ψ,g〉, r) for someϕ,ψ, p andr such that

g()
ϕ

−→M p andg()
ψ

−→M r. FromSat(φ0
〈ϕ,g〉 ∧ φ0

〈ψ,g〉) follows
thatSat(ϕ∧ψ), and sinceM is deterministic it follows thatp = r.

Assume now thatk > 0. Then theM̂ transitions have the
form (qi,φ

i
〈ϕ,〈g,q̄〉〉, r) and (pj ,φ

j
〈ψ,〈g,p̄〉〉

, s) for somei and j,

1 ≤ i, j ≤ k, whereg(q̄)
ϕ

−→ r andg(p̄)
ψ

−→ s are transitions in
∆. We are assuming thatqi = pj and

Sat(φi〈ϕ,〈g,q̄〉〉 ∧ φ
j
〈ψ,〈g,p̄〉〉)

and need to showr = s. If we expand the definitions we get

Sat(λz.ϕ(z[1]) ∧ Is〈g,q̄i:o〉(z[2]) ∧ ψ(z[1]) ∧ Is〈g,p̄j:o〉(z[2]))

from which follows thatSat(ϕ ∧ ψ) and q̄i:o = p̄j:o. The latter
is only possible ifi = j becauseo does not occur inQM . So
q̄i:o = p̄i:o, and by usingqi = pi, we haveq̄ = p̄. It follows by
determinism ofM thatr = s.

We are now ready to state our main theorem that relates the
minimality of M̂ to the minimality ofM . First we recall the
definition of indistinguishability of states in an s-FA, which is a
simplified version of the definition used for s-TAs. Two states p
andq areindistinguishablein M̂ , p ≡M̂ q, if L

r
M̂
(p) = L

r
M̂
(q).

The analogue ofL r
M̂
(q) in M is theup-language of a stateq:

L↑
M (q)

def
= {Σ-contextt(o) | t(tq) ∈ L(M)}.

Thus,p ≡M q iff L↑
M (p) = L↑

M (q). We writeL↑(q) for L↑
M (q) if

M is clear. It is technically convenient to work with up-languages
in the proof of Theorem 6.

Theorem 6. AssumeA is decidable andM is deterministic and
clean. For allp, q ∈ QM : p ≡M q⇔ p ≡M̂ q.

Proof. The indistinguishability relation is well-defined and effec-
tively computable forM̂ due to Proposition 4 and Lemma 5. We
showp ≡M̂ q ⇔ p ≡M q for all p, q ∈ Q. We do not need to con-
sider the completed versions ofM or M̂ here,M can be assumed
to be partial.

Case p ≡M̂ q ⇒ p ≡M q: By way of contradiction, assume
there existp andq such thatp ≡M̂ q but p 6≡M q. Then we can
selectp, q, and aΣ-contextt(o) such thatHyp(p, q, t) holds with
⌊t(o)⌋ beingsmallest:

Hyp(p, q, t): p ≡M̂ q, p 6≡M q, t(o) ∈ L↑(q) \ L↑(p).

If ⌊t(o)⌋ = 0 then o ∈ L↑(q) and thusq ∈ F . But then, by
p ≡M̂ q, we havep ∈ F and soo ∈ L↑(p), contradictingthat
t(o) /∈ L↑(p).

Assume⌊t(o)⌋ > 0. Then, for some contextt′(o), t(o) =
t′(g[a](ūi:o)) and, becauset(o) ∈ L↑(q), there is a transition
g(q̄)

ϕ
−→M r whereqi = q and a ∈ [[ϕ]] and uj ∈ L↓(qj)

for j 6= i and t′(o) ∈ L↑(r). So there is a transition instance
(q, 〈a, 〈g, q̄i:o〉〉, r) in M̂ and fromp ≡M̂ q follows that there is a
transition instance(p, 〈a, 〈g, q̄i:o〉〉, s) in M̂ for somes such that
r ≡M̂ s. So there is a corresponding transition(p,φi〈ψ,〈g,q̄i:p〉〉, s)

in M̂ where a ∈ [[ψ]], which means that there is a transition

g(q̄i:p)
ψ

−→M s. We have two sub-cases:

1. Supposet′(o) /∈ L↑(s). This contradicts the choice ofp, q,
andt in Hyp(p, q, t) becauseHyp(s, r, t′) holds with⌊t′(o)⌋ <
⌊t(o)⌋, contradictingthat⌊t(o)⌋ is smallest.

