
Thinking Above the Code

Leslie Lamport
Microsoft Research

0

Why Think?

It helps us do most things:

Hunting a sabre-toothed tiger.

Building a house.

Writing a program.

0

Why Think?

It helps us do most things:

Hunting a sabre-toothed tiger.

Building a house.

Writing a program.

0

Why Think?

It helps us do most things:

Hunting a sabre-toothed tiger.

Building a house.

Writing a program.

0

Why Think?

It helps us do most things:

Hunting a sabre-toothed tiger.

Building a house.

Writing a program.

0

Why Think?

It helps us do most things:

Hunting a sabre-toothed tiger.

Building a house.

Writing a program.

0

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

When to Think

Hunting a sabre-toothed tiger.

Before leaving the cave.

Building a house.

Before beginning construction.

Writing a program.

Before writing any code.

1

How to Think

“Writing is nature’s way of letting you know how
sloppy your thinking is.”

Guindon

To think, you have to write.

If you’re thinking without writing, you only think you’re thinking.

1

How to Think

“Writing is nature’s way of letting you know how
sloppy your thinking is.”

Guindon

To think, you have to write.

If you’re thinking without writing, you only think you’re thinking.

1

How to Think

“Writing is nature’s way of letting you know how
sloppy your thinking is.”

Guindon

To think, you have to write.

If you’re thinking without writing, you only think you’re thinking.

1

How to Think

“Writing is nature’s way of letting you know how
sloppy your thinking is.”

Guindon

To think, you have to write.

If you’re thinking without writing, you only think you’re thinking.

1

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a blueprint

2

What to Write

Hunting a sabre-toothed tiger.

Writing not invented, dangerous activity.

Building a house.

Draw blueprints.

Writing a program.

Write a blueprint specification.

2

Specifications

Don’t Panic!

3

Specifications

Don’t Panic!

3

Specifications

Don’t Panic!

This is a blueprint:

3

Specifications

Don’t Panic!

This is also a blueprint:

3

A spectrum of blueprints

3

A spectrum of blueprints

3

A spectrum of blueprints

Very Detailed

3

A spectrum of blueprints

Very Detailed

3

A spectrum of blueprints

Very DetailedRough Sketch

3

A spectrum of blueprints

Very DetailedRough Sketch

3

A spectrum of blueprints

Very DetailedRough Sketch Ordinary

3

A spectrum of specifications

5

A spectrum of specifications

Formal

5

A spectrum of specifications

FormalProse

5

A spectrum of specifications

FormalProse Mathematical Prose

5

A spectrum of specifications

Prose

Most code is really simple.

It can be specified with a couple of lines of prose.

5

A spectrum of specifications

Prose

Most code is really simple.

It can be specified with a couple of lines of prose.

5

A spectrum of specifications

Mathematical Prose

Some code is subtle.

It requires more thought.

5

A spectrum of specifications

Mathematical Prose

Some code is subtle.

It requires more thought.

5

A spectrum of specifications

Formal

Some code is complex or very subtle or critical.

5

A spectrum of specifications

Formal

Some code is complex or very subtle or critical.

Especially in concurrent/distributed systems.

5

A spectrum of specifications

Formal

Some code is complex or very subtle or critical.

We should use tools to check it.

5

How to Write a Spec

Writing requires thinking.

5

How to Write a Spec

Writing requires thinking.

5

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

How to Think About Programs

Like a Scientist

A very successful way of thinking.

Science makes mathematical models of reality.

Astronomy:

Reality: planets have mountains, oceans, tides, weather, . . .

Model: planet a point mass with position & momentum.

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

Computer Science

Reality: Digital systems

a processor chip

a game console

a computer executing a program
...

Models: Turing machines

Partially ordered sets of events
...

6

The Two Most Useful Models

Functions

Sequences of States

7

The Two Most Useful Models

Functions

Sequences of States

7

The Two Most Useful Models

Functions

Sequences of States

7

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

square(2) = 4

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

Domain of square is {0,1,2,3, . . .} a.k.a. Nat

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

To define a function, specify:

Domain of square = Nat

square(x) = x2 for all x in its domain.

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

To define a function, specify:

Domain of square = Nat

square(x) = x2 for all x in its domain.

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

Functions in math 6= functions in programming languages.

8

Functions

Model a program as a function mapping input(s) to output(s).

In math, a function is a set of ordered pairs.

Example: the square function on natural numbers

{〈0,0〉, 〈1,1〉, 〈2,4〉, 〈3,9〉, . . . }

Functions in math 6= functions in programming languages.

Math is much simpler.

8

Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems

9

Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems

9

Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems

9

Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems

9

Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems

9

Limitations of the Function Model

Specifies what a program does, but not how.

– Quicksort and bubble sort compute the same function.

Some programs don’t just map inputs to outputs.

– Some programs run “forever”.

– Operating systems

9

The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.

9

The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.

9

The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.

9

The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.

9

The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.

9

The Standard Behavