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Abstract

Symbolic tree automata allow transitions to carry predisaiver
rich alphabet theories, such as linear arithmetic, ancefoer ex-
tend finite tree automata to operate over infinite alphalsets) as
the set of rational numbers. Existing tree automata algmstrely
on the alphabet being finite, and generalizing them to thebsyim
setting is not a trivial task.

In this paper we study the problem of minimizing symbolietre
automata. First, we formally define and prove the basic ptigse
of minimality in the symbolic setting. Second, we lift exigl min-
imization algorithms to symbolic tree automata. Third, wesent
a new algorithm based on the following idea: the problem of-mi
imizing symbolic tree automata can be reduced to the proloiem
minimizing symbolic (string) automata by encoding the s&ec-
ture as part of the alphabet theory. We implement and evakiht
our algorithms against existing implementations and shatthe
symbolic algorithms scale to large alphabets and can mueimi-
tomata over complex alphabet theories.

1. Introduction

Tree automata are used in a variety of applications in soffwa
engineering, including analysis of XML programs [24], sddte
verification [2], and natural language processing [27]. Wliee
automata are of immense practical use, they suffer from amaj
drawback: in the most common forms they can only handle finite
and small alphabets.

Symbolic automata allow transitions to carry predicatesrov
a specified alphabet theory, such as linear arithmetic, hadkt
fore extend finite tree automata to operate over infinite atpls,
such as the set of rational numbers [14, 16]. Symbolic aut@era
therefore more general and succinct than their finite-dlpheoun-
terparts. Traditional algorithms for finite string and te@gomata
do not immediately generalize to the symbolic setting, mgkhe
design of algorithms for symbolic automata challenging.otable
example appears in [15]: while allowing finite state autaartedn-
sitions to read multiple adjacent inputs does not add esj&sess,
in the symbolic case this extension makes problems sucheag-ch
ing equivalence undecidable.

Symbolic tree automata (s-TA) are closed under Booleanoper
ations and enjoy decidable equivalence if the alphabetytisale-
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cidable and forms a Boolean algebra [32]. s-TAs have beeth use
in combination with symbolic tree transducers to analyzem-co
plex tree-manipulating programs such as HTML sanitizedsaang-
mented reality taggers. In these applications keeping uhenzata
“small” is crucial for scalability, but to the best of our kmtedge,

no algorithms have been proposed to minimize s-TAs. Minamiz
tion of symbolicbottom-uptree automata is the topic of this paper.

Minimization of tree automata. Minimization of tree automata
has been studied extensively [5, 12, 19, 22], although nthars
oughly as minimization of finite string automata. Recertly topic
has received new interest [3]. For a deterministic bottgntree au-
tomatonA to be minimal, all distinct states and g of A have to
be distinguishable for some termt(z) with a single variabler,
and two trees, andt, accepted by the statesandq respectively,
the treet(t,) is accepted by if and only if the treet(¢,) is not
accepted byA. Most minimization algorithms start with an under-
approximation of the set of distinguishable states andtitaly
refine it using a fix-point computatidnin the case of finite alpha-
bets, minimization algorithms refine the under-approxioraby
looping over the alphabet and checking whether on the same sy
bol two transitions lead to two distinguishable statesc&isym-
bolic finite automata operate over infinite alphabets, tpisration
cannot be performed.

One solution is tdinitizethe alphabet and then use existing min-
imization algorithms. This is done by treating the set ofraljuiv-
alent satisfiable Boolean combinations of the predicatpsaing
in the automaton as the alphabet. Unfortunately, fimigization
procedure is exponential in the number of transitions. [ffical-
gorithms for minimizing symbolic (string) automata thabalthe
alphabet finitization are proposed in [14], but they do noiggealize
to symbolic tree automata.

Minimization of symbolic tree automata. We propose two new
algorithms for minimizing symbolic tree automata and prdveir
correctness.

Our first algorithm, STAPart, is a symbolic extension of the
algorithm presented in [8] for minimizing tree automataeTdi-
gorithm builds on the following property: if two states and
q are distinguishable, and there exists a symbaind transi-

tions (q1,..., G, .-, qn) 5 oq and (g1,...,q, ..., qn) 4,
then ¢; and ¢, are distinguishable. This notion nicely translates
to the symbolic setting: if two stateg and ¢’ are distinguish-
able, and there exist transitiortg:, ..., qi,...,q.) — ¢ and

(1, @iy ey qn) 2, q’, such thatSat{p A ), theng; and

q. are distinguishable The algorithm uses a fixpoint compurati
based on this definition to compute all the pairs of distisgui
able states. Like most algorithms for symbolic automate atigo-

1A notable exception is Brzozowski's algorithm, which does explicitly
build the set of distinguishable states [7].



rithm requires that checking satisfiability of the predécatA ¢ is
decidable. Practically, this is checked using a decidaffctive
Boolean algebra as a solver. The algorithm operatgsaotial au-
tomata and avoids computing the costly automata completioa
algorithm is based on the idea that only a few transitioneddry
the completion operation are used when refining the set tihdis
guishable states.

running time to be impractical. The minimization technigyeo-
posed in this paper are vital in keeping the s-TAs small ankimga
the analyses scalable. The following example adapted fnerndse
study in [16, Fig. 2] and it is used throughout the paper testhate
definitions and concepfs.

2.1 Symbolic Tree Automata in FAST

Our second algorithm, SFARed, is based on the following:idea Consider the following algebraic datatyfien1 that describes (a
the problem of minimizing s-TAs can be reduced to the problem simplified form of) abstract syntax of HTML documents whete

of minimizing symbolic finite automata over strings. Thigition
is inspired by Abdulla et al. [2], where a similar notion issdsto
compute bisimulations of non-deterministic tree automateanks
to this reduction we can directly use the efficient s-FA miizin

tion algorithmMinlL, presented in [14]. A novel aspect of this re-

duction is that the reduced s-FA operates over a differgitaddet

is a predefined type for strings:

Html = empty | node str Attrs Html Html
Attrs = none | attr str Values Attrs
Values = nil | cons str Values

We group all thenon-tree-typearguments together into a single

theory from the one used by the input s-TA. However, we show |abeltype/ as a disjoint union of named tuples:

that the resulting alphabet theory is not only decidabléechn also
be efficiently implemented with an off-the-shelf SMT [18]er.

{ = empty|none|nil|node strlattr str|cons str

On the other hand, if one did not use a symbolic representatio and define testers ovér e.g., IsNode(node("ab")) is true. Let

of the reduced alphabet the reduction would cause an expahen

blow-up. What is remarkable is that the separation of corcbe-
tween the alphabet theory and the automata structure allevs
use symbolic automata not only to model string and tree lagesi
over complex alphabets, but also to design new elegantitdgo.

