
An Empirical Study on Quality Issues of Production
Big Data Platform

Hucheng Zhou∗, Jian-Guang Lou∗, Hongyu Zhang∗, Haibo Lin†, Haoxiang Lin∗, Tingting Qin∗
∗Microsoft Research, Beijing, China

Email: {huzho,jlou,honzhang,haoxlin,tiqint}@microsoft.com
†Microsoft, Beijing, China

Email: haibolin@microsoft.com

Abstract— Big Data computing platform has evolved to be a
multi-tenant service. The service quality matters because system
failure or performance slowdown could adversely affect business
and user experience. To date, there is few study in literature on
service quality issues of production Big Data computing platform.
In this paper, we present an empirical study on the service
quality issues of Microsoft ProductA, which is a company-wide
multi-tenant Big Data computing platform, serving thousands of
customers from hundreds of teams. ProductA has a well-defined
escalation process (i.e., incident management process), which
helps customers report service quality issues on 24/7 basis. This
paper investigates the common symptom, causes and mitigation
of service quality issues in Big Data platform. We conduct a
comprehensive empirical study on 210 real service quality issues
of ProductA. Our major findings include (1) 21.0% of escalations
are caused by hardware faults; (2) 36.2% are caused by system
side defects; (3) 37.2% are due to customer side faults. We also
studied the general diagnosis process and the commonly adopted
mitigation solutions. Our study results provide valuable guidance
on improving existing development and maintenance practice
of production Big Data platform, and motivate tool support.
Index Terms- empirical study, Big Data computing, quality issues,
escalations, fault tolerance.

I. INTRODUCTION

Big Data computing infrastructures, including distributed
storage systems (GFS [12], HDFS [4]) and distributed data-
parallel execution engines (MapReduce [8], Hadoop [3] and
Dryad [16]), are prevalently used for storing and processing
web-scale data. ProductA is a distributed Big Data computing
platform that is used in Microsoft for storing and analyzing
massive amounts of data. Many Microsoft product teams are
using ProductA for tasks such as web-scale data mining,
ranking search results, and business intelligence. ProductA
has also evolved to be a company-wide large ecosystem,
where customers share the storage and processing clusters with
hundreds of thousands commodity servers. There are tens of
thousands of jobs executed by ProductA per day, with different
workloads and scenarios. The scale is still in fast increasing.

ProductA is designed to be fault tolerant: jobs that failed
are retried when needed. Although a variety of hardware and
software faults are tolerated, still some jobs fail or suffer perfor-
mance slowdown, which adversely affects the business and the
user experience. When jobs fail or slow down, customers expect
the ProductA support team to investigate and resolve issues
on 24× 7 basis. It is challenging to guarantee service quality
for all users with different service level agreements (SLAs).
ProductA has a well-defined incident management process that
helps customers deal with the live site issues as they come in.

When customers encounter major problems, they can escalate
the issues via email. These important customer issue reports,
which are called escalations internally, contain the descriptions
of the issues experienced by customers, the business impact,
and the relevant reproduction and troubleshooting details. The
escalations are usually stored in an internal tracking system.
Designated Responsible Individuals (DRIs) of the ProductA
support team are responsible for tracking and resolving the
escalations. DRIs prioritize all the escalations based on their
business impact and severity. They are also responsible for quick
mitigation of the issues and follow-up postmortem analysis of
the root-causes.

Over the years, many empirical studies have been per-
formed to understand the characteristics of quality issues of
conventional software systems (e.g., [24], [20], [7], [10], [2],
[29]). However, to our best knowledge, few empirical study
was carried out for large-scale Big Data computing platforms,
which are a modern form of software system. We believe that
it is important to understand the characteristics of the quality
issues of Big Data computing platforms, so that we could apply
the findings to guide rational system design and operation.

In this paper, we present our study on the quality issues of
ProductA1, in order to achieve a better understanding of the
quality issues associated with a Big Data computing platform.
We manually examine 210 randomly sampled escalations for
ProductA. Our study aims to address the following three
questions:

1) RQ1: What are the common symptoms of quality issues
in Big Data computing platform?

2) RQ2: What are the common faults that hurt service quality
of Big Data computing platform?

3) RQ3: What are the common mitigation, and what are
helpful in making fast mitigation decisions?

Answers to these questions are generally useful for both
development engineers and maintenance engineers, to improve
their daily activities including system operation, infrastructure
design, and software development. The study also motivates
automatic diagnosis tools to reduce the manual maintenance
efforts.

The rest of the paper is organized as follows. Section II
provides a brief primer on ProductA. Section III describes
the design of our empirical study. Section IV, Section V,

1Please note that the survey was conducted in 2012. The results presented in
this paper may not necessarily reflect the quality status of the current version
of ProductA.

and Section VI present the common symptoms, causes, and
mitigations of the escalations, respectively. We discuss the
issues and lessons learned from this study in Section VII.
Section VIII introduces the related work, and Section IX
concludes this paper.

II. BACKGROUND: THE BIG DATA COMPUTING PLATFORM

ProductA includes a distributed file system like GFS and a
distributed data-parallel execution engine like MapReduce. In
ProductA, a program is written in a language called LanguageB,
which is a hybrid language that consists of declarative SQL-like
queries and imperative user-defined functions. In ProductA, a
data file stored in ProductA is called a stream, which consists
of data blocks called extents. A data-parallel program is called
a job, and an execution unit is called a vertex.

Customer

Front End

(FE)

Compiler /

Optimizer

jobs

results

upload

data/logs

Global Scheduler

(GS)

Job Service

 (JS)
submit job

JM scheduling

Extent Node (EN)Store Manager

(SM)

Job Manager

(JM)

stre
a
m

in
fo

Machine Node

Authentication

System (AS)

Process Node

(PN)

Machine Node

Extent Node (EN)

Process Node

(PN)

Fig. 1. The architecture and workflow of ProductA.

