
Software Analytics as a Learning Case in Practice:
Approaches and Experiences

Dongmei Zhang1, Yingnong Dang1, Jian-Guang Lou1, Shi Han1, Haidong Zhang1, Tao Xie2

1Microsoft Research Asia, Beijing, China
2North Carolina State University, Raleigh, NC, USA

{dongmeiz,yidang,jlou,shihan,haizhang}@microsoft.com, xie@csc.ncsu.edu

ABSTRACT
Software analytics is to enable software practitioners to perform
data exploration and analysis in order to obtaininsightful andac-
tionableinformation for data-driven tasks around software and ser-
vices. In this position paper, we advocate that when applying ana-
lytic technologies in practice of software analytics, one should (1)
incorporate a broad spectrum of domain knowledge and expertise,
e.g., management, machine learning, large-scale data processing
and computing, and information visualization; and (2) investigate
how practitioners take actions on the produced information, and
provide effective support for such information-based action taking.
Our position is based on our experiences of successful technology
transfer on software analytics at Microsoft Research Asia.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, diagnostics; D.2.9 [Software Engineering]: Manage-
ment—Productivity, software quality assurance (SQA)

General Terms
Experimentation, Management, Measurement

Keywords
Software analytics, machine learning, technology transfer

1. INTRODUCTION
A huge wealth of various data exists in the software development

process, and hidden in the data is information about the quality of
software and services as well as the dynamics of software develop-
ment. With various analytic technologies (e.g., data mining, ma-
chine learning, and information visualization),software analytics
is to enable software practitioners1 to perform data exploration and

1Software practitioners typically include software developers,
testers, usability engineers, and managers, etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MALETS’11, November 12, 2011, Lawrence, Kansas, USA
Copyright 2011 ACM 978-1-4503-1022-2/11/11 ...$10.00.

analysis in order to obtaininsightfulandactionableinformation for
data-driven tasks around software and services2.

Insightful information is information that conveys meaningful
and useful understanding or knowledge towards performing the tar-
get task. Typically insightful information is not easily attainable by
directly investigating the raw data without aid of analytictechnolo-
gies. Actionable information is information upon which software
practitioners can come up with concrete solutions (better than ex-
isting solutions if any) towards completing the target task.

Developing a software analytic project typically goes through it-
erations of the life cycle of four phases: task definition, data prepa-
ration, analytic-technology development, and deploymentand feed-
back gathering. Task definition is to define the target task tobe as-
sisted by software analytics. Data preparation is to collect data to
be analyzed. Analytic-technology development is to develop prob-
lem formulation, algorithms, and systems to explore, understand,
and get insights from the data. Deployment and feedback gather-
ing involves two typical scenarios. One is that, as researchers, we
have obtained some insightful information from the data andwe
would like to ask domain experts to review and verify. The other
is that we ask domain experts to use the analytic tools that wehave
developed to obtain insights by themselves. Most of the times it is
the second scenario that we want to enable.

Among various analytic technologies, machine learning is awell-
recognized technology for learning hidden patterns or predictive
models from data. It plays an important role in software analyt-
ics. In this position paper, we argue that when applying analytic
technologies in practice of software analytics, one should

• incorporate a broad spectrum of domain knowledge and ex-
pertise, e.g., management, machine learning, large-scaledata
processing and computing, and information visualization;

• investigate how practitioners take actions on the produced
insightful and actionable information, and provide effective
support for such information-based action taking.

Our position is based on a number of software analytic projects
that have been conducted at the Software Analytics (SA) group3

at Microsoft Research Asia (MSRA) in recent years (in the rest of
this paper, we refer to members of the software analytic projects at
MSRA as the SA project teams). These software analytic projects
have undergone successful technology transfer within Microsoft for
enabling informed decision making and improving quality ofsoft-
ware and services. We expect that our position will provide useful

2We coin this termsoftware analyticsto expand the scope of previ-
ous work [1,6] on analytics for software development and previous
work on software intelligence [5].
3http://research.microsoft.com/groups/sa/

guidelines for other researchers and practitioners in successfully
carrying out software analytics research for technology transfer.