2. Supposet′(o) ∈ L↑(s). Then, by using the transition

g(q̄i:p)
ψ

−→M s we get thatt′(g[a](ūi:o)) ∈ L↑(p), but this
contradictsthatt(o) /∈ L↑(p).

Case p ≡M q ⇒ p ≡M̂ q: By way of contradiction, assume
there existp andq such thatp ≡M q but p 6≡M̂ q. Then we can
selectp, q, and a wordw overUÂ such thatHyp′(p, q, w) holds
with |w| beingsmallest:

Hyp′(p, q, w): p ≡M q, p 6≡M̂ q,w ∈ L
r(q) \ L

r(p).

If |w| = 0 thenq ∈ F , and fromp ≡M q follows thatp ∈ F
whichcontradictsthatw /∈ L

r(p).
Assume|w| > 0. If w starts with〈a, 〈c, ()〉〉 then fromw ∈

L
r(q) follows thatq must beq0 which contradicts thatq ∈ QM .

So w = 〈a, 〈g, q̄i:o〉〉 · v for some wordv and g ∈ Γ with
♮(g) ≥ 1, and there is a transitiong(q̄)

ϕ
−→M r whereqi = q

and a ∈ [[ϕ]] and v ∈ L
r(r). Chooset′(o) ∈ L↑(r), t′(o)

exists becauseM is clean. By usingg(q̄)
ϕ

−→M r, let t(o) =
t′(g[a](ūi:o)) ∈ L↑(q) where, forj 6= i, uj ∈ L↓(qj). From
p ≡M q follows now that t(o) ∈ L↑(p). Therefore, there is

g(q̄i:p)
ψ

−→M s such thata ∈ [[ψ]] and r ≡M s. It follows
that there is a transition(p,φi〈ψ,〈g,q̄i:p〉〉, s) in M̂ . So there is a

transition instance(p, 〈a, 〈g, q̄i:o〉〉, s) in M̂ . We have two sub-
cases:

1. Supposev /∈ L
r(s). This contradicts the choice ofp, q, anw

in Hyp′(p, q, w) becauseHyp′(s, r, v) holds with |v| < |w|,
contradictingthat |w| is smallest.

2. Supposev ∈ L
r(s). Then〈a, 〈g, q̄i:o〉〉 · v ∈ L

r(p), contra-
dicting thatw /∈ L

r(p).

The casep ≡M q ⇒ p ≡M̂ q and thus the theorem follows.

An interesting observation about Theorem 6 is that completion
is never needed in its proof although it is assumed in the minimiza-
tion algorithm for s-FAs. In particular,UÂ contains elements such
as〈a, 〈g, (o, o)〉〉 that are meaningless inM but arise after com-
pletion ofM̂ . It is therefore crucial to implement̂A symbolically
in order to avoid explicit enumeration of all the symbols inQ̂.

Complexity. Given an s-TAM , let n = |Q| be the number of
states,m = |∆| be the number of transitions, constructors,r be
the maximum rank of any constructor inΓ, andℓ be the size of the
largest guard appearing in any transitions in∆. Given a predicate
ϕ of size l in the Boolean algebraA, let f(l) be the complexity
of deciding satisfiability ofϕ. We first describe the size of the
reduced s-FAM̂ and then analyze the complexity of minimizinĝM
using SFA minimization. Given6≡M̂ andM , the induced minimal
s-TA can then be built in time that is linear (up to normalization of
predicates).

The s-FAM̂ hasn̂ = n + 2 states,m̂ = O(mr) transitions
and the largest guard has sizeℓ̂ = O(mr + mℓ) due to the s-
FA completion. Given a predicateϕ of size l in the Boolean al-
gebraÂ, let gf (l) be the complexity of deciding satisfiability of
ϕ (notice thatgf can depend onf ). Using the symbolic exten-
sion of Moore algorithm [14, Section 3],̂M can be minimized
in timeO(m2r2gf (mr + ml)). Using the symbolic extension of
Hopcroft algorithm [14, Section 4],̂M can be minimized in time



2O(mr)O(gf (m
2r+m2l)+n log n). Finally, using the new min-

imization algorithmMin
N
SFA from [14, Section 5],M̂ can be mini-

mized in timeO(n2log n gf (nmr+ nmℓ)). As shown in [14] the
last algorithm outperforms the previous two. An interesting aspect
of this last algorithm is that most of the complexity is handled by
the solver of the Boolean algebra. We will show that this aspect is
crucial in practice.