We compare the performance of the two algorithms using: 1) a

large set of tree automata over small finite alphabets taken the
VATA library for non-deterministic tree automata [26]; 2)sat of
s-TAs over large finite alphabets aimed at showing the expitale

blow-up caused by the alphabet finitization; and 3) a set of ra

domly generated s-TAs over a complex alphabet theory. lemxp

ments 1 and 2 we also compare the performance of our algarithm

against the Lethal library [11] and the tree automata mipatidn
implementation described in Carrasco et al. [8]. Our expenits
show that our algorithms are comparable to state-of-thérare-
alphabet implementations in the case of small finite alptsaded
scale to large alphabets that existing tree automata ingl@ations
cannot handle. In the case of complex alphabet theoriesvaualt
gorithms have comparable performances.

Contributions. Our contributions are the following.

e A formal study of the notion of minimality of symbolic tree
automata (s-TAs)§(3);

e A new algorithm for minimizing s-TAs, STAPart, which is
based on existing algorithms for minimizing tree automatr o
finite alphabets§4);

HTML be an STA that accepts the set of trees representing correct

HTML documents using the following transitions,

IsEmpty

IsNil IsNone
Apm, = {() qv, () qa, () qy;

IsCons IsAttr IsNode
(@) == qu, (av, @) === G, (da, G G) ———> Gy}

wherestatesgy, g, g, represent typeSalues, Attrs, Html with
gy as afinal state. Intuitively,Agne. is a conditional term rewrite
system. A tree is acceptedoy HTML (in symbolst € £(HTML)) iff

t can be reduced tg, e.g.,

node("div") = node("div")
— \

attr("style") empty empty attr("style") Qu Qx
cons("center" none cons("center") ga

| |

nil qu
= node("div") = node("div") = du
/1IN
attr("style") 9y Qu ga gy Gy

Qv ga

2.2 The Importance of Minimization in FAST

FAsT allows the user to define arbitrary s-TAs and to compose

them. This can be seen in action when writing AsF program
that analyzes an HTML sanitizer. An HTManitizeris a program

that parses rich HTML markup and removes executable cantent

* A new efficient algorithm, SFARed, based on a reduction to When analyzing an HTML sanitize$, we check thatS can only

symbolic (string) automata minimizatiof %);

produce safe HTML trees (for example, those that do not @onta

e An implementation and a comprehensive evaluation of the al- SCript nodes). To check this property the user can define & s-

gorithms over a variety of benchmarksg).

2. Motivating Example: Analysis of
Tree-Manipulating Programs
In this section we introduce s-TAs using informal exampled a

show how minimization can be used to speed-up the analysis o

tree-manipulating programs written imET, a language that has
been used to prove properties of HTML sanitizers, functipne-
grams over trees, and augmented reality taggers [16]. lthedle
applications the alphabets are infinite and using symbuie au-
tomata is therefore necessary. To analyze programsT Eses a
variety of symbolic tree automata and transducer algostimtiud-
ing intersection, complement, functional compositiord domain

IsSafe that accepts the set of alafeHTML trees thatS should
output. Keeping the s-TAsSafe minimal is crucial for scalability.
We show how a typical version of the s-TASafe can be large in

practice. A simple set of safe HTML trees is defined by the s-TA

IsSafe; which accepts all the trees that do not contaiseript™"
node. The s-TALsSafe; has a single statg(that is also final) and

fthe transitions:

05e @©5a (09 Sa (669 25q

def def

wheresafe = Az:{.(IsNode(z) A z[1] # "script")andT =

Az:L.true. As new possible vulnerabilities arise, the user will cre-

ate new s-TAdsSafe;, 1 < i < n, aimed at further restricting
the set of HTML trees. The final definition akSafe is HTML N

automaton computation. When many of these algorithms are ap 2The reader may also consult this example using the onlirsoreof FAST

plied in sequence, the s-TAs tend to become too large, qattsén

athttp://rise4fun.com/Fast/Lxu.



N, IsSafe;. In a typical settingn can be up to 20. Because of
the repeated intersections, the s-TASafe can quickly grow in
size, making the analysis intractable. Minimization dcadly re-
duces the size.

3. Symbolic Tree Automata

In this section we formally define symbolic (bottom-up) tieae
tomata and their theory of minimality.

3.1 Effective Boolean Algebras

We use effective Boolean algebras in place of concrete bgiha
An effective Boolean algebtd is a tuple(U, U, [], L, T, V, A, —)
whereU is a recursively enumerable (r.e.) set called théverse
of A. U is ar.e. set opredicatesclosed under the Boolean con-
nectivesV,A : Y x ¥ — ¥, - : ¥ — ¥,and L, T € 0.
The denotation functior|_] : ¥ — 2Y is r.e. and is such that,
[L] = 0. [T] = U.forall g, € ¥, [o vyl = [¢] U [¢],
[e Ad] =[] N[], and[-¢] = U \ [¢].2 Forp € ¥, we write
Sat(¢) when[p] # 0 and say thap is satisfiable The algebrad

is decidableif Satis decidable. We say thad is infinite if U is
infinite. In practice, an (effective) Boolean algebra carirbple-
mented as an API with corresponding methods implementiag th
operations. The following are examples of Boolean algetitat
we use in practice.

Example 1. We illustrate use of an SMT solver as an effec-
tive Boolean algebra. L&&MT, denote(U, ¥, [], L, T,V, A, =),
wherer is a fixed typeU is the set of all elements of type ¥

is the set of all quantifier free formulas of the solver camtag a
single uninterpreted constant (or variahle) 7. T isz = « and

1 isx # x. The Boolean operations are the corresponding logical
connectives of the solver. The interpretation funcfjef is defined
using satisfiability checking and model generation featfethe
solver: test ifp is satisfiable, if not then terminate else construct a
modelz — v = ¢, yield v, and continue withp A z # v. X

Example 2. The BDD algebras = (N, ¥, [_], L, T,|,&,™) has
the set of natural numbefs as its universe an@ is the Boolean
closure of BDDs [6]3; s.t. [8:] = {n|‘thei'thbitof nis1"}.
Bs&Bo means If bits=1 then (if bib=1 then L elseT) else L”
that denotes the set of numbers matching the binary bitpatte
* . x1x%0, €.0.,8, 26 € [B3&F0].* We useBB in Example 4. X

3.2 Symbolic Tree Automata

A signatureX is an r.e. set of ranked function symbols. Foe X
we let(f) denote its rank. The set of all symbols of rankn X is
denoted by (k). The set of all terms ovex is 7 (X). We assume
that>(0) # 0 so thatT (¥) # 0. Given a setS and rankk > 0,

we write S* for the cross produdf[*_, S wheres® £ {()}.

Definition 1. A symbolic tree automatois-TA M is a tuple
(A, T,Q, F,A) where A is an effective Boolean algebra called
the label alphabetT" is a finite signature o€onstructors @ is a
finite set ofstates FF C Q is the set offinal statesand A C
Urso [(k) x QF x ¥4 x Q is afinite set otransitions

We fIXM = (A7 F7Q7F7 A)’ A = (U7 W7 H‘]]? J—7 T7 \/7 /\7 “)'

Definition 2. M is deterministicif for all (g1,p1,%1,¢1) and
(92,P2,%2,q2) In A, if g1 = g2 andpr = p2 andSat(y1 A 2)
theng: = go.