2. PROJECT OBJECTIVES
The main objectives of MSRA software analytic projects are to

advance the state of the art in software analytics and help improve
the quality of Microsoft products as well as the productivity of Mi-
crosoft product development. The target customers (in short as cus-
tomers) are primarily practitioners from Microsoft product teams.
Such emphasis also benefits the broader research and industrial
communities because Microsoft product development belongs to
important representatives of modern software development, along
dimensions such as the team scale, software complexity, andsoft-
ware types. Some of the MSRA project outcomes could also even-
tually reach out to broad communities through their integration
with Microsoft development tools. For example, the code-clone
detection tool [2] resulted from the the first example project dis-
cussed in Section 4 has been integrated in Microsoft Visual Studio
vNext, benefiting broader communities.

3. CHALLENGES
There are two main categories of challenges to overcome in or-

der to achieve the stated objectives. The first category is rooted
from the characteristics of the data being analyzed with analytic
technologies.

Data scale. Typical data in software analytics is of large scale,
e.g., due to the large scale of software being developed and the large
size of software development teams. Some tasks require to analyze
division-wide or even company-wide code bases, which are far be-
yond the scope of a single code base (e.g., when conducting code-
clone detection [2]). Some tasks require to analyze a large quantity
of (likely noisy) data samples within or beyond a single codebase
(e.g., when conducting runtime-trace analysis [3]). Although lack-
ing data samples may not be an issue in this context of machine
learning, the large scale of data poses challenges for data process-
ing and analysis, including learning-algorithm design andsystem
building.

Data complexity. Typical data in software analytics is of high
complexity, which is partly due to the high complexity of software
being developed. For example, runtime traces from distributed sys-
tems [3] need to be correlated, while traces from multiple threads [7]
need to be split. System logs [3] include unstructured textual in-
formation. There could be high dependencies across traces and
noises among traces. In addition, real-world usage data produced
from in-field operations offers substantial opportunitiesfor various
tasks such as debugging (e.g., those assisted by the Microsoft Er-
ror Reporting system [4]). In addition to high complexity, such
data is typically distributed and often partial (e.g., collected with
sampling-based techniques to reduce runtime overhead). All these
characteristics pose challenges for analytic technologies such as
machine learning.

The second category is rooted from the characteristics of the
tasks being assisted by software analytics.

Focus on ultimate tasksbeing assisted. Among tasks assisted
by software analytics, some tasks are intermediate tasks and some
are ultimate tasks. Usually intermediate tasks produce information
toward solving ultimate tasks. For example, code-clone detection
is considered as an intermediate task, which produces information
towards refactoring and defect detection that are ultimatetasks.
Such focus on ultimate tasks requires the mandatory inclusion of
the phase of deployment and feedback gathering in the life cycle
of a software analytic project. Unlike most previous research on

code-clone detection, we should not stop at measuring the preci-
sion and recall of detected clones; rather, we should push further to
accomplish that the detected clones could effectively helpaddress
ultimate tasks such as refactoring and defect detection, and should
measure such benefits in evaluations.

Engagement of customersduring the development process of a
software analytic project. It is well recognized that engaging cus-
tomers is a challenging task especially in the context of software
engineering tools. Customers may have resistance to proposed
changes (due to analytic-tool adoption) on their existing way of
carrying out a task. In addition, due to tight development sched-
ule, they may not be able to invest time on gaining understanding
of the best/worst scenarios for applying an analytic tool. However,
developing a software analytic project typically needs theengage-
ment of customers in iterations of the four phases in the project
life cycle, e.g., to get better understanding on the tasks and domain
knowledge. Among the phases, especially the phase of deployment
and feedback gathering, it is crucial for the produced analytic tools
to have good usability, e.g., providing effective visualization and
manipulation of analysis results.

4. EXPERIENCES
We next discuss our experiences in different phases of develop-

ing two example MSRA analytic tools that have been successfully
adopted at various Microsoft product teams. XIAO [2] is a tool for
detecting code clones of source-code bases, targeting at tasks such
as refactoring and defect detection. StackMine is a tool forlearn-
ing performance bottlenecks from call-stack traces collected from
real-world usage, targeting at tasks such as performance analysis.

4.1 Task Definition
Task definition is to define the target task to be assisted by soft-

ware analytics. There are two models (or their mixture) of initiat-
ing a software analytic project at MSRA: thepull model andpush
model.

