

1980s Natural Language Processing

```
VP \rightarrow{ V (NP:(↑ OBJ)=↓ (NP:(↑ OBJ2)=↓) )
 (XP:(↑ XCOMP)=↓)
 [@(COORD VP VP)}.
```

```
salmon N IRR @(CN SALMON)
(个 PERSON)=3
{(个 NUM)=SG|(个 NUM)=PL}.
```

```
SUBJ [PRED "I"]

OBJ<sub>go</sub> [PRED "you"]

PRED 'perfect⟨XCOMP⟩SUBJ'

SUBJ — PRED 'bring⟨SUBJ, OBJ, OBJ<sub>go</sub>⟩'

OBJ [PRED "candy"]
```


Learning language

WRB VBZ DT NN VB TO VB DT How does a project get to be a NN JJ . : CD NN IN DT NN . year late ? ... One day at a time .

P(late | a, year) = 0.0087 P(NN | DT, a, project) = 0.9

The traditional word representation

motel

 $[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$

Dimensionality: 50K (small domain – speech/PTB) – 13M (web – Google 1T)

motel $[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$ AND hotel $[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0] = 0$

Word distributions - word representations

Through corpus **linguistics**, large chunks the study of language and **linguistics**.

The field of **linguistics** is concerned Written like a **linguistics** text book Phonology is the branch of **linguistics** that

linguistics =

Encoding meaning in vector differences

[Pennington et al., to appear 2014]

Crucial insight: Ratios of co-occurrence probabilities can encode meaning components

	x = solid $x = gas$		x = water	x = random	
P(x ice)	large	small	large	small	
P(x steam)	small	large	large	small	
$\frac{P(x \text{ice})}{P(x \text{steam})}$	large	small	~1	~1	

Encoding meaning in vector differences

[Pennington et al., to appear 2014]

Crucial insight: Ratios of co-occurrence probabilities can encode meaning components

	x = solid	x = gas	x = water	x = fashion
P(x ice)	1.9 x 10 ⁻⁴	6.6 x 10 ⁻⁵	3.0 x 10 ⁻³	1.7 x 10 ⁻⁵
P(x steam)	2.2 x 10 ⁻⁵	7.8 x 10 ⁻⁴	2.2 x 10 ⁻³	1.8 x 10 ⁻⁵
$\frac{P(x \text{ice})}{P(x \text{steam})}$	8.9	8.5 x 10 ⁻²	1.36	0.96

Christopher Manning

GloVe: A new model for learning word representations [Pennington et al., to appear 2014]

$$w_i \cdot w_j = \log P(i|j)$$

$$w_x \cdot (w_a - w_b) = \log \frac{P(x|a)}{P(x|b)}$$

$$J = rac{1}{2} \sum_{ij} f(P_{ij}) ig(w_i \cdot ilde{w}_j - \log P_{ij} ig)^2 \qquad f \sim igo|_{0.4}^{0.8}$$

Word similarities

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

leptodactylidae

rana

eleutherodactylus

Word analogy task [Mikolov, Yih & Zweig 2013a]

Model	Dimensions	•	Performance (Syn + Sem)
CBOW (Mikolov et al. 2013b)	300	1.6 billion	36.1

Machine translation with bilingual neural language models [Devlin et al., ACL 2014]

Christopher Manning

Machine translation with bilingual neural language models [Devlin et al., ACL 2014]

NIST 2012 Open MT Arabic Results

NNJM on best system

NNJM on "Baseline"

	Arabic
1 st Place (BBN)	49.5
2 nd Place	47.5
•••	•••
9 th Place	44.0
10 th Place	41.2

	Arabic
Previous best	49.8
BBN system	
+ NNJM	52.8

	Arabic
"Baseline	43.4
Hiero"	
+ NNJM	49.7

+ 3.0 BLEU

+ 6.3 BLEU

"Baseline Hiero" Features: (1) Rule probs, (2) lexical smoothing, (3) KN LM, (4) word penalty, (5) concat penalty