3The underlying Boolean algebra of corresponds to théield of sets
(U, {[¥] | v € ¥}) where elements of/ are calledpoints using the
Representation Theorem of Boolean Algeklics([9, Proposition 1.4.4]).

4The underlying Boolean algebra of the BDD algeltas isomorphic to
the countable atomless Boolean algel{d. [9, Proposition 1.4.5]).

In this paper we are only concerned with deterministic s-TAe
write g(p) 2 ar g, org(p) - qwhen is clear, for a transition
(9,p,%,q9) € A and say thafg, p, ¥, q) hasrank (g); g is the
constructor p the source ¢ the target ¢ the guard and g(p)
the trigger of (g, p, v, q). We further abbreviatg(p) N q by
P N g whenyg is the only constructor il'((g)).

Example 3. Consider the typé from Section 2 and let terms be in
the Boolean algebr&MT, from Example 1 by using correspond-
ing datatype constructors. L&ITML = (SMT, { fo, f1, f2, f3},
{qv, @, Gy}, {qu}, Aune) Wheref; has ranki. HTML is determinis-
tic because all transitions have disjoint guards. X

Definition 3. M is completeif for all ¢ € T, a € U, and
P € Q"9 there isg(p) %> g with a € []. Else,M is partial.

Completeness ensures that for all labels and all constsicto
there exists a transition from each state combinationgt-et Q
be a newsinkstate and le@ - = Q U {¢*}.

Definition 4. If M is partial, then theeompletion ofM is the s-

TA MY £ (AT,QY FAU{(9,P.vyp:a") | g €T, €
def

(Q1)*), Sallvy())}) wherevy ) = Asy.ip.g.0.0ea -

Definition 5. We defineS,y, £ ' x U, and useg[a] to denote the
element(g, a) € s, and lets(g[a]) £ b(g).

We write XX for X5, when M is clear. We use the notions
from [9] regardinguniverse interpretation and model for (or
>-mode). We view a deterministic and complete s-TH as a
Y-model 9 whose universe i€) and whose interpretation for
gla] € T is the functiong[a]™ that mapsp € Q9 to the state

g € @ such thatg(p) i>M g anda € [+]. For deterministic
partial M we let theS-model of M be theX-model of A/ +.

Definition 6. Let M be deterministic. Fo € @, the down-
language ofg in M is £,(q) £ {t € T(2) | t™ = q}. The
language ofM is the setC(M) < J, ., L},(q). Let N be a
deterministic s-TA. ThenV/ is equivalentwith N, M ~ N, if
,C(M) = ,C(N) andAM = An andFM =TIn.

Example 4. We use the BDD algebr& from Example 2 and let
I'={c f} b(c) =0,8(f) = 2. Let M; ; be the s-TA

BilB;

Moy = (B,{e, £} Aad {ab {e0 3 g, f(g.9) "2 g}). The
figure usest and 2 to identify the respective arguments of the
constructorf[a] € X . Recall from Example 2 that the predicate
Bi|B; says that if thei'th bit of the label is 1 then thg’th bit
must also be 1M; ; accepts a tree iff all of its labels satisfy this
condition. To be concrete let = [[8](c[4], f[6](c[3], ¢[0])). For
examplet € £(Mo,1) butt ¢ L£(M.,0) because of label. The
completion);; of M; ; looks as follows

BilB;

ij can be used to construct the s-TA accepting the complement
of L(M; ;) by makingg™ final andg nonfinal® X

5The example arises when mapping S&Sbsetrelations to tree au-
tomata [21].



(o] tp tq

Figure 1. Distinguishability of statep andq in M.

3.3 Minimality of Symbolic Tree Automata

Our notion of minimality is based on the generalization of th
Myhill-Nerode theorento trees [13, Section 1.5]. The following
notion of context is central to our definition of minimalifgecall
Definition 5.

Definition 7. Let o be a fixed constant ¢ X. A X-contextis a
tree in7 (X U {o}) with exactly one occurrence of

If t(o) is a X-context andu is a term thert(u) is the term
obtained by substituting in ¢(o) by w.

Definition 8. A stateq is accessiblef £%,(q) # 0; t, denotes a
fixed term inL}, (). M is reducedif all states inQ are accessible.
A stateq is usefulif ¢ is accessible and there exists a contéx)
such that(t,) € L(M). M is cleanif all states inQ) are useful.

Useless states can be eliminated using standard algorithines
prerequisite is that there are no transitions with unsabifi
guards, which requires use df Observe that if\/ is partial then in
M+ the sink statg " is useless although it is accessible. Minimal-
ity uses the following context based indistiguishabililgyation.

Definition 9. For allu,v € T(X), defineu =, v iff for all
X-contextst(o): t(u) € L(M) < t(v) € L(M).

Definition 10. Assumel is deterministic and reduced. Farg €
Q definep =p q iff t, =, tq We say thatp and g are
distinguishablen M whenp #a/ q.

The definition of=) is well-defined becaus#/ is reduced,
andt, exist) and defines an equivalence relation af)ebecause
M is deterministic. Distinguishability is illustrated indtire 1. We
write = for =) if M is clear.

Definition 11. M is normalizedif it has no two distinct transitions
with equal triggers and targets.

Normalizetakes a set” of transitions and combines any distinct
(9,P, ¢, q) and(g, p, ¥, q) in T'into (g,p, ¢ V ¥, q).

Definition 12. M,— = (A,T,Q/=, F/=,NormalizdA - ))

WhereA/E = {(976/574,0717/5) | (97@@717) € A}

Proposition 1. AssumeM is deterministic and reduced. Then
M ~ M,= and M/,= represents the unique (up to isomorphism)
¥-model with the smallest number of states that acc€pfe ).

A direct proof of Proposition 1 can be given by generalizingiB-
erd’s theorem [5, Theorem 5.7] to an infinite alphabefThe tree
version of Myhill-Nerode theorem [13] can also be geneealito
an infiniteX to prove Proposition 1.

Definition 13. Assumel is deterministic. Thed/ is minimalif
[Qum| < |@n| and|An| < |An| for all deterministic s-TASV
such thatM ~ N.

Observe that if\/ is partial and clean then the inducEdmodel
always has the extra sink staje. Then M7= has also the extra

statequ, while M, — does not.

Proposition 2. AssumeV! is deterministic and clean. Thelf,=
is minimal.

Proposition 2 follows from Proposition 1 and normalization
While for finite alphabets the definitions of minimality ditéy
lead to minimization algorithms, this is not true when degli
with infinite alphabets such a8 in Example 2. We discuss
our minimization algorithms for symbolic tree automata et
next sections and we will use the following additional defini
tions. Given a non-empty sequengeof length k, x; stands for
the i'th element ofz for 1 < i < k, and, given elemeny,

_ def
Tiy = (ml, ey Li—1,Y, L1,y -« 7CCk).

Definition 14. Givenk > 1 and two sequencesandy of length
k,andi, 1 < i < k, then,z =; g is defined as;.,, = § and
x; # y;. And T = § meanst =; y for somei.