Figure 1 depicts the brief system framework of ProductA,
which includes the following components:

• A front end web service (FE) for bridging between
customer requests and the system,

• A compiler and optimizer for job compilation and opti-
mization;

• An authentication system (AS) for authenticating customer
requests;

• A store manager (SM) for managing distributed file system
metadata (similar to the master in GFS);

• A job service (JS) for job queuing and scheduling as well
as resource capacity management;

• A global scheduler (GS) for maintaining machine health
states in a data center;

• A job manger (JM) for coordinating the distributed
execution of job vertices;

• Extent nodes (EN) for storing data extents as local files
(like what in GFS’ ChunkServer);
• Processing nodes (PN) for executing the vertices and

communicating with the job manager via heart-beating.

Each job has a job manager, which is actually a special vertex.
EN and PN services are deployed in all servers in the data
center.

In ProductA, customer requests are dispatched to one FE
server and authenticated by AS. If authentication succeeds, FE
queries the location of each data extent and then the customer
can directly access the ENs through a ProductA client library.

Jobs in ProductA could fail or have poor performance. For
ease of diagnosis, the system records important event logs and
stores the daily collected telemetry data as a ProductA stream,
which can be later used for job monitoring and postmortem
analysis. All computation (JM, PN) and storage (SM and EN)
components have such event tracing mechanism. To improve
user experience, ProductA also provides multiple user interfaces
such as a web-based UI and a Visual Studio plugin.

Considering the increasing scale of ProductA, it is challeng-
ing to guarantee service quality for all customers with different
SLAs. ProductA provides incident reporting mechanism to
customers, and the incidents are expected to be mitigated
quickly by the support team (aka Designated Responsible
Individuals (DRIs)).

III. STUDY DESIGN

In our empirical study, we randomly collected 210 service
quality issues (escalations). These issues were discussed in
2,196 emails and 188 incident tracking records. Additionally,
we also collected the corresponding job information such as
initial input data, source scripts, execution plan, and runtime
statistics to understand more about a specific escalation. We
included both emails and incident records because they are
complementary to each other. Emails describe the whole life
cycle of an escalation, including its submission, the first
designated responsible individual (DRI) engagement, and the
final mitigation. Incident records are much more structured and
formal.

The study includes two parts: (1) manually reading the
content of escalation emails and incident records, identifying
the detailed diagnosis process and mitigation actions, and
reasoning the possible root causes. (2) automatically extracting
the metadata information from the collected escalation database
and calculating the metrics on DRI involvement, including the
time to engagement (TTE) and the time to mitigation (TTM).

In our study, we first classify the escalations into five
categories from the symptom point of view, including job
failure, job slowdown, connection failure, service unavailable
and wrong result. We further classify the common causes into
three categories, including hardware faults, system side faults
and customer side faults. Lastly, the mitigation solutions are
also classified from the resolution point of view.

IV. WHAT ARE THE COMMON SYMPTOMS?

We first conduct a study on the common symptoms of
quality issues of Big Data computing platform, by manually
reading the escalations customers submitted. From the symptom
point of view, the escalations can be classified into five
categories, including connection failure, job slowdown, job
failure, wrong result, and service unavailable. Table I gives
the classification statistics, which show that a majority of
escalations are exhibited as job failures (45.2%) and job
slowdown (27.1%).

TABLE I. CLASSIFICATION FROM ESCALATION SYMPTOM POINT OF
VIEW.

Category Number Ratio
Connection Failure 18 8.6%
Job Slowdown 57 27.1%
Job Failure 95 45.2%
Wrong Result 18 8.6%
Service Unavailable 12 5.7%

Fig. 2. The distribution of escalation severity

We further study the severity of the escalations. When
escalating the service quality issue to ProductA team, customer
is obligated to state the severity level, which helps determine
the DRI engagement priority and the required mitigating time.
There are five severity levels, ranging from Very High, High,
Medium, Low, to Very Low. Escalations at the Very High level
must be engaged within 15 minutes and mitigated within 1
hour; while the Very Low severity ones could be engaged with
the lowest priority and mitigated in one release cycle, if they
are worth of fixing. The severity level is assessed based on both
business significance and impact of the issue. Figure 2 depicts
the severity distribution among 210 escalations we studied.
Only 7% of escalations are at very high level, 37% are at high
level, 30% are at medium level, 22% are at low level, and
about 4% are at very low level.

V. WHAT ARE THE COMMON CAUSES?

We have identified the causes of the 210 escalations
manually, and classified them into three categories, including
hardware faults, system side faults, and customer side faults.
Table II depicts the detailed categories. For most of the
escalations (94.4%), their causes can be successfully classified.
For the rest of the 5.6% (12) of the escalations, their causes
are unknown due to the missing evidence. We describe each
cause category in details in the following sections.

A. Escalations Due to Hardware Faults

Modern data centers are built with commodity machines
that have relatively high probability of failure. Our study shows

TABLE II. CLASSIFICATION OF ESCALATIONS CAUSES.

Category Sub-Category No. Ratio
Hardware fault Subtotal 44 21.0%

System side
fault

System code defect 44 21.0%
Design limitation 20 9.5%
Operation fault 12 5.7%

Subtotal 76 36.2%

Customer side
fault

Code defect 10 4.8%
Operation fault 21 10.0%

Misuse 47 22.4%
Subtotal 78 37.2%

TABLE III. CLASSIFICATION OF HARDWARE FAULTS.

Category Sub-Category No. Ratio

Hardware
issue

Machine unhealthy or outage 21 10.0%
Power off 5 2.4%

Network device fault 9 4.3%
Overheating 2 1.0%
Bit flipping 3 1.4%

Time drifting 4 1.9%
Subtotal 44 21.0%

TABLE IV. CLASSIFICATION OF SYSTEM SIDE FAULTS.