Sentence structure: Dependency parsing

Universal Stanford Dependencies

[de Marneffe et al., LREC 2014]

A common dependency representation and label set applicable across languages – http://universaldependencies.github.io/docs/

Sentence structure: Dependency parsing

Deep Learning Dependency Parser

He_PRP

[Chen & Manning, forthcoming 2014]

Softmax layer:

 $p = \operatorname{softmax}(W_2h)$

Hidden layer:

$$h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$$

Input layer: $[x^w, x^t, x^l]$

POS tags arc labels words Stack Buffer ROOT has_VBZ good_JJ control_NN nsubi

Configuration

Deep Learning Dependency Parser

[Chen & Manning, forthcoming 2014]

Parser type	Parser	LAS (Label & Attach)	•
Transition- based	MaltParser (stackproj)	86.9	469
Graph-based	MSTParser	87.6	10
	TurboParser (full)	89.7	8

Grounding language meaning with images

[Socher, Karpathy, Le, Manning & Ng, TACL 2014]

Christopher Manning

Example dependency tree and image

poss

bike

Recursive computation of dependency tree

$$h_i = f\left(\frac{1}{\ell(i)}\left(W_v x_i + \sum_{j \in C(i)} \ell(j) W_{\text{dep}(i,j)} h_j\right)\right)$$

Evaluation

Data of [Rashtchian, Young, Hodosh & Hockenmaier 2010]

- 1. A woman and her dog watch the cameraman in their living with wooden floors.
- 2. A woman sitting on the couch while a black faced dog runs across the floor.
- 3. A woman wearing a backpack sits on a couch while a small dog runs on the hardwood floor next to her.
- 4. A women sitting on a sofa while a small Jack Russell walks towards the camera.
- 5. White and black small dog walks toward the camera while woman sits on couch, desk and computer seen in the background as well as a pillow, teddy bear and moggie toy on the wood floor.

A gray convertible sports car is parked in front of the trees.

A close-up view of the headlights of a blue old-fashioned car.

Black shiny sports car parked on concrete driveway.

Five cows grazing on a patch of grass between two roadways.

1000 images, 5 descriptions each; used as 800 train, 100 dev, 100 test

A jockey rides a brown and white horse in a dirt corral.

A young woman is riding a Bay hose in a dirt riding-ring.

A white bird pushes a miniature teal shopping cart.

A person rides a brown horse.

Results for image search

Model	Mean rank
Random	52.1
Recurrent NN	19.2
Constituency Tree Recursive NN	16.1
kCCA	15.9
Bag of Words	14.6
Dependency Tree Recursive NN	12.5

Lower is better!

How to represent the meaning of texts

[Le and Mikolov, ICML 2014, Paragraph Vector]

Political Ideology Detection Using Recursive Neural Networks

[lyyer, Enns, Boyd-Graber & Resnik 2014]

They dubbed it the

big lie about

death tax " and created a its adverse effects on small businesses

Christopher Manning

Extracting Semantic Relationships

[Socher, Huval, Manning & Ng, EMNLP 2012]

My [apartment]_{e1} has a pretty large [kitchen]_{e2}

→ component-whole relationship (e2,e1)

Save the planet and return your name badge before you leave (on Tuesday)

Image credits and permissions

Slide 2 and 27: Trinity College Dublin library Free use picture from http://www.freegreatpicture.com/city-impression/trinity-college-dublin-the-old-library-14885

Slide 3 From a paper of the author (Manning 1992, Romance is so complex) http://nlp.stanford.edu/manning/papers/romance.pdf

Slides 4: PR2 robot reading CC BY-SA 3.0 by Troy Straszheim from http://commons.wikimedia.org/wiki/File:PR2 Robot read s the Mythical Man-Month 2.jpg