In other wordsz = y means that andy are equal in all but one
position. For examplg(1, 2, 3,4) =3 (1,2, 5,4).

Definition 15. For a context (o) let the o-depth |t(o)], of ¢(o)
be the distance o0b in t(o) from the root of¢(o). For a pair
(p,q) € Zm define|p, q] as the smallesi-depth| (o) ]| such that
t(tp) € LIM) < t(tq) ¢ L(M)

E.g.,[f(t,9(u,0),v)] =2and|p,q] =0whenp € F' < q ¢ F.

4. Minimization of s-TAs

Completion of s-TAs is expensive and should be avoided ifipos
ble. It may be infeasible to represefitso that for all ranks angd
there is a transition frong. A similar problem arises when min-
imizing unrankedtree automata over finite alphabets where the
completion is not computable [8]. In the following we intrax
an algorithm that can avoid completion by computing an under
approximation of¢/* that suffices for distinguishability.

Let M be deterministic and clean. We tgt ¢ Q be a newsink
state. (Recall the definition, ;) from Definition 4.) We approxi-
mateM* by using the following sef\" of transitions. We write

Ihs(A) for the set of all triggers of transitions i.
AL EALUAS
AL E1g(z) 25 ¢t | g(7) € hs(A) A Sat(vy@))}
A3 Z{g(@iy) — " | 9(@) € Ihs(A) A ie[14(g)]A
yeQ AaiFy A g(iy)HS(A) A (y € F & ; € F)}

Observe that ifM is complete them\* = (. Else, the se\{
contains the completion of all the triggers appearing\inrand the
setAs contains transitions to the sink staté from all the new
possible triggers that can be generated by replacing gxant
state in an existing trigger. A final state can only be repldne a
final state, and similarly for non-final states. lFét = Q \ F'. Treat
(p, q) below as an unordered pair.

STAPart (Partial s-TA state distinguishability).
Input deterministic clean s-TAZ, Output .
1. D:={(p,q) | p € FNqe€ F°}; Frontier:= D;
if A+ # (0 add{{(¢,q") | ¢ € Q} to Frontier;
2. while Frontier # (:
(a) pop{p’,q') from Frontier,
(b) forall g(p) -2 p', 9(q) -2 ¢’ € AU AL such
thatp =; g and(p;, ¢;) ¢ D andSat(p A 1):
add(ps, ¢;) to D and push(p;, ¢;) to Frontier;
3. returnD.

If m = maxranKT"), the size ofA is O(m - |Q| - |A|), which
is in sharp contrast tO(|Q|™ - |A|) if A would be completed.



Theorem 3. If A is decidable, andV/ is deterministic and clean,
then STAPart computes,, .

Proof. First we show termination. The effectiveness of step 2(b)
depends ond being decidable and on the number of choices for
givenp’ andq’ in 2(b) being finite. Latter follows from finiteness of
A U A™. Effective construction o™ depends on finiteness of
and finiteness of) and effective use aofi for the construction and
satisfiability checking of/,z) (recall Definition 4). Termination
follows because&) is finite and only new elements fro@ x Q
that have not been iRrontier before are added térontier and one
element is removed fromArontier at each iteration of step 2.

Next, we show thaD in step 3 equalszy,. We proceed in two
stages: A) we prove the statement under the assumptiodfhat
complete and reduce®) we extend the proof to the case whih
is partial and clean

A) Assume M iscomplete and reduced. (M does not have to be
clean.) Note tha\™ = §. Let D; be the value of variabl® in
step 3. We prove thdd; = # . GivenD,, = D before executing
step 2(b) letD,,+1 be the value afteD has been updated. Initially
DyisD.LetL = L(M).

CaseDy C #: We showD,, C # ), by induction ovem.
Base caseD, C # s by definition.
Induction caseWe show thatD,,+1 C #u. ThelH is D,, C
# . From 2(a) and IH it follows that’ 1, ¢/, so there exists
a X-contextt(o) such thatt(t,/) € L < t(t,) ¢ L, where
t,» andt, exist becausé/ is reduced. Fix (o). AssumeD,
is updated in Step 2(b). So there are transitig(is) — p’
andg(q) - ¢’ € A such thatp =; g and(pi,q;) ¢ D
andSat(p A ). Fix such transitions. It follows that there exists
a X-contextgla](a - o - ) for somea € [ A 9], and where
u = (tp,):], andv = (tpj)E(:gi)+1 since all states irp are

1,
accessible.
Now letw(o) be the composel-contextt(g[a](@ - o - ¥)). SO
w(o) is such that, using/ as ax-model9N, let f = g[a],

w(tp)™ = t(f(a-tp - 0)™ =t(t,)" € F
& w(ty)™ =t(f(a-tq-0))" =t(ty)™ ¢ F

S0Dn+1 € #Zm WhereD,, 1 = Dy, U {{p,q)}.

CaseD; D #: We show the statement by induction oyer g |
for (p,q) € #um.
Base caself |p,q| =0thenp € F < g ¢ F,s0(p,q) € Do
and thus(p, ¢) € Dy.
IH:V(r,s) € Zup = (|1, 8] <i=(r,s) € Dy).
Induction case We show that the statement holds for- 1.
Assume|p,q| = ¢ + 1. So there is a context(o) such that
|w(o)] =i+ 1, usingM as aX-modeldn,
w(ty)™ € F & w(ty)” ¢ F, w(o) =t(f(a-o- 1))
for some contexts(o) andgla](@ - o - ©) (let f = glal]), where
[t(o)] =iand|f(u-0-v)] = 1. Letg,p" € Q be such that
f@-t,-0)™ =p andf(a-t,-0)™ = ¢. It follows from the
choice ofw, that
tity) ™ =w(ty)™ € F & w(ty)™ =t(t,)" ¢ F
and thus, sincé/ is complete,

_ / N ] ’ _ _
9() —Sm P, 9(Q) ——um d's a€leny], =i G (%)

wherep; = pandg; = q. Sop’ Zux ¢’ and by IH we have
(p',q'") € Dy becausdyp’,q'| < [t(o)| = 4. In other words,
at some pointp’, ¢’ | was added térontier because all newly
discovered distinguishable pairs are added. Considetépes
at which |p’, ¢’ | is removedfrom Frontier, so (p’,q') € D,
and assume thalp,q) ¢ D, (or else we are done with the
induction case). Then the for-all loop is enabled for the@b®

in (x) and so(p, q) € D, for somem > n. Thus,(p, ¢) € Dy,
that proves the induction case.

The two cases imply thad; = Zu.

B) Assume M ispartial and clean. Since M~ is complete and
reduced we can use (A) to show that the algorithm comp#tgs
given M1 as input. We show that we can lift that proof id. Let
D' ={(¢,q4") | g€ Q}.

Here we letD,, stand for the value o U D~ during iteration
n and we letD; be the value oD U D™ in step 3. Initially, D, is
the value ofFrontier.

We prove thatD; = #,,.. M must be clean. I{Q would
include an accessible but useless state this would vidi&tédase
caseDy C #,,.. The proof for the cas®; C #,,. is otherwise
identical for the proof in (A).