Category Sub-Category No. Ratio

System code
defect

Regression 14 6.7%
Component related 16 7.6%

Service outage 12 5.7%
Memory issue 2 1.0%

Subtotal 44 21.0%

Design limitation

Extreme situation 6 2.9%
Resource contention 8 3.8%
Resource overloaded 6 2.9%

Subtotal 20 9.5%
Operation fault Subtotal 12 5.7%

that hardware fault is one of the most common causes that lead
to escalations. We further divide the hardware faults into several
sub-categories (Table III), including machine outages, power off,
network device fault, time drifting, and overheating. Some sub-
categories were also observed and reported by existing studies
on hardware faults [22], [23]. Besides, our study reveals one
unusual type of hardware faults, namely bit flipping. Bit flipping
is an unintentional state switch from 0 to 1, or vice versa. There
are 1.4% (3) cases where bit flipping caused corrupted data.
Bit flipping in memory happened when a stream was generated
and before the stream is stored into persistent storage, but it
was detected when the stream was read and parsed by the later
job. Re-executing the same job could mitigate this problem.

B. System Side Faults

In this section, we describe our study on system side faults,
which are further classified into system code defect, design
limitation, and operation fault.

1) System Code Defect

It is unsurprising that code defects in ProductA account for
21.0% (44) of the escalations, because escalations are sent out
only if customers consider them as system-related faults.

Regression. Only a few of (about 6.7% (14)) escalations are due
to system regression. This is because the roll-out policy adopted
by ProductA. The service-oriented architecture advocates
agile and independent development in each sub-service teams.
Currently new features are rolled out incrementally: ProductA
team first selects part of the customer jobs from specific feature
team for partial release; and gradually enlarges the scope until
fully deployed. Historical versions of system are maintained,
thus customer can choose which version to use by configuring
the job submission parameter. Once regression happened, job
resubmission with older runtime could mitigate it quickly.

Component related. 7.6% (16) of escalations are caused by
code defects in different system components, including FE, JS,
JM,SM, EN and optimizer. Each component results in about
three escalations. These defects are mostly trivial code defects.
Only two bugs in LanguageB query optimizer are related to
Big Data computing. One example is that, the optimizer spent

more than 25 minutes without any update and the job thereby
failed to submit. This is because the job was large and the
optimizer failed to enumerates all possible execution plans to
select the one with minimum cost. Another example is that the
optimizer tried to repartition the large execution graph, but it
finally failed.

Service outage. 5.7% (12) of escalations are caused by service
outages. Among them, 83.3% (10/12) happened in FE, 8.3%
(1/12) in EN and 8.3% (1/12) in compiler. The FE outages
happened at only three time points. The root causes are hard
to diagnose, and the corresponding mitigation is just to restart
the service.

Memory issue. Our study shows that 1.0% (2) of escalations
are related to memory issues. These escalations could be
avoided by improving the system design.

2) System Design Limitation

In addition to code defects, we find out that some customer
issues are related to system design limitations. 9.5% (20) of
escalations could be avoided by a better design.

Extreme situation. Six escalations are exposed only in extreme
situation, where system design limitations surface. For example,
there is a job that contains a join between a huge file (with
tens of tera bytes) and a smaller file (with tens of mega bytes),
and the customer splits both files into 8,000 partitions in order
to gain more parallelism. All partitions of the files are located
at the same single machine, thereby 8,000 vertices in join stage
read that machine (even 3,000+ simultaneous read), which
results in overloaded machines and failed vertices. Things
could become better if the optimizer applies the broadcast
join or the job manager throttles the vertices scheduling to a
single machine. Another interesting example is a job failure that
resulted from repeatedly data access error. Data de-replicating
process aims for saving space. There are usually three replicas
when data stream first gets created, and it turns into two replicas
by de-replicating one. If a vertex is accessing one data replica
that is under de-replicating, the vertex would repeatedly failed.
By introducing inter-awareness between job scheduling in job
manager and the de-replicating process in SM, such cases can
be avoided.

Resource contention and overloaded. We find that resource
contention and overload caused eight and six escalations,
respectively. These escalations can be avoided by adopting a
proper design. One escalation was due to workload imbalance
with huge spike in traffic. There was also a job slowdown
happened because some of the vertices were affected by
other activities (such as data downloading request from other
customers). A contention-aware scheduling, or a performance
isolation design, could largely alleviate these issues.

Finding 1: 21.0% (44) of escalations are caused by system
code defects, 5.7% (12) are due to operational faults, and
9.5% (20) are due to design limitations.
Implication: While it is not easy to provide multi-tenancy
Big Data computing service, there is still room for better
design, implementation, and operation. Testing in a broader
scope, especially online testing in real production, would
be helpful to expose the system faults as early as possible.

TABLE V. CLASSIFICATION OF CUSTOMER SIDE FAULTS.

Category Sub-Category No. Ratio

Code defect
Buggy and non-optimized code 8 3.8%
Inhibitive programming style 2 1.0%

Subtotal 10 4.8%
Operation
Fault Subtotal 21 10.0%

Misuse
Incorrect client configuration 15 7.1%

Improper job parameters 9 4.3%
Improper system assumptions 23 10.9%

Subtotal 47 22.4%

3) System Operation Fault

System operation faults include deployment faults, in-
complete provision, and library version mismatch, etc. One
example is that the deployment of a service component restarted
thousands of extent processes (ENs), causing intermediate data
loss. Another interesting example is that an operator manually
updated one service component at the live site, which corrupted
the system caches. These warn us that we should be cautious and
pay more attention to system management operations. Better
process management and guidelines are helpful here.

C. Customer Side Faults

It is surprising that 37.2% (78) of escalations are still caused
by customer side faults, considering that escalations are only
reported if customers think that the problems are not at their
side. The statistics are shown in Table V. The customer side
faults include 4.8% (10) code defects, 10.0% (21) operation
faults, and 22.4% (47) misuses.

1) Customer Code Defect

Customer code defects are not obvious and hard to detect,
which include buggy code and inhibitive programming style.

Buggy code. This type of defects includes defects in third-
party library and misunderstanding of advanced programming
features. Some job slowdowns are due to data skew, where
groups with some keys are much bigger than the others, thus
the corresponding vertices become the “outliers” [1]. Code
defects also happen to third-party libraries, which are invisible
and hard to detect.