6. Evaluation
We evaluated the performance of the minimization algorithms with
three sets of s-TAs.9

1. Bottom-up tree automata over small finite alphabets from the
tests appearing in the VATA library [26]. This experiments
allowed us to compare against existing tree automata libraries.

2. s-TAs that operate overlarge finite alphabetsthat can be rep-
resented succinctly using the theory of bit-vectors. This experi-
ment showed how s-TAs are beneficial even in the presence of
finite alphabets.

3. s-TAs over the alphabet sort(Int × Int × String). This experi-
ment showed how our algorithms perform oninfinite alphabets.

We use STAPart and SFARed to refer to the algorithms de-
scribed in Section 4 and 5 respectively. We also measure the run-
ning time of STAPart on a complete automaton (referred to as
STAComp).

Implementation details. STAPart allows us to apply further opti-
mizations that take advantage ofM being partial. In particular, we
use the notion of astate signaturepresented in [8]. The signature
of a stateq is the set

sigq = {(g, |x̄|, i) | g(x̄) ∈ lhs(∆), xi = q} ∪ {$ | q ∈ F}

One can show that if two statesp andq have different signatures,
thenp 6≡M q. Our implementation starts by computing the signa-
tures of all states and then adds{p, q} to the initial value ofD for
all p andq having distinct signatures. This simple optimization is
very effective in practice.

In our implementation of SFARed the Boolean algebraÂ is
implemented using the SMT solver Z3 [17], which indeed supports
data types [17].10

6.1 Small finite alphabets

The VATA library [26] for manipulatingnon-deterministicbottom-
up tree automata contains a large collection of automata that may
appear when verifying concurrent programs. The automata appear-
ing in the collection have ranks varying between 2 and 11. Here we
use the determinized and completed versions of 2414 automata ap-
pearing in the VATA library to compare our algorithms, the Lethal
library, and the implementation described in [8] (DTAmin from
now on). The Lethal library is written in Java and requires the
input automaton to be complete. The DTAmin implementation is
written in C++, does not require the input automaton to be com-
plete, and is based on the highly optimized implementation of tree
automata minimization described in [8]. Fig. 2 shows the running
times parametrized by number of states (a), number of transitions

9 All the experiments were run on a 4-core Intel i7-2600 CPU 3.40GHz,
with 8GB of RAM and we set our timeout to 300 seconds. For the algo-
rithms that require completion we do not measure the completion time.
10 In the case of large finite label alphabets, such as ASCII, theuse of an
SMT solver may be an overkill. Another option is to use a finiterestriction
of the BDD algebra to represent elements ofU

Â
by reserving certain bit

intervals for encoding the constructors, the labels, and the state sequences,
respectively.

(a) (b)

(c) (d)

Figure 2. Bottom-up tree automata over small finite alphabets
from the VATA library.

(a) (b)

(c) (d)

Figure 3. Tree automata over large bit-vector alphabets.

(b), number of transitions in the complete automaton (c), and num-
ber of transitions in the minimized automaton (d). In (c) we only
report the running times on the instances for which the completion
algorithm did not time out.

Analysis. STAPart and DTAmin scale to large instances, and are
faster than the other algorithms. STAComp and Lethal time out for
small instances since the size of the completed automata grows
very quickly. SFARed is slower than STAPart and DTAmin, but
it still scales to large instances. From (c) and (d) we can seethat
the bottleneck of SFARed is the number of states rather than the
number of transitions. This is due to the fact that the numberof
states directly affects the number of elements in the the Boolean
algebraÂ.

6.2 Large finite alphabets

Here we consider a particular set of s-TAs over the theory of bit-
vectors. This theory is widely used in practice, and finite-alphabet
techniques do not scale in this setting.11 Let βk be the predicate
such thatβk(x) holds iff the(k%32)’th bit of x is 1. Consider the
constructorsΓ = {zero, two} where♮(zero) = 0 and♮(two) =

11This phenomenon has also been demonstrated for finite automata over
strings in [14, Section 6.3].
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Figure 4. s-TAs over the alphabet(Int × Int × String).