For the caseD; O #,,. we need to show that it suffices to
use the transitions i\ U A+ . Consider the induction case in the
proof of case D’ in (A). Assume thaty’ = ¢ in (%), or else, if
q,p’ € Q then both transitions irix) are in A. It is enough to
show that the transition with target = ¢ exists inA+. Since
P =; gandp; € Q and(p;,q;) ¢ D we know thatg; # p; and
4 # q",ie.,q € Q. We know thatv,;) = A5_, -y, for some
k > 0 where they; are the guards of the transitions whose trigger
in A'is g(g). There are two sub-cases:

1. If K = 0 we have thay(g) does not occur as a trigger i but
9(p) = g(q:p;) does occur becaugé € Q. We also know that
(¢: € F & p; € F)orelse{q;,p;) € Do. So, by definition of
A3, g(q) — ¢ € AF.

2. If k > 0theng(q) occurs as a trigger id\. This means that
Sal(vy(q), ¥ = vg()» andg(q) —= ¢’ € At above.

It follows that the use oA U A+ covers all the transitions from
A1 that are needed to complete the induction stefxjn Thus,
the proof of Dy D #,,. is complete.

We have shown thaD; = #,,. in case (B). Therefore the
final value of D is (D \ D) = #r in case (B).

This completes the proof of the theorem. a

Complexity. We assume that/ is normalized. Letn = |A| be
the number of transitions; = |I"| be the number of constructors,
r be the maximum rank, and be the size of the largest guard
appearing in any transition ilh. Given a predicate, of sizel

in the Boolean algebr&d, let f(I) be the complexity of decid-
ing satisfiability ofp. A+ containsO(mkr) transitions and each
transition has a guard of siz®(m/¢). STAPart has complexity
O(m2k2r? f(ml)).

5. Reduction to Minimization of s-FAs

In this section we present the most important contributibthis

paper: the problem of minimizing s-TAs can be reduced to thbp
lem of minimizing symbolic finite automata over words. Thaum&
this reduction we can use existing s-FA minimization algonis
from [14].

5.1 Review of Symbolic Finite Automata

Definition 16. A symbolic finite automatofs-FA) S is a tuple
(A, Q, q, F,d) where A is an effective Boolean algebrg) is a
finite set ofstates qo € @ is theinitial state F' C Q is the set of
final statesandd C Q x ¥ 4 x Q is a finite set ofransitions

We also denote a transitidip, ¢, q) € 6 by p = ¢. A word
w = a1...a, € U} is accepted from a state € @, denoted

w e ZLL(q), if there existgp; 1 — p; for 1 < i < k, andk > 0,



suchthat; € [p;], po = gandpi € F. Thelanguage accepted by
Sis AS) < .,iﬂs(qo) S is deterministidf for any two transitions

p1 % g andps 23 g2 in 6, if p1 = p2 andSat(p:1 A @2) then
q1 = q2. We refer the reader to [14] for more details.

5.2 Reduction to s-FA Minimization

In this section we show how s-TA transitions can be modelest as
FA transitions without compromising state distinguistigbiOur
reduction is inspired by Abdulla et al. [2] where it is shovrat
the computation of bisimulation equivalence for non-dwiarstic
tree automata can be reduced to computmgrd bisimulation
equivalence on transition systems derived from the au@mat

The reduction is, in part, based on the relatiorthat we pre-
sented in Definition 14. Observe that step 2(b) of STAParsdoe
the following: when applying the step from a given pair ofgests
(p',¢), find two triggerSg( )andg( p) such thagy = p having two

transitionsg(q) - ¢’ andg(p) SN p’ with Sat(¢ A ). The key
point behind the reduction is to represent the conditioh gha ¢
andSat{p A 1) as a combined predicate over an extensiopAof
that is able to symbolically describe the possible treeedst In
other words, we want to represent the s-TA transitions

_ Y
9(@) =d  9p) =P
whereg =; p as corresponding s-FA transitions

) P, (9.0 J ) Pp,(0.5)) Y
whereqb (g,qy) and ‘f’(w (g,5)) are predicates over an extended

Boolean algebra4 of A so thatSa1(¢ (g.a) N ¢’<w (o,py) iffthe
condition 2(b) of STAPart holds (. @ =; q, andSat{p A ). If
pi # ¢i then the combined conditiop;,, , -1 A% (9,5 Should
be equivalent t@;.o = Gi.o A © A9, whereo is a new constarﬁ

We illustrate one possible way to define the extended effecti
Boolean algebrad to achieve the effect described above. We use
the property that &Cartesian product algebraf two effective
Boolean algebras is also an effective Boolean algebrat, Fats
Q = QU {¢° o} whereq®,0 ¢ Q are new statésand let
G ={{g,9) | g € T,q € Q*9}. Let the power set algebezf’
be represented by an effective Boolean algghfaForg € T', G €
Q"9 letIs(, o € Vg be such that

[sg.ple = {(9,0)}-

Whent(g) = 0 we write Is, for Is., (. A is defined as the

Cartesian product algebré x G of A andg. The universe ofd is

UxG.Forz = (a,b) € U x G letz[l] = aandz[2] =b. U 4

consists of all Boolean combinationsXxt.«(z[1]) andAz.vy(z[2])

fora € U 4 andy € Ug. Fora € ¥ 4 (similarly forv € Wg) let
def

—a(A.a(z(l])) = Az.oaa(z(l]).

Giventy € V4, 4 has, without loss of generality, an equivalent
disjunctive normal form (DNF)

k

V (Ozai(@1]) A (Aavi(2[2])))

i=1

8The definition ofg;., is similar to the notion oénvironmenin [2].

"The state;® is used below as thieitial statein the s-FA construction and
the stateo is used as @ontext stateas explained in Definition 17 below.
Assuming tha;® # o is not necessary but intuitively useful.

8There are several ways in whigh can be defined, one way is to use a
finite restriction of the BDD algebr8& and encodég, g) as a number.

where alla; € W4 and~; € Ug. The denotation of in A is
k
[l 4 = Uleila x [vle-
=1
Proposition 4. :‘i is an effective Boolean algebra and Jf is
decidable thernd is decidable.

Proof. The property that is an effective Boolean algebra follows
from Morgan’s laws, laws of distributivity of Boolean corutizes,
and thatA4 and G are effective Boolean algebras. Assutdeis
decidable.g is trivially decidable because it is finite. Deciding
satisfiability of¢) € ¥ ; reduces effectively to satisfiability checks
in A andg as follows. Take the DNF af as above. TheBat; (¢)
holds iff for somei bothSat4 («;) andSat; (;) hold. |

The following key construction is used to create the pradica
of the transitions in the s-FA.

Definition 17. Forg € T, g € Q%9 , andy € W 4, let

By = Nzp(2[1]) A Isg(2[2]), if 5(g) =
Blot0.0) ZXz.(2[1]) A I3 (g.q,.) (2[2]), for 1 <i < (g).