The advanced language features provided by LanguageB
could also introduce defects. Like the combiner in Hadoop,
LanguageB allows customer to write user-defined recursive
reducer, which provides partial aggregation optimization [28].
Instead of sending all mapper data to reducer, it partially
aggregates the data on each mapper side, recursively combines
the intermediate result, and finalizes the result in reducer
side. Taking SQL clause SUM as an example, the recursive
implementation is to first compute the local sum on each mapper
machine, and add them together in reducer. It is computed like
a tree, with the output of one vertex being used as the input to
the next. Thus it requires the recursive reducer to be associative
and commutative, since it would be executed more than once.
However, in this example customers did not know such semantic
constraints, and obtained the wrong results.

Another more interesting example is about the logical
operators. The operators AND, &&, OR and || are used to filter
records based on more than one conditions. The expressions in
AND and OR might be evaluated in any order and any number of

Script
1 SELECT Market FROM SearchLog
2 WHERE Market != null AND Market.region == "en-us";
3

4 SELECT Market FROM SearchLog
5 WHERE Market != null && Market.region == "en-us";

Fig. 3. Semantic difference of AND and &&.

times; while && and || can only be evaluated in user-specified
order with short-circuiting. The reason the evaluation order
is not guaranteed in AND and OR operators is because the
LanguageB optimizer can move those predicates where it sees
fit in order to improve performance by filtering the useless
records as early as possible. It is customers’ obligation to use
such options judiciously in the places where no dependencies
between predicates and reordering is allowed. Incorrect usage
would result in wrong output or even job failure. For example,
an incorrect use of the AND operator is shown in line 2 in
Figure 3. The left predicate is a null checking, and the right
predicate should be evaluated only if the null checking is
satisfied. Otherwise, an invalid memory access failure would
be triggered. The correct code is to use &&, which is shown
in line 5.

Inhibitive programming style. ProductA automatically exe-
cutes a job in a parallelized and distributing manner, and it
discourages customer to write multi-threaded mapper or reducer
to gain further parallelism. This would sacrifice the fairness in
resource sharing and result in unpredictable execution behavior,
which in turn affects the scheduling decision.

Finding 2: 4.8% (10) of escalations are caused by customer
code defects, which include buggy and non-optimized code,
as well as inhibitive programming style.
Implication: Programs for Big Data computing are hard to
diagnose. Tools are needed in order to detect the error-prone
patterns and enforce good programming styles in software
development.

2) Customer Operation Fault

There are 10.0% (21) of escalations caused by customer
side operation faults. There are many kinds of operation faults,
such as non-intentional data deletion, wrong data expiration
time setting, non-intentional data file renaming, job dependent
resource missing, unavailable data, low free storage space, VC
switch, and even the zero-sized input data.

3) Misuse

We treat incorrect client configuration and improper sub-
mission parameter as misuse. They can be mitigated by
resubmission with new configurations or parameters.

Incorrect client configuration. 7.1% (15) of escalations are
due to incorrect client configuration, including authoriza-
tion, proxy configuration, customer library version mismatch,
machine-IP address mapping and stream access authorization.

Improper job parameters. 4.3% (9) of escalations are due to
improper job submission parameter. For example, the parameter
about resource quota is important for job performance. Many
escalations can be avoided if the resource quota is increased.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 30 60 90 120 150 180 210 240 270

TTE / minutes

Fig. 4. Cumulative distribution function of TTE.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 24 48 72 96 120 144

TTM / hours

Fig. 5. Cumulative distribution function of TTM.

Improper system assumptions. Systems are always designed
with certain assumptions and conventions. The design as-
sumptions should be clearly communicated to and agreed by
customers. Our study finds that a large percentage (10.9%) of
escalations are due to improper assumptions customers made
to ProductA. For example, compiler has an internal limitation
on the number of partitions; SM allows limited number of
simultaneous stream creations; and ProductA has limitations
on the data volume to be sampled. There is one extreme case
where customer created more than 1 million streams at a time,
which was disallowed by the system. ProductA also kills the
jobs that consumes more than 6 GB memory. Without knowing
these system assumptions, customers may write programs that
fail to be executed.

Finding 3: 10.0% (21) of escalations are caused by
customer operation faults, and 22.4% (47) are due to
customer misuse.
Implication: Better training and process management are
helpful to avoid operational faults and misuse. It would
be better if such problems can be detected earlier by an
automated tool.

VI. FROM ESCALATION TO MITIGATION

When a service quality issue is escalated to ProductA team,
DRIs (Designated Responsible Individuals) are responsible for
providing a mitigation solution in time. In this section, we
study the mitigation they applied and investigate what kinds
of information they used for diagnosis.

A. Statistics on DRI Activity

We use two metrics, Time To Engagement (TTE) and Time
To Mitigation (TTM), to evaluate the efficiency of an escalation

handling process. TTE is computed as the time difference
between the escalation submission and the first reply email
from DRI. TTM is the time difference between the escalation
submission and the last email of the escalation email thread.
The last email is generally the close of an escalation thus could
be used to approximate the TTM. The smaller number is better -
small TTE time indicates fast engagement and small TTM time
indicates that fast mitigating solution is provided or applied.
It is noteworthy that such calculation is very conservative.
Some DRI engagements (e.g., those via phone call or instant
messaging tools) happened earlier before the first replied emails,
and the mitigations often happen before the last replied emails.

The cumulative distribution graphs of TTE and TTM are
shown in Figure 4 and Figure 5, respectively. DRI engages with
70% of escalations in less than 30 minutes, 90% of them are
processed in less than 90 minutes, and there is no escalation
processed in more than 5 hours. Meanwhile, TTM shares the
same trend as TTE, but with much longer time to mitigate.
About 70% of the escalations are mitigated in less than 12
hours, about 83% are mitigated in less than one day, and the
“slowest” mitigation is less than 150 hours.