2 and letBk for k ≥ 1 be an s-TA the following transitions:

∆Bk = {zero
x=0
−−→ q0, zero

x=1
−−→ q1, zero

x=2
−−→ q2}

∪ {two(q3i, q3i+2)
βi−→ q3i+3, two(q3i+1, q3i+2)

βi−→ q3i+4,

two(q3i+2, q3i+2)
βi−→ q3i+5}

k−1
i=0

The final states ofBk areq3k andq3k+1. In particular: the states
q3i are used at levelk− i to denote that the leftmost leaf has label0
(similarly for 1), and the statesq3i+2 are used at levelk−i to denote
that all the underlying leaves have label2. A tree is accepted byBk
iff it has depthk, is fully balanced, and each node label at level
l < k (root having level 0) satisfiesβk−l. Moreover, all leaves are
labeled with2, except the leftmost leaf, which is labeled with either
0 or 1. The s-TABk is not minimal: in particular, for everyi, the
stateq3i is not distinguishable from the stateq3i+1. We consider the
set of s-TAs{Bk | 1 ≤ k ≤ 100} and we compare our algorithms
to DTAmin in Fig. 3. In order to run the algorithm DTAmin we
finitize the alphabet by computing the set all the satisfiableBoolean
combinations of the predicates appearing in the s-TA.

Analysis. DTAmin is outperformed by all the symbolic algo-
rithms and it times out atk = 17. For k < 32, the set of
minterms (i.e., all satisfiable Boolean combination) computed from
Bk contains2k satisfiable Boolean combinations ofβi. This causes
DTAmin’s running time to be exponential ink. In contrast, none of
the algorithms described in this paper requires the concrete repre-
sentation of the alphabet. STAPart and SFARed perform compara-
bly and are faster than STAComp.

6.3 Complex theories

We compare the performance of our algorithms over a sample
set of 280 randomly generated s-TAs over the alphabet(Int ×
Int × String). We consider trees over the ranked alphabetΓ =
{zero, one, three}, such that♮(zero) = 0, ♮(one) = 1, and
♮(three) = 3. The guards of each s-TA are conjunctions of equal-
ity predicates over strings and linear predicates over integers. Each
s-TA is non-empty and has at least one rule for each constructor.
The results are shown in Fig. 4.

Analysis. STAComp times out for relatively small instances.
STAPart and SFARed are quite comparable; interestingly, insome
instances SFARed is actually faster. Given that the SFARed is a
simple reduction to SFA minimization and uses an off-the-shelf
SMT solver, we find this result remarkably surprising.

7. Related Work
Minimization theory. The use of distinguishability refinement for
DFA minimization is attributed to Huffman [25] and Moore [28],
e.g., the DFA minimization algorithm in [23, Fig. 3.8] uses this
idea. A generalization of this idea to symbolic finite automata (s-
FAs) is investigated in [14]. This approach is particularlywell
suited for symbolic alphabets where it is impossible to iterate over
the whole alphabetΣ. In contrast, such iteration is in general
needed for concrete alphabets [8, 12, 13] and implies a complexity
factor of |Σ|. The definition of≡M (Definition 10) is an extension
of [5, Definition 5.3] to infinite alphabets. It is similarly related
to the definition ofEquiv in [12] where theup-language of state
q of M is a generalization of theright-language of state qof a
DFA. Similarly, theleft-languageof states in finite word automata
is lifted to thedown-languageof states in finite tree automata [12].

Minimization algorithms. The original paper on tree automata
minimization [5] as well as the treatment of minimality in [19] are
theoretical. The description of minimality in [13] is also brief and
it requires completion. An efficient implementation of the the algo-
rithm for minimizing partialunrankedtree automata is presented
in [8]. Although highly optimized, the implementation in [8] only
works for finite alphabets. Our implementation of STAPart from
Section 4 extends the one described in [8] to symbolic alphabets.

Completion and large alphabets. When working with finite but
large alphabets, completion can cause an explosion in the number
of transitions of the automaton. This happens already for DFAs
and specialized algorithms have been proposed to minimize par-
tial DFAs [30]. As shown in [14], the symbolic representation of
transition helps mitigate the blow-up in the number of transitions.

Tree automata libraries. We compared our implementation with
the tree automata library Lethal [11] and the algorithm DTAmin
from [8]. Lethal only supports minimization of complete tree au-
tomata. DTAmin is a stand-alone implementation of a minimiza-
tion algorithm for partial tree automata and does not support other
tree automata operations. Both these libraries only support finite al-
phabets. To the best of our knowledge Lethal and DTAmin are the
only open-source implementations of tree automata minimization
and are therefore the only libraries we compared against.