Definition 18. Thes-FA of M is M £ (A, Q, ¢°, F, §), where

§ = {(qo ¢0(pg>7 p) | 9() i>M]D}U
{(@i, Dl gy P) | 9(@) == .1 < i <t(9)}

Notice the duality between the transitions &f and the tran-
sitions of M. Recall that the concrete alphabetSis There is a
close connection betweéircontexts and words ovér ;. Namely,

a word overU ; describes a path from to the root of the
Y-context with precisely enough information to preservetesta
(in)distinguishability.

Example 5. Consider the s-TAM = My,; with M;; as in
Example 4. In this cas#/ is as follows:

Az.BolB1(2(1]) A 1S, (0,90 (2[2])
Oqo Az.Bo|B1(2[1]) A lsc(2[2]) o)
Az.BolB1(2[1]) A1S(£.(q.00) (2(2])

The transition fromg® to ¢ represents the transitions of that
read constructors of rank Sincec is the only constructor with
rank 0, the predicate on the transition checks that the constructo
component|2] is ¢ (Is.(z[2])) and that the label componeritl] of
the input symbol satisfigs, |51 — i.e., the predicate of the original
transition inM . The looping transitions oq represent the original
transition fromq to ¢ appearing inM. Since f has rank2, there
are two transitions frong to ¢ in M: one places the context on
the first child sy, (,q)) (2[2])) and one places the context on the
second child {s 7, (q,0)) (2[2])). SinceM is already minimall/ is
also minimal up to normalization. X

Observe thaiy® is always distinguishable from all the other
states inM when M is clean. This is because the predicaie,

wherec is a constant, is false for all transitions whose source is
different fromg®.
SFARed (s-TA state distinguishability via s-FA reduction)

Input deterministic clean s-TAZ, Output Z ;.

Returnz;, \{(¢°,q) | ¢ € Qu}



Lemma 5. If M is deterministic thed/ is deterministic.

Proof. Assume that\/ is deterministic. Consider two transitions

of M with same source states. If the guards use testers of distinc

constructors then their conjunction is unsatisfiable. Assuhat
they use testers for the same construgtand that the conjunction
of their guards is satisfiable. We must show that the targétstre
the same. Lek = j(g).

Assume first thak = 0. Then theM transitions have the form
(¢°, 0,4y, p) @nd(q°, @Yy, ,,7) for someyp,1h, p andr such that

9() S pandg() s . FromSat(¢?, ., A @7, ,,) follows
thatSat(p A1), and sincel! is deterministic it follows thap = r.

Assume now thak > 0. Then thel transitions have the
form (qi,cp’QNM»,T) and (pj,¢%d)’<g,ﬁ>>78) for some: and j,
1 <i,j <k, whereg(q) - r andg(p) %, s are transitions in
A. We are assuming that = p; and

Sall by, (9.0 N Plo (o))
and need to show = s. If we expand the definitions we get
Sat(Az.p(2[1]) A L3 (g, (2121) A(2[1]) A Ts (g ..y (212]))

from which follows thatSat(¢ A ¢) and .o = ;... The latter
is only possible ifi = j becauseo does not occur irQ ;. So
Gi:o = Diw, and by using;; = p;, we haveg = p. It follows by
determinism of\/ thatr = s. |

in M wherea € [¢], which means that there is a transition
9(Ti:p) i>M s. We have two sub-cases:

1. Suppose’(o) ¢ L'(s). This contradicts the choice gf, ¢,
andt in Hyp(p, ¢, t) becausddyp(s, r, t") holds with[¢'(o) | <
|t(o) |, contradictingthat |¢(o) | is smallest.

2. Supposet’'(o) € L"(s). Then, by using the transition
9(Gip) 250 s we get thatt’ (g[a] (o)) € £ (p), but this
contradictsthatt(o) ¢ £ (p).

Casep =m q = p =y, ¢¢ By way of contradiction, assume

there existp andq such thatp =, ¢ butp #,; ¢. Then we can

selectp, ¢, and a wordw over U 4 such thatHyp'(p, ¢, w) holds

with |w| beingsmallest

HYp (p, ¢, w): p =m ¢, p Zyy ¢ w € L (q) \ L ().
If lw| = 0theng € F, and fromp =y ¢ follows thatp € F

which contradictsthatw ¢ 2" (p).

Assume|w| > 0. If w starts with(a, (c, ())) then fromw €

£"(q) follows thatq must beg® which contradicts thag € Q.

Sow = {(a,(g,G0)) - v for some wordv andg € T with
b(g) > 1, and there is a transitiog(7) —— r Whereq; = ¢
anda € [¢] andv € Z'(r). Chooset'(o) € L'(r), t'(o)
exists becausd/ is clean. By usingy(§) —=u r, lett(o) =
t'(g[a](t:0)) € LT(q) where, forj # i, u; € L¥(g;). From

p =wm q follows now thatt(o) € L'(p). Therefore, there is

We are now ready to state our main theorem that relates the g(g;.,) Y40 s such thata € [] andr = s. It follows

minimality of M to the minimality of M. First we recall the
definition of indistinguishability of states in an s-FA, whiis a
simplified version of the definition used for s-TAs. Two state
andq areindistinguishabldn M, p =y ¢ it Zy,(p) = £ (0).

The analogue oﬁ”]'q(q) in M is theup-language of a statg:

L1, (q) E {Z-contextt(o) | t(ty) € L(M)}.

Thus,p =z ¢ iff [Ju (p) = 5]% (q). We write LT () for [ZRI (q)if
M is clear. It is technically convenient to work with up-laages
in the proof of Theorem 6.

Theorem 6. AssumeA is decidable andV/ is deterministic and
clean.Forallp,q e Qu:p=mw g p =y q.

Proof. The indistinguishability relation is well-defined and effe
tively computable forM due to Proposition 4 and Lemma 5. We
showp =, ¢ & p = ¢ forall p,g € Q. We do not need to con-
sider the completed versions df or M here,M can be assumed
to be partial.

Casep =, ¢ = p =m ¢ By way of contradiction, assume
there existp andq such thapp =, ¢ butp #u ¢. Then we can
selectp, ¢, and aX-contextt(o) such thatHyp(p, ¢, t) holds with
|t(o)| beingsmallest

Hyp(p, ¢,t): p =5 ¢ P Zum 4, (o) € LT(q) \ LT (p).

If [t(o)] = Otheno € L'(q) and thusg € F. But then, by
p =y ¢, We havep € F and soo € L (p), contradictingthat
t(o) ¢ LT (p).

Assume|t(o)] > 0. Then, for some context (o), t(o) =
t'(gla] (o)) and, because(o) € L'(g), there is a transition
g(@) ~Zsm 7 whereq; = ganda € [¢] andu; € L (g))
for j # i andt’(o) € L'(r). So there is a transition instance
(g, {a,{g,qi:0)),7) in M and fromp =,y ¢ follows that there is a
transition instancép, (a, (g, Gi-»)), s) in M for somes such that
r =y . So there is a corresponding transitign ‘z’éw,(g@:;p» ,8)

that there is a transitiofp, ‘z’éw,(gm;p»vs) in M. So there is a

transition instancep, (a, (g, Gi-o)), s) in M. We have two sub-
cases:

1. Suppose ¢ .#"(s). This contradicts the choice @f ¢, anw
in Hyp (p, ¢, w) becauseHyp'(s,r,v) holds with|v] < |w],
contradictingthat |w| is smallest.