B. Mitigation Categorization

Compared with bug fixes for traditional programs, the aim
of mitigation is to recover the system and resume the impacted
jobs as quickly as possible. A mitigation may not need to
be a thorough root-cause fix. On the contrary, a work-around
solution is needed for most cases. In our study, we find that
there are mainly seven categories of mitigation actions that
DRIs have adopted. Table VI depicts the detailed categories of
mitigation solutions. For only 2.38% (5) of the escalations, their
mitigations are unknown due to the lack of explicit descriptions
in emails and internal incident records.

Refine customer code, configuration or submission pa-
rameter. As mentioned in Section V, about 37.2% escalations
are caused by the faults at customer side. From DRIs’ per-
spective, there is no defects in ProductA and no mitigation
action is required. However, in current practice, our DRIs help
the customers debug the problems by providing the diagnosed
causes. DRIs also suggest customers how to refine their code,
configurations, and submission parameters.

Resubmit jobs. About 21.0% escalations are caused by
hardware faults, and most of them (19.1%) are intermittent
faults. Simply resubmitting the failed job could automatically
mitigate it, while there is nothing to do for job slowdown. In fact,
all machines in our data centers are managed by AutoPilot [15],
which detects and recovers software and hardware faults. Once
AutoPilot detects a machine being in a faulty or unhealthy state,
it automatically de-commits the machine and tries to recover
it by restarting or re-imaging the machine. For such cases,
simply resubmitting jobs can mitigate the escalations.

De-commit/Restart faulty machines or services. As we
have mentioned in Section V, not all kinds of faults could
be handled by the fault-tolerance mechanism. In most fault
tolerant systems, there are only two health states for a machine
or process: Healthy (H) and Faulty (F). However, in reality, a
machine (or a process) can be in a “weird” state. A machine
(or a process) in a weird state still has heart-beats, but executes
abnormally. As an example, a customer reports that their job ran

very slowly. After receiving the escalation, DRIs found out that
this problem was caused by a disk fault, which took more than
30 minutes to read 2G bytes. Such “weird” machines are likely
to become faulty soon [22], DRIs need to label the machine as
a bad state and de-commit the machine. Meanwhile, customers
still need to resubmit the job. In our study, only 1.4% (3) of
escalations are mitigated with extra machine decommission.

Rollback the runtime. Obviously, escalations caused by
software regressions can be resolved by rolling back to the
previous one. Actually, all latest LanguageB runtime versions
are stored in the system. Customers can resubmit their jobs
with a parameter indicating the specific runtime version to be
used. About 6.7% (14) of escalations are mitigated by runtime
rollback.

Resubmit jobs with new parameters to mitigate server
side code defects. It is interesting that many failures caused by
code defects at the system side can also be mitigated through
resubmitting jobs, but with new submission parameters. Our
study shows that some runtime execution paths for new features
can be disabled by setting proper parameters. When a new bug
introduced by a new code change occurs, DRIs may suggest
customers to run the job with some specific parameters to avoid
the execution of the buggy code segment. For example, a job
is failed because the optimizer generates too many vertices to
be handled by the job manager. This is a code defect in the
optimizer. In order to mitigate the problem, the DRI suggested
the customer to resubmit the job with a new job parameter (i.e.,
the maximal vertex number allowed). In these cases, DRIs are
responsible to figure out the causes and the new parameters as
a work-around solution.

Hot Fix. For the remaining escalations caused by system
code defects, if the code defect can be easily fixed, a hot fix is
provided for mitigation. In order to avoid the potential negative
regression of the hot fix, DRIs often provide the customers
with a private build with the fix. If the fix passes the stress
testing and verification, it becomes a formal patch. In our study,
only 3.8% (8) of escalations are mitigated with hot fix.

Recover Faulty Operation. About 5.7% (12) of escalations
are caused by system operation faults. The mitigation is to
recover the faulty operations.

Others. The mitigation solutions for the remaining escala-
tions includes data regeneration by third-party data producer,
further re-escalation to AutoPilot team, etc. For example, most
issues caused by the design limitations under extreme situations
are transient, simply resubmitting the jobs could mitigate them.
Their long-term resolution would be provided in the future
release cycles.

Finding 4: There are mainly seven categories of mitigation
solutions. More than one third of the escalations can be
resolved by simply resubmitting jobs. Only 3.8% escalations
adopt hot fix.
Implication: It is possible to automate the mitigation
operations for most of the escalations. For example, methods
for automated recommendation of the mitigation solutions
could be developed.

TABLE VI. CLASSIFICATION OF ESCALATION MITIGATION.

Escalation
category

Escalation sub-category Mitigation solution

Customer
side fault

Code defect
Instruct customers to refine their code, configuration,
submission parameter or data placement

Operation fault
Misuse

System side
fault

Code defect(not regression) Hotfix or nothing to do if it is exposed by extreme conditions
Design limitation Instruct customers to resubmit jobs with new parameters

Regression Roll it back
Operation fault Recover it

Hardware
fault

Machine unhealthy or outage
Power off

Network device fault Instruct customer to resubmit job
Overheating
Bit flipping

Time drifting De-commit failure machines or restart a sub-service

C. Telemetry Data Used for Mitigation

As described in Section II, ProductA records a lot of teleme-
try data for troubleshooting. These data includes performance
counters of machines, execution traces for each job, and the
derived job metrics. Performance counters mainly calculate
information about resource usage, throughput, performance, etc.
For example, ProductA records for each vertex the time spent
on scheduling, queuing, executing, the data size processed by
a vertex, the CPU usage of a machine, the memory usage, the
network I/O traffic, and so on. Program traces are recorded when
the system executes a job, which allow developers to follow
the execution trace of a job in ProductA to investigate which
job stage failed and why, or to provide detailed information for
performance analysis. Different types of telemetry data play
different roles when DRIs diagnose escalations. Table VII lists
most of the telemetry data ProductA DRIs used.