StackMine primarily follows the pull model. Before the Stack-
Mine project was started, during one of the meetings with theSA
team, a member of a Microsoft product team talked about theirstate
of practice in inspecting a single stream of stack traces4 for perfor-
mance analysis, as well as the challenges that they were facing on
inspecting a large number of trace streams. Then the SA project
team started the StackMine project to address the (most urgent)
need of the target customers. Typically, projects of this pull model
may more easily fit in the workflow of the target product team, fa-
cilitating the integration of the analytics tools in the product team’s
activities.

XIAO primarily follows the push model. Based on the research
literature and initial investigations of some Microsoft code bases,
the SA project team gained insights and realized the existence of
defects related to code clones especially near-miss clones, but did
not know their extent. Then the SA project team developed the
XIAO prototype and demonstrated the prototype to various Mi-
crosoft product teams to “sell” the solution to them. Through it-
erations of interactions with product teams, the SA projectteam
concretized the details of the target tasks of refactoring and defect
detection.

4.2 Data Preparation
Data preparation is to collect data to be analyzed. For data prepa-

ration, there are two types of infrastructure supports:existing ones

4One stream of stack traces corresponds to one usage scenariothat
exhibits performance issues.

in industryandin-houseones.
The data preparation of StackMine primarily relies on the ex-

isting Microsoft infrastructure support. In particular, StackMine
relies on the Event Tracing for Windows (ETW), which has been
included in Microsoft Windows 2000 and later. Often the time,
existing infrastructures are designed to collect data for various pur-
poses. If these infrastructures provide insufficient support for a spe-
cific analytic task, it may be difficult or take relatively long time
for the infrastructure development team to accommodate feature
requests.

The data preparation of XIAO primarily relies on in-house code-
analysis front end. For in-house infrastructure support, since the
infrastructure development is under the control of the SA project
team, it is relatively easy to improve infrastructure support to sat-
isfy the need of software analytic projects. For example, parsers
based on abstract syntax tree (AST) were initially considered for
XIAO’s analysis front end. In the end, to parse source code from
heterogonous compilation environments, a token-based parser was
developed as XIAO’s analysis front end.

4.3 Analytic-Technology Development
Analytic-technology development is to develop problem formu-

lation, algorithms, and systems to explore, understand, and get in-
sights from the data. Due to the large scale of the data being an-
alyzed, analytic technologies such as machine learning techniques
need to be scalable. The realization of scalability includes both the
design and implementation of analytic technologies.

The SA project team needs to acquire deep knowledge about the
data (including its format and semantics) and often the timethis
acquirement process may be non-trivial. For example, for Stack-
Mine, the SA project team needs to learn the format and semantics
of ETW traces via reading the ETW documentations and trace an-
notations as well as consulting with the customers.

The SA project team needs to acquire good understanding of tar-
get tasks. For example, for StackMine, it is important to under-
stand how performance analysts (the customers) currently conduct
performance analysis on individual ETW traces. Such understand-
ing could help define what analysis results the technologiesneed to
provide. Acquiring such understanding requires intensiveinterac-
tions with performance analysts. For XIAO, it is important to un-
derstand what types of clones would be better for a specific target
task. For example, for refactoring, exactly-match clones are prefer-
able over near-miss clones, while for defect detection, near-miss
clones are preferable over exactly-match clones.

The SA project team needs to acquire domain or task knowledge
from customers and this acquirement process is often challenging.
One main reason is that the customers may not be able to effec-
tively identify, abstract, or articulate the domain or taskknowledge
required by the SA project team. The customers understand and
use such knowledge in their daily work, and they could respond
to judge given concrete cases but have difficulties to articulate the
knowledge to others as general rules. For example, for StackMine,
it is important for the SA project team to realize some function calls
such as a system function callSendMessage are typically expen-
sive and need to be filtered out from the analysis results to better
assist performance analysis. For XIAO, it is important for the SA
project team to realize that clones occurring at debugging state-
ments such as long-printing and assertion statements are typically
not useful for the target tasks. XIAO needs to have built-in filter-
ing mechanisms to filter them out from the analysis results tobetter
assist refactoring or defect detection.