2. Suppose € Z'(s). Then{a, (g,3i0)) - v € Z"(p), contra-
dictingthatw ¢ £'(p).

The case =u ¢ = p =y; ¢ and thus the theorem follows. O

An interesting observation about Theorem 6 is that conpteti
is never needed in its proof although it is assumed in thermia-
tion algorithm for s-FAs. In particulat/ ; contains elements such
as(a, (g, (0,0))) that are meaningless 0 but arise after com-
pletion of M. It is therefore crucial to implemend symbolically
in order to avoid explicit enumeration of all the symbol<jn

Complexity. Given an s-TAM, letn = |Q| be the number of
statesym = |A| be the number of transitions, constructarde
the maximum rank of any constructorlih and/ be the size of the
largest guard appearing in any transitionsAnGiven a predicate
o of sizel in the Boolean algebra, let f(I) be the complexity
of deciding satisfiability ofp. We first describe the size of the
reduced s-FAV and then analyze the complexity of minimizifg
using SFA minimization. Givegt ;; and M, the induced minimal
s-TA can then be built in time that is linear (up to normaliaatof
predicates).

The s-FAM hasi = n + 2 statesyin = O(mr) transitions
and the largest guard has site= O(mr + mf) due to the s-
FA completion. Given a predicate of sizel in the Boolean al-
gebraA, let gr(1) be the complexity of deciding satisfiability of
¢ (notice thatgy can depend ory). Using the symbolic exten-
sion of Moore algorithm [14, Section 3}\/ can be minimized
in time O(m?r?g;(mr + ml)). Using the symbolic extension of
Hopcroft algorithm [14, Section 4}/ can be minimized in time



200m O(g ¢ (m?r +m?l) +n log n). Finally, using the new min-
imization algorithmainlL, from [14, Section 5] can be mini-

mized in timeO(n*log n g¢(nmr + nmt)). As shown in [14] the
last algorithm outperforms the previous two. An interegt@spect
of this last algorithm is that most of the complexity is hadlby

the solver of the Boolean algebra. We will show that this asfze
crucial in practice.

6. Evaluation

We evaluated the performance of the minimization algorgthvith
three sets of s-TAS.

1. Bottom-up tree automata over small finite alphabets frioen t
tests appearing in the VATA library [26]. This experiments
allowed us to compare against existing tree automata iésar

2. s-TAs that operate ovédarge finite alphabetshat can be rep-
resented succinctly using the theory of bit-vectors. Thjzee-
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Figure 2. Bottom-up tree automata over small finite alphabets

ment showed how s-TAs are beneficial even in the presence of from the VATA library.

finite alphabets.

3. s-TAs over the alphabet sdifnit x Int x String). This experi-
ment showed how our algorithms performiafinite alphabets

We use STAPart and SFARed to refer to the algorithms de-
scribed in Section 4 and 5 respectively. We also measureutie r
ning time of STAPart on a complete automaton (referred to as
STAComp).

Implementation details. STAPart allows us to apply further opti-
mizations that take advantage &f being partial. In particular, we
use the notion of atate signaturgresented in [8]. The signature
of a statey is the set

sig, = {(g,[2],9) | 9(z) € Ihs(A), z; = q} U{$ [ g € F'}

One can show that if two statgsandq have different signatures,
thenp #r ¢. Our implementation starts by computing the signa-
tures of all states and then adfls ¢} to the initial value ofD for
all p andq having distinct signatures. This simple optimization is
very effective in practice.

In our implementation of SFARed the Boolean algebtds
implemented using the SMT solver Z3 [17], which indeed sufgpo
data types [171°

6.1 Smallfinite alphabets

The VATA library [26] for manipulatinghon-deterministidottom-
up tree automata contains a large collection of automatantas
appear when verifying concurrent programs. The automaiaaap
ing in the collection have ranks varying between 2 and 11elder
use the determinized and completed versions of 2414 auhoapat
pearing in the VATA library to compare our algorithms, thethad
library, and the implementation described in [8] (DTAmirorn
now on). The Lethal library is written in Java and requires th
input automaton to be complete. The DTAmin implementat®n i
written in C++, does not require the input automaton to be-com
plete, and is based on the highly optimized implementatidnee
automata minimization described in [8]. Fig. 2 shows thenmg
times parametrized by number of states (a), number of transi

9All the experiments were run on a 4-core Intel i7-2600 CPLDGHz,
with 8GB of RAM and we set our timeout to 300 seconds. For tige-al
rithms that require completion we do not measure the coiopléime.

10|n the case of large finite label alphabets, such as ASCllugieeof an
SMT solver may be an overkill. Another option is to use a finéstriction
of the BDD algebra to represent elementslbf by reserving certain bit
intervals for encoding the constructors, the labels, ardstate sequences,
respectively.
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Figure 3. Tree automata over large bit-vector alphabets.

(b), number of transitions in the complete automaton (aj, raum-
ber of transitions in the minimized automaton (d). In (c) wdyo
report the running times on the instances for which the cetigsi
algorithm did not time out.

Analysis. STAPart and DTAmin scale to large instances, and are
faster than the other algorithms. STAComp and Lethal timtdau
small instances since the size of the completed automatasgro
very quickly. SFARed is slower than STAPart and DTAmin, but
it still scales to large instances. From (c) and (d) we cantlsae
the bottleneck of SFARed is the number of states rather then t
number of transitions. This is due to the fact that the nunadfer
states directly affects the number of elements in the thdeé@mo
algebraA.

6.2 Large finite alphabets

Here we consider a particular set of s-TAs over the theoryitef b
vectors. This theory is widely used in practice, and finifghabet
techniques do not scale in this settiig.et 8, be the predicate
such thaisy (x) holds iff the (%32)’th bit of « is 1. Consider the
constructord” = {zero, two} wherefj(zero) = 0 andf(two)

11This phenomenon has also been demonstrated for finite atstcamar
strings in [14, Section 6.3].
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2 and letBy, for k& > 1 be an s-TA the following transitions:
=0 r=1 =2
Ap, = {zero — qo, zero — q1, zero — q2}
Bi Bi
U {two(gsi, g3i+2) — ¢3i+3, tWwo(q3it1, g3i+2) — q3i44,
Bi _
tWo(qait2, Gsit2) — 3its g

The final states oBy, areqgsr andgs,+1. In particular: the states
q3; are used at leved — i to denote that the leftmost leaf has label
(similarly for 1), and the stateg;+» are used at levél—i to denote
that all the underlying leaves have laBelA tree is accepted by,

iff it has depthk, is fully balanced, and each node label at level
I < k (root having level 0) satisfieS,_;. Moreover, all leaves are
labeled with2, except the leftmost leaf, which is labeled with either
0 or 1. The s-TA By, is not minimal: in particular, for every, the
stategs; is not distinguishable from the statg 1. We consider the
set of s-TAs{B;, | 1 < k < 100} and we compare our algorithms
to DTAmin in Fig. 3. In order to run the algorithm DTAmin we
finitize the alphabet by computing the set all the satisfiBolelean
combinations of the predicates appearing in the s-TA.