The diagnosis process roughly consists of the following
steps. DRIs often start their diagnosis by identifying a critical
path of the problematic job through analyzing the program
traces, which could be used to simulate the job execution. The
critical path contains bottleneck stages or failed stages. Then,
DRIs dive into the bottleneck stage or failed stage, and try
to identify some execution outliers or failed vertices. Because
there are always hundreds or even thousands of vertices in a
single stage, and these vertices are supposed to have similar
execution behavior. If some of them behave differently from
others, they are suspicious and likely the culprits. If some
vertices generate log events (such as exception messages) that
do not appear in other vertices, or the performance-related
metrics of some vertices deviate largely from the others, these
vertices are detected as outliers. For recurring jobs, the telemetry
data of the last successful execution are also analyzed as a
basis for comparison. Using outlier detection, DRIs can further
look into the outlier vertices by checking their log messages
or machine-level performance counters (e.g., CPU, memory,
disk, and network counters) to identify the potential causes. In
most cases, they can find the exceptions in traces or counters.
Essentially, such a diagnosis process is a top-down process,
guided by a decision-tree to locate the possible causes.

Finding 5: Program traces and performance counters are
used in the escalations diagnosis. There is also a clear
decision flow in the diagnosis procedure.
Implication: It is possible to design an end-to-end tool to
automate the diagnosis by analyzing the telemetry data.

VII. DISCUSSIONS

A. A Retrospection of Fault Tolerance

Fault tolerance is considered to be an effective and efficient
way to tolerate faults, especially hardware faults. Checkpointing
and redundant replication are two broadly used techniques.
ProductA relies on multiple data replicas in storage to tolerate
data loss, thus it provides high data availability. Clients could
access other replicas if the replica it accessed is unavailable.
Besides, ProductA also tolerates vertex execution failure. Once
a vertex is considered to be failed or timed out, job manager
will reschedule it to another machine. If hardware outages
happened in the machine executing one upstream vertex, job
manager will reschedule the upstream vertex to another machine
since the intermediate result is stored at the local disk rather
than the persistent storage. Moreover, ProductA also tolerates
the “outlier” vertex that caused by unhealthy or overloaded
hardware with a duplicated scheduled counterpart. However,
there are still 11.4% (24) failures and 8.1% (17) performance
slowdown that are due to hardware faults. In this section, we
discuss the reasons why the faults cause job slowdown and
even failure, in the presence of fault tolerance mechanisms.

Fault-tolerance cannot tolerate all faults. First, fault-tolerant
designs cannot tolerate faults in large scale. Fault-tolerance
is no free lunch, and there is tradeoff in system design to
control the cost. Job manager will kill the job if vertices
keep failing and re-executing. System should not continuously
tolerate never-successful faults and should not tolerate too
many faults. ProductA will kill the job if the number of failed
vertices or the number of revocations exceeds a threshold value.
There is an example in our study that an important network
switch failed, which resulted in more than 250 machines to be
unavailable. As both replicas of the accessed data are located
at those machines, the job failed.

Second, there is no fault tolerance for job manager, which
is reasonable because the failure of single master is unlikely.
ProductA aborts the job if job manger fails, which does not
provide checkpointing support for job manager; if hardware
issue results in job manager failure, the job will fail as a
consequence. Similarly, a failure in iob service (JS) will lead to
job submission failure, even though it has persistent job status
stored in ProductA.

Third, fault-tolerant design cannot tolerate all kind faults.
Taking the bit flipping case as an example, it escapes the
checksum checking in distributed file system, which ensures

TABLE VII. TELEMETRY DATA USED IN DIAGNOSIS.

Categories Sub-categories Examples

Job/vetex specific
metrics

Latency metrics response time, wait time, execution time
Throughput metrics degree of parallelism, queue length
Task IO metrics read/written bytes, partition number, shuffling size
Computing resource metrics token and bonus token usage

Performance counters

CPU usage average CPU usage percentage
Memory usage available memory, paging file
Disk usage disk read/write queue length
Network usage round trip time, bytes received/sent
Machine repairing state Faulty or Healthy

Job/vertex logs
Exception messages file not found exception
Log entries of interested execution points time that the job/stage/vertex get scheduled, queued and executed
Log entries of interested measurements data size of a vertex

the replicas to be the same but fails to tolerate the bit flipping
error in memory.

Fourth, it is impractical to have fault tolerant design in all
components. For example, jobs would fail if the compiler fails
because of unavailable input data. Besides, other faults like
human operation faults are difficult to be tolerated by system
design.

0 5 10 15 20 25 30 35 40
Week #

0

20

40

60

80

100

P
e
n
ce

n
t

%

others
write error
hit time limit
read error
PN Comm.
process creation failure
vertex revocation

Fig. 6. Top fault tolerant events and their ratio.

Fault-tolerance could waste system resources. We analyze
40 weeks of traces and compute the statistics on the wasted
computing time spending on various fault tolerant events. There
are about 0.9% to 2.6% of time wasted (i.e., resource wasted)
by fault tolerance. Figure 6 further depicts the relative wasted
ratio among the top six events: vertex invocation (its upstream
vertex is lost), storage read error, storage write error, vertex
process creation failure, communication failure with PN, and
vertex execution exceeding the time limit. About 42% to 75%
of the wasted time are due to vertex invocation, and 9% to 20%
due to storage read errors. Other reasons of wasted resources
include discarded duplicate execution, vertex using too much
memory, vertex aborted by job manger, and rarely happened
events.

In summary, our study shows that fault tolerance is generally
effective and efficient. However, it would sacrifice performance
and cannot tolerate all kinds/scales of faults.