Due to the complexity of the target tasks or the scale of the data
being analyzed, often the time there may not be off-the-shelf learn-

ing algorithms or implementations that could work well withthe
scale of the data or the target tasks. In contrast to academicprojects
on software analytics (which often do not include effort fortechnol-
ogy transfer), SA project teams may need to develop new learning
algorithms or implementations. For example, for StackMine, no
single existing learning algorithm is capable of providingthe de-
sired analysis results for the target tasks. For the target tasks, the
SA project team composed a frequent sequence mining algorithm
and a clustering algorithm. Even for each of these two algorithms
being composed, no existing implementations are availableto han-
dle the scale of the data being analyzed. The SA project team
implemented these two algorithms with desired scalability. For
XIAO, no existing algorithm is sufficient for the target tasks. The
SA project team designed and implemented home-grown matching
algorithms for the target tasks.

4.4 Deployment and Feedback Gathering
Deployment and feedback gathering involves two typical scenar-

ios. One is that, as researchers, we have obtained some insightful
information from the data and we would like to ask domain experts
to review and verify. The other is that we ask domain experts to
use the analytic tools that we have developed to obtain insights by
themselves. Most of the times it is the second scenario that we want
to enable. These scenarios in the phase of deployment and feed-
back gathering require that the deployed tools have good usability
as well as great data presentation and interaction mechanisms that
are powered by information visualization techniques.

As an integrated part of the deployed tools, the SA project team
needs to design a mechanism along with its user interface that al-
lows customers to integrate their domain knowledge into thetool,
or customize the tool based on their specific needs. In addition,
sometimes the SA project team may need to educate customers
that doing so may be necessary to achieve satisfactory task results
(otherwise, some customers may have high expectation to over-
optimistically consider the use of the tools to be just one mouse
click). For example, the StackMine user interface allows customers
to specify filtering scopes for traces, frequent function-call sequences,
or sequence clusters. The XIAO user interface allows customers to
set different similarity-threshold values for matching depending on
their target tasks: lower threshold values for security-defect detec-
tion to reduce the chance of missing important defects, and higher
threshold values for larger code bases or less allocated inspection
time to reduce the required clone-inspection effort.

The SA project team needs to design tool user interfaces to al-
low customers toincrementallyintegrate their knowledge to tools
over time of their use of the tools. In other words, the more the
customers use the tools, the “smarter” the tools become. Forexam-
ple, the StackMine user interface allows customers to turn “good”
learned frequent function-call patterns into the knowledge base of
bottleneck signatures so that new traces could be matched against
these signatures. When the matching is successful, interactions
with the analysis results on new traces could be avoided to save
inspection cost. The XIAO user interface allows customers to col-
laboratively tag the analysis results (e.g., uninteresting, problem-
atic inconsistencies, and refactoring opportunities) of acode base
so that interactions with the analysis results for later versions of the
code base could be reduced to save inspection cost.

4.5 Domain Knowledge and Expertise
Crosscutting the experiences gained from the four phases ofde-

veloping a software analytic project, the most important one is that
various domain knowledge and expertise are strongly neededin
successfully developing a software analytic project for technology

transfer. Besides collaboration between researchers and customers,
virtual SA project teams could be formed via open and extensive
collaboration among researchers in domains such as machinelearn-
ing, visualization, system, and software engineering.

Some major types of domain knowledge are listed below.
Specific application domain knowledge.This type of knowl-

edge is typically specific to the software application underanalysis:
it is difficult for the SA project team to pre-hardcode such knowl-
edge into the analytic tools. Therefore, the customers are the ones
to acquire such knowledge and the SA project team needs to design
tools to allow the customers to integrate such knowledge into tools
at the tool usage time (see Section 4.4).

Common application domain knowledge.This type of knowl-
edge is typically common across a family of software applications
under analysis (e.g., applications using system APIs from kernel32.dll).
Therefore, the SA project team can pre-hardcode such knowledge
into the analytic tools. As discussed in Section 4.3, transferring
such knowledge from the customers to the SA project team could
be challenging.

Data domain knowledge. The SA project team needs to ac-
quire such knowledge to develop analytic tools (e.g., in thephase
of data preparation). For some tasks, the customers may alsoneed
to acquire such knowledge. For example, when using the Stack-
Mine tool, the customers need to inspect raw stack traces guided
by StackMine.