Image credits and permissions

Slide 10 images from Wikipedia (i) Public domainhttp://en.wikipedia.org/wiki/Litoria#mediaviewer/File:Caerulea_crop ped(2).ipg (ii) Brian Gratwick p://en.wikipedia.org/wiki/Pristimantis cruentus#mediaviewer/File:Pristim antis cruentus studio.jpg (iii) Grand-Duc, Niabot p://en.wikipedia.org/wiki/Edible_frog#mediaviewer/File:Rana_esculenta Nymphaea edit.JPG Públic domain p://en.wikipedia.org/wiki/Eleutherodactylus#mediaviewer/File:Eleuthero dactylus mimus.jpg

Slides 19, 20, 21, 25 Images from the PASCAL Visual Object Challenge 2008 data set http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/

Results on Gao et al. (2014) Dataset

	CW08	RNN		CBOW		GloVe	GloVe (840B)
Subtask	dim=50	dim=640	dim=1600	dim=100	$\dim=300$	dim=300	dim=300
All capital cities	0.62%	1.23%	1.81%	6.62%	11.28%	54.79%	59.95%
Currency	0.25%	0.66%	0.87%	3.13%	4.32%	4.00%	3.57%
City-in-state	0.67%	3.14%	3.38%	1.55%	2.25%	7.94%	9.65%
Man-Woman	4.83%	18.46%	20.82%	25.89%	28.60%	38.38%	38.99%
Adjective to adverb	1.40%	1.17%	2.01%	3.45%	3.23%	8.84%	43.72%
Comparative	1.55%	34.92%	40.28%	33.41%	42.53%	53.18%	74.65%
Superlative	1.94%	25.33%	26.21%	23.56%	29.07%	33.08%	78.63%
Present participle	1.53%	20.03%	23.26%	8.20%	11.75%	20.21%	45.13%
Nationality adjective	3.07%	3.15%	3.76%	23.66%	47.44%	78.76%	90.35%
Past tense	1.84%	19.51%	22.77%	15.51%	24.15%	31.38%	49.58%
Plural nouns	3.21%	14.42%	18.28%	23.95%	38.82%	45.04%	75.15%
Plural verbs	2.44%	22.41%	26.62%	17.28%	31.82%	36.30%	60.39%
Total	2.36%	14.69%	17.85%	16.70%	27.10 %	33.44%	56.53%

Results on Gao et al. (2014) Dataset

	CW08	RNN		CBOW		GloVe	GloVe (840B)
Subtask	dim=50	dim=640	dim=1600	dim=100	dim=300	dim=300	dim=300
Antonym	0.28%	2.88%	3.12%	2.74%	4.57%	6.93%	6.18%
Attribute	0.22%	0.24%	0.42%	0.68%	1.18%	2.55%	6.41%
Causes	0.00%	0.00%	0.00%	0.15%	1.08%	1.38%	0.31%
DerivedFrom	0.05%	0.16%	0.18%	0.33%	0.63%	1.05%	2.51%
Entails	0.05%	0.05%	0.07%	0.26%	0.38%	0.61%	0.95%
HasContext	0.12%	0.16%	0.19%	0.28%	0.35%	0.75%	0.54%
InstanceOf	0.08%	0.81%	0.64%	0.48%	0.58%	1.56%	0.82%
IsA	0.07%	0.42%	0.47%	0.42%	0.67%	0.77%	0.90%
MadeOf	0.03%	0.10%	0.13%	0.33%	0.72%	1.77%	1.66%
MemberOf	0.08%	0.11%	0.13%	0.58%	1.06%	5.59%	2.83%
PartOf	0.31%	0.55%	0.60%	1.17%	1.27%	7.85%	7.10%
RelatedTo	0.00%	0.02%	0.00%	0.20%	0.05%	0.10%	0.24%
SimilarTo	0.02%	0.14%	0.18%	0.14%	0.29%	0.40%	0.62%
Total	0.06%	0.35%	0.40%	0.40 %	0.66%	0.90%	1.31%