B. Implications

Most of the findings and implications we obtain from Pro-
ductA are also applicable to other big data computing platforms,
such as GFS/MapReduce and HDFS/Hadoop systems. Our

findings and implications on live site issues are representative
and could be applied to those systems as well. First, such
systems are provisioned with the similar commodity hardware in
data center, thereby sharing similar hardware faults and similar
failure probability. Second, they also have similar system design,
and even the same workload characteristics. Although they
differ in detailed implementations, they could contain similar
system side faults including design limitations. We believe
that the experience learned from ProductA would be beneficial
to other systems as well. Lastly, all systems provide similar
programming interface and languages, therefore customer would
produce similar failures. For example, the counterpart of the
recursive reducer in Hadoop is combiner. The findings and
implications on root cause diagnosis and mitigation are also
applicable to other systems. With the similar telemetry data such
as performance counters and execution traces, those system
can apply the same top-down and decision-tree based process
in diagnosis and mitigation, because all these systems share the
same execution model and storage model, even the operation
model. In summary, most of the findings and implications
learned from ProductA are also applicable to other Big Data
systems as well.

Our study indicates that 70%-90% of TTM time is spent
on diagnosis with manual efforts. Therefore, an automated
diagnosis tool would relive or save the manual burden. Our
findings on the diagnosis of escalations indicate that such an
automatic diagnosis tool can be benefited from the telemetry
data. Furthermore, our study also helps shape the tool design.
Firstly, the study indicates that an abnormal stage either has a
large number of failed vertices (tasks) or has a large number
of outlier vertices. This suggests that we can apply machine
learning techniques to recognize the abnormal stage and also
the corresponding problematic features. Secondly, the interested
features that DRIs frequently adopted could be derived from
the job-related metrics and the associated performance counters.
Thirdly, the tool can follow the same two steps as what manual
effort does - identifying the abnormal job stage and then
reasoning the problematic metrics in that stage. Implementing
an automated diagnosis tool that is motivated by this study is
an important future work.

C. Threats to Validity

Internal threats to validity Subjectiveness would arise
during root cause reasoning because of the large amount of
manual effort involved. These threats were mitigated by cross-
validation by several team members. If there were different
opinions, a discussion was brought up to reach an agreement.

When uncertainty occurred, we contacted the corresponding
DRI for confirmation or correction. The classifications could be
subjective too; however, we believe they are helpful to derive
the findings and implications.

External threats to validity We conducted our study on
ProductA only. In Section VII.B, we discuss that some of our
major findings could be generalized to other systems. However,
it is possible that some detailed results might be specific to
ProductA and would not hold for other systems.

VIII. RELATED WORK

Over the years, there have been many empirical studies on
the characteristics of failures of software-intensive systems. For
example, Seaman et al. [24] collected data from 81 projects
across 5 NASA centers. Each center used different defect
taxonomies. They developed a unified defect categorization
scheme that was compatible with existing data. Li et al.[20]
manually collected 709 bugs from two large open source
projects (Mozilla and Apache Web Server) and analyzed the bug
characteristics. They classified the bugs into different categories
(root causes, impacts and software components) and studied the
correlation between categories. They found that memory bugs
and concurrency bugs accounted for a small portion of bug
reports and semantic bugs were the major root causes. Chou et
al. [7] presented a study of operating system errors found in
Linux and OpenBSD kernels. They found that device drivers
had error rates up to three to seven times higher than the rest
of the kernel, and that the bugs remained in the Linux kernel
an average of 1.8 years before being fixed. Many researchers
[10], [2], [29] also analyzed the distribution of failures across
modules of a large-scale software system, and observed that
a small percentage of the modules is responsible for a large
percentage of failures.

Apart from the code defect errors, researchers have found
that other types of errors are also major causes of failures.
For example, Yin et al. [27] studied 546 real-world mis-
configurations for a commercial storage system and four
open source systems. They found that a large portion of
misconfigurations can cause hard-to-diagnose failures (such
as crashes or performance degradation). Gray [14] found that
administrator errors were responsible for 42% of system failures
in high-end mainframes. Patterson et al. [21] reported that in
telephone networks and Internet systems, more than 50% of
failures were due to operator errors.

There are also empirical studies on data-parallel programs.
Kavulya et al. [18] studied failures in MapReduce programs.
There is also a work [17] studied the performance slowdown
caused by system side inefficiency. Their studies just take
simple workloads rather than production jobs. Xiao et al. [26]
conducted study on commutativity, nondeterminism, and cor-
rectness of data-parallel programs, and revealed interesting
findings that non-commutative reduce functions lead to five
bugs. Li et al. [19] studied the failure characteristics in Scope
jobs [6], and revealed that exceptional data and mismatched
data schema are the major source of job failures, rather than
code logic. They advocated a graceful exception handling logic
to take care of exceptional data and tooling support to detect the
code defects that could be exploited by potential exceptional
data. As a complementary, our study studied the system side

faults, hardware faults and even human operation faults, and
they together provide a comprehensive study on data-parallel
programs.

There have been some previous studies in the literature
on failures of a data center [22]. For example, Ford et al.
studied [11] the data availability of Google distributed storage
systems, and characterized the sources of faults contributing to
unavailability. Their results indicate that cluster-wide failure
events should be paid more attention during the design of
system components, such as replication and recovery policies.
We studied in a larger scope including not only distributed
file system, but also execution engine, and not only the
unavailability, but also the job failures and performance issues.
Gill et al. [13] presented a large-scale analysis of failures in
a data center network. They characterized failure events of
network links and devices, estimated their failure impact, and
analyzed the effectiveness of network redundancy in masking
failures. Vishwanath and Nagappan [25] classified server
failures in a data center and found that 8% of all servers had at
least one hardware incident in a given year. Both their studies
could be helpful to reduce the hardware faults, especially the
networking faults. Dinu and Ng [9] analyzed Hadoop behavior
under failures of compute nodes, and found that a single
failure can result in unpredictable system performance. We
share the similar findings that fault-tolerance could slowdown
performance and even fail jobs.