Some major types of expertise are listed below.
Task expertise. The customers need to have expertise to carry

out the target tasks, with the assistance of analytic tools developed
by the SA project team. The SA project team would also need to
work with the customers to learn the workflow of the customersin
carrying out the target tasks in order to develop analytic tools that
could effectively help the customers to perform the workflowor
even improve the workflow.

Management expertise. The SA project team needs to have
members with good management and communication skills to in-
teract with the customers and manage the team. Successful tech-
nology transfer heavily relies on gaining sustained trust of the cus-
tomers on the SA project team, soliciting requirements fromthe
customers, and managing software analytic projects to fulfil the re-
quirements.

Machine learning expertise.The SA project team needs to have
expertise to develop machine learning algorithms and tools. The
SA project team needs to have good understanding of existingma-
chine learning algorithms and their implementations (not just in a
black-box way).

Large-scale data processing/computing expertise.The SA
project team needs to have expertise to design and implementscal-
able data processing tools and learning tools. Such expertise is
coupled with system-building expertise.

Information visualization expertise. The SA project team needs
to have expertise to design and implement good user interfaces and
visualization for presenting analysis results and allowing the cus-
tomers to manipulate the final analysis results as well as rawdata
or intermediate results produced by analytic tools (see Section 4.4).

5. CONCLUSION
Based on our experiences of successful technology transferon

software analytics at Microsoft Research Asia, in this position pa-
per, we have advocated that when applying analytic technologies in
practice of software analytics, one should (1) incorporatea broad
spectrum of domain knowledge and expertise, e.g., management,
machine learning, large-scale data processing and computing, and
information visualization; and (2) investigate how practitioners take

actions on the produced insightful and actionable information, and
provide effective support for such information-based action taking.

Recently, Zeller et al. [8] discuss some pitfalls in conducting re-
search on empirical software engineering. One of their sugges-
tions as quoted below supports the second part of what we have
advocated when developing a software analytic project:“ Get real.
... Far too frequently though... do we rely on data results alone
and declare improvements on benchmarks as “successes”. What is
missing is grounding in practice: What do developers think about
your result? Is it applicable in their context? How much would it
help them in their daily work?”[8] In this position paper, we have
provided successful concrete examples on how to “get real” in the
domain of software analytics.

Acknowledgment
We thank the members of the Software Analytics group at Mi-
crosoft Research Asia for contributing to the example projects de-
scribed in this position paper and helping shape the position. We
thank Ira Baxter, Judith Bishop, Prem Devanbu, Harald Gall,Mark
Harman, David Notkin, Sriram Rajamani, Wolfram Schulte, David
Weiss, and Minghui Zhou for their feedback on an earlier version
of this paper.

6. REFERENCES
[1] R. P. Buse and T. Zimmermann. Analytics for software

development. InProc. FSE/SDP Workshop on Future of
Software Engineering Research (FoSER 2010), pages 77–80,
2010.

[2] Y. Dang, S. Ge, R. Huang, and D. Zhang. Code clone
detection experience at Microsoft. InProc. 5th International
Workshop on Software Clones (IWSC 2011), pages 63–64,
2011.

[3] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly
detection in distributed systems through unstructured log
analysis. InProc. 9th IEEE International Conference on Data
Mining (ICDM 2009), pages 149–158, 2009.

[4] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (very) large: ten years of implementation
and experience. InProc. 22nd ACM SIGOPS Symposium on
Operating Systems Principles (SOSP 2009), pages 103–116,
2009.

[5] A. E. Hassan and T. Xie. Software intelligence: Future of
mining software engineering data. InProc. FSE/SDP
Workshop on Future of Software Engineering Research
(FoSER 2010), pages 161–166, 2010.

[6] K. Hullett, N. Nagappan, E. Schuh, and J. Hopson. Data
analytics for game development: NIER track. InProc. 33rd
International Conference on Software Engineering (ICSE
2011), pages 940–943, 2011.

[7] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu. Mining program
workflow from interleaved traces. InProc. 16th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 2010), pages 613–622, 2010.

[8] A. Zeller, T. Zimmermann, and C. Bird. Failure is a four-letter
word - a parody in empirical research. InProc. 7th
International Conference on Predictive Models in Software
Engineering (PROMISE 2011), pages 5:1–5:7, 2011.