VATA and Timbuk are libraries for manipulating
non-deterministic tree automata [20, 26]. Timbuk does not support
minimization. VATA supports state reduction of non-deterministic
tree automata via upward and downward bisimulation. For de-
terministic automata, the quotient automaton resulting from up-
ward bisimulation is the minimal one. However, the performance
of VATA is slower than that of DTAmin as DTAmin is highly
optimized for deterministic automata. Mona [21] supports mini-
mization of deterministicbinary guidedtree automata. This model
is orthogonal to ours and we cannot compare our implementa-
tion against the one in Mona. Mona also uses symbolic techniques
(BDDs) to succinctly represent the automata states and transitions,
but it is specialized to the theory of bit-vectors. ApplyingMona’s
transition and state compression techniques to symbolic automata
is an interesting research direction. To the best of our knowledge,
FAST is the only available library for symbolic tree automata and
is the one we build on [16].

Automata with predicates. The concept of automata with predi-
cates instead of concrete symbols was first discussed in [31]in the
context of natural language processing. The first paper to formally
introduce symbolic automata in combination with the notionof ef-
fective Boolean algebrawas [33] and since then numerous exten-
sions have been proposed [15]. Symbolic tree automata have been
studied in [16, 32]. To the best of our knowledge, no algorithms for
s-TA minimization have been studied prior to this paper.



Non-deterministic automata. The minimization algorithms pre-
sented in this paper require the s-TA to be deterministic. Deter-
minization of s-TAs is expensive and may imply an exponential
increase not only in the number of states but also in the number
of predicates [32]. Techniques based onbisimulationhave been
proposed to directly minimize nondeterministic tree automata [1–
3, 22]. The reduction to s-FAs we propose in Section 5 is a symbolic
extension of one of the reduction techniques proposed in [2]. While
our reduction handles tree contexts by building anenvironmental-
phabet, the reduction in [2] does so by creating a more complex
state space that enumerates all possible environments. Moreover,
while our reduction produces an automaton the one in [2] produces
a transitions system. Therefore, our algorithm can directly leverage
s-FA minimization and take advantage of the symbolic represen-
tation of the alphabet in way that the reduction [2] could notdo.
Without this symbolic representation the alphabet would beas large
as the complete s-TA and the minimization algorithm would beas
slow as STAPart.

Applying the bisimulation techniques from [1–3, 22] to non-
deterministic symbolic tree automata is an interesting research di-
rection we plan to pursue. Unfortunately, some of the techniques
that work well with finite alphabets, need new efficient data struc-
tures to work in the purely symbolic setting. For example, multisets
based onmulti-terminal binary decision diagrams[4, 10] are used
in [1] to represent partitions and to efficiently split blocks over a
finite alphabet. The algorithm in [1] is an adaptation of therela-
tional coarsest partitionalgorithm [29] to automata withlarge fi-
nite alphabets. Generalizing such data structures and algorithms to
represent finite partitions overinfinite alphabets is one of the key
challenges that arises when transitioning to symbolic automata.

Applications. The development of the theory of symbolic tree au-
tomata is motivated by several concrete practical problems[16].
Solvers for Monadic Second-Order Logic (MSO) over trees work
well in practice by keeping tree automata minimal at each step
and by representing the transitions symbolically [21]. Programs
that manipulate trees are ubiquitous and domain-specific languages
for tree transformation have been studied in several different con-
texts [16]. Automata minimization is used to keep the language rep-
resentations succinct and enable analysis of large programs.
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[26] O. Lengal, J.̌Simáček, and T. Vojnar. Vata: A library for efficient
manipulation of non-deterministic tree automata.TACAS’12, 7214:
79–94, 2012. .

[27] J. May and K. Knight. A primer on tree automata software for natural
language processing, 2008.

[28] E. F. Moore. Gedanken-experiments on sequential machines. Au-
tomata studies, Annals of mathematics studies, (34):129–153, 1956.

[29] R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–989, 1987.

[30] A. Valmari. Fast brief practical DFA minimization.Information
Processing Letters, 112:213–217, 2012.

[31] G. van Noord and D. Gerdemann. Finite state transducerswith predi-
cates and identities.Grammars, 4(3):263–286, 2001.

[32] M. Veanes and N. Bjørner. Symbolic tree automata.Information
Processing Letters, 115(3):418–424, 2015.

[33] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N.Bjørner.
Symbolic finite state transducers: Algorithms and applications. In
POPL’12, pages 137–150, 2012.