Researchers have also studied the statistics on failures
recovery or mitigation. For example, in [13], the authors
studied the mitigation time distribution and classified them
into short and long categories. In our study, more than half
of escalations are short-lived issues that can be mitigated by
simply resubmitting the job; while the mitigation needs code
fix or more time to diagnosis would be long-lived. Zhang
et al. [30] performed an empirical study of the bug-fixing
time using real industrial projects, and proposed methods
to predict the effort required to fix bugs. Benson et al. [5]
examined 8,684 reported problems appearing in the forum of
a large IaaS provider. They discovered that ten operators were
responsible for resolving most problems and that a significant
delay of 20-110 hours existed between the initial operator
involvement and the problem resolution. They argued that the
lessons derived from their study could help design a more
efficient support model for cloud computing. Benson et al. [5]
examined human activities by operators and support engineers.
We do not directly evaluate the individual DRI activity, but we
believe that an incentive mechanism in the Big Data ecosystem
among engineers, operators and customers, would be helpful
to improve daily activities.

IX. CONCLUSION

This paper has presented one of the first comprehensive
studies on quality issue of Big Data computing platform. We
have investigated the common symptoms, causes, and mitigation
of quality issues of the ProductA system. We have obtained
many interesting findings. For example, our study reveals that
different types of issues (hardware faults, code defects, human
errors, configuration and regression) would occur in Big Data
computing. We have also studied the general diagnosis process
and the commonly adopted mitigation solutions.

We believe that our findings and implications provide
valuable guidelines for future design and maintenance of Big
Data platforms. Our study can also serve as motivations for
future research on reliable software development as well as
efficient maintenance with tooling support.

ACKNOWLEDGMENT

We thank our intern students Yuchao Jin and Meiqing
Zhang for their help with the experiments. We would like
to thank Sukvinder Singh Gill and Jingren Zhou for their
valuable comments. We also thank the product team for their
collaboration and comments.

REFERENCES

[1] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G. Greenberg, Ion
Stoica, Yi Lu, Bikas Saha, and Edward Harris. Reining in the outliers
in map-reduce clusters using mantri. In OSDI, pages 265–278, 2010.

[2] Carina Andersson and Per Runeson. A replicated quantitative analysis
of fault distributions in complex software systems. IEEE Transaction
on Software Engineering, pages 273–286, 2007.

[3] Apache. Hadoop, 2013. http://hadoop.apache.org/.
[4] Apache. Hadoop distributed file system, 2013.

http://hadoop.apache.org/docs/stable/hdfs design.html.
[5] Theophilus Benson, Sambit Sahu, Aditya Akella, and Anees Shaikh. A

first look at problems in the cloud. In HotCloud, 2010.
[6] Ronnie Chaiken, Bob Jenkins, Per ke Larson, Bill Ramsey, Darren

Shakib, Simon Weaver, and Jingren Zhou. SCOPE: Easy and efficient
parallel processing of massive data sets. PVLDB, 1(2):1265–1276, 2008.

[7] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. An empirical study of operating systems errors. In SOSP, pages
73–88, 2001.

[8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[9] Florin Dinu and T.S. Eugene Ng. Understanding the effects and
implications of compute node related failures in hadoop. In HPDC,
pages 187–198, 2012.

[10] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Transaction on Software
Engineering, pages 797–814, 2000.

[11] Daniel Ford, Francois Labelle, Florentina Popovici, Murray Stokely, Van-
Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability
in globally distributed storage systems. In OSDI, 2010.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
file system. In SOSP, pages 29–43, 2003.

[13] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding
network failures in data centers: measurement, analysis, and implications.
In SIGCOMM, pages 350–361, 2011.

[14] Jim Gray. Why do computers stop and what can be done about it?
1985.

[15] Michael Isard. Autopilot: automatic data center management. Operating
Systems Review, pages 60–67, 2007.

[16] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys, pages 59–72, 2007.

[17] Hui Jin, Kan Qiao, Xian-He Sun, and Ying Li. Performance under failures
of mapreduce applications. In IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 608–609, 2011.

[18] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An
analysis of traces from a production mapreduce cluster. In IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages
94–103, 2010.

[19] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin,
and Tao Xie. A characteristic study on failures of production distributed
data-parallel programs. In ICSE, pages 963–972, 2013.

[20] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now?: an empirical study of
bug characteristics in modern open source software. In Architectural
and system support for improving software dependability, ASID, pages
25–33, New York, NY, USA, 2006. ACM.

[21] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike
Chen, James Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman,
Matthew Merzbacher, David Oppenheimer, Naveen Sastry, William
Tetzlaff, Jonathan Traupman, and Noah Treuhaft. Recovery oriented
computing (roc): Motivation, definition, techniques. Technical report,
Berkeley, CA, USA, 2002.

[22] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Barroso. Failure
trends in a large disk drive population. In FAST, pages 17–29, 2007.

[23] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world:
What does an MTTF of 1, 000, 000 hours mean to you? In FAST, pages
1–16, 2007.

[24] Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert,
Raimund L. Feldmann, Yuepu Guo, and Sally Godfrey. Defect
categorization: making use of a decade of widely varying historical
data. In International Symposium on Empirical Software Engineering
and Measurement, ESEM, pages 149–157, 2008.

[25] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing
cloud computing hardware reliability. In SOCC, pages 193–204, New
York, NY, USA, 2010. ACM.

[26] Tian Xiao, Jiaxing Zhang, Hucheng Zhou, Zhenyu Guo, Sean McDirmid,
Wei Lin, Wenguang Chen, and Lidong Zhou. Nondeterminism in
mapreduce considered harmful? An empirical study on non-commutative
aggregators in mapreduce programs. In ICSE, pages 44–53, 2014.

[27] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An empirical study on
configuration errors in commercial and open source systems. SOSP,
pages 159–172, 2011.

[28] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed
aggregation for data-parallel computing: interfaces and implementations.
In SOSP, pages 247–260, 2009.

[29] Hongyu Zhang. On the distribution of software faults. IEEE Transactions
on Software Engineering, 34(2):301–302, 2008.

[30] Hongyu Zhang, Liang Gong, and Steve Versteeg. Predicting bug-fixing
time: an empirical study of commercial software projects. In ICSE,
pages 1042–1051, 2013.