Analysis. DTAmin is outperformed by all the symbolic algo-
rithms and it times out ak = 17. For k < 32, the set of
minterms (i.e., all satisfiable Boolean combination) coteddrom
B, contains2® satisfiable Boolean combinations@f This causes
DTAmin’s running time to be exponential i In contrast, none of
the algorithms described in this paper requires the comcegire-
sentation of the alphabet. STAPart and SFARed perform coanpa
bly and are faster than STAComp.

6.3 Complex theories

7. Related Work

Minimization theory. The use of distinguishability refinement for
DFA minimization is attributed to Huffman [25] and Moore [28
e.g., the DFA minimization algorithm in [23, Fig. 3.8] usdsst
idea. A generalization of this idea to symbolic finite auttengs-
FAs) is investigated in [14]. This approach is particulanell
suited for symbolic alphabets where it is impossible tcaiteover
the whole alphabek. In contrast, such iteration is in general
needed for concrete alphabets [8, 12, 13] and implies a aoitypl
factor of |3|. The definition of=,, (Definition 10) is an extension
of [5, Definition 5.3] to infinite alphabets. It is similarlelated
to the definition ofEquivin [12] where theup-language of state
q of M is a generalization of theght-language of state @f a
DFA. Similarly, theleft-languageof states in finite word automata
is lifted to thedown-languagef states in finite tree automata [12].

Minimization algorithms. The original paper on tree automata
minimization [5] as well as the treatment of minimality ir9lare
theoretical. The description of minimality in [13] is alsddf and
it requires completion. An efficient implementation of the algo-
rithm for minimizing partialunrankedtree automata is presented
in [8]. Although highly optimized, the implementation in][8nly
works for finite alphabets. Our implementation of STAPaanir
Section 4 extends the one described in [8] to symbolic alptsab

Completion and large alphabets. When working with finite but
large alphabets, completion can cause an explosion in timbeu
of transitions of the automaton. This happens already foADF
and specialized algorithms have been proposed to minindre p
tial DFAs [30]. As shown in [14], the symbolic representatiof
transition helps mitigate the blow-up in the number of tithmiss.

Tree automata libraries. We compared our implementation with
the tree automata library Lethal [11] and the algorithm DTAmM
from [8]. Lethal only supports minimization of completedrau-
tomata. DTAmin is a stand-alone implementation of a minamiz
tion algorithm for partial tree automata and does not supmer
tree automata operations. Both these libraries only stifipéde al-
phabets. To the best of our knowledge Lethal and DTAmin age th
only open-source implementations of tree automata miritita
and are therefore the only libraries we compared against.

VATA and Timbuk are libraries for manipulating
non-deterministic tree automata [20, 26]. Timbuk does nppsrt
minimization. VATA supports state reduction of non-detaristic
tree automata via upward and downward bisimulation. For de-
terministic automata, the quotient automaton resultirgmfrup-
ward bisimulation is the minimal one. However, the perfoncel
of VATA is slower than that of DTAmin as DTAmin is highly
optimized for deterministic automata. Mona [21] supporigim
mization of deterministibinary guidedtree automata. This model
is orthogonal to ours and we cannot compare our implementa-
tion against the one in Mona. Mona also uses symbolic teclesig
(BDDs) to succinctly represent the automata states anditiams,

We compare the performance of our algorithms over a sample but it is specialized to the theory of bit-vectors. Applyiktpna’s

set of 280 randomly generated s-TAs over the alphablett x

Int x String). We consider trees over the ranked alphabet
{zero, one, three}, such thatj(zero) = 0, t(one) = 1, and
t(three) = 3. The guards of each s-TA are conjunctions of equal-
ity predicates over strings and linear predicates ovegere Each
s-TA is non-empty and has at least one rule for each conetruct
The results are shown in Fig. 4.

Analysis. STAComp times out for relatively small instances.
STAPart and SFARed are quite comparable; interestinglgpime
instances SFARed is actually faster. Given that the SFARea i
simple reduction to SFA minimization and uses an off-thelsh
SMT solver, we find this result remarkably surprising.

transition and state compression techniques to symbotanaata

is an interesting research direction. To the best of our kedge,
FAsT is the only available library for symbolic tree automata and
is the one we build on [16].

Automata with predicates. The concept of automata with predi-
cates instead of concrete symbols was first discussed inrf3t¢
context of natural language processing. The first paperrtodiy
introduce symbolic automata in combination with the notdef-
fective Boolean algebravas [33] and since then numerous exten-
sions have been proposed [15]. Symbolic tree automata lesare b
studied in [16, 32]. To the best of our knowledge, no algongHor
s-TA minimization have been studied prior to this paper.



Non-deterministic automata. The minimization algorithms pre-
sented in this paper require the s-TA to be deterministidebBe

minization of s-TAs is expensive and may imply an exponéntia
increase not only in the number of states but also in the numbe

of predicates [32]. Techniques based lisimulationhave been
proposed to directly minimize nondeterministic tree awata1—
3, 22]. The reduction to s-FAs we propose in Section 5 is a sfimb
extension of one of the reduction techniques proposed iVj2jle
our reduction handles tree contexts by buildingeamironmentl-

phabet, the reduction in [2] does so by creating a more comple

state space that enumerates all possible environmenteadvin;
while our reduction produces an automaton the one in [2]ywed
a transitions system. Therefore, our algorithm can diydetlerage
s-FA minimization and take advantage of the symbolic regpres
tation of the alphabet in way that the reduction [2] could dot
Without this symbolic representation the alphabet would$karge
as the complete s-TA and the minimization algorithm wouldabe
slow as STAPart.

Applying the bisimulation techniques from [1-3, 22] to non-
deterministic symbolic tree automata is an interestingaesh di-
rection we plan to pursue. Unfortunately, some of the teqines
that work well with finite alphabets, need new efficient ddtacs
tures to work in the purely symbolic setting. For exampleltisets
based omulti-terminal binary decision diagranid, 10] are used
in [1] to represent partitions and to efficiently split blsckver a
finite alphabet. The algorithm in [1] is an adaptation of thk-
tional coarsest partitioralgorithm [29] to automata witharge fi-
nite alphabets. Generalizing such data structures and algwith
represent finite partitions ovénfinite alphabets is one of the key
challenges that arises when transitioning to symbolicraate.

Applications. The development of the theory of symbolic tree au-
tomata is motivated by several concrete practical problgik
Solvers for Monadic Second-Order Logic (MSO) over treeskwor
well in practice by keeping tree automata minimal at eacp ste
and by representing the transitions symbolically [21]. dPamns
that manipulate trees are ubiquitous and domain-specifguiages
for tree transformation have been studied in several diffecon-
texts [16]. Automata minimization is used to keep the languzp-
resentations succinct and enable analysis of large pragram
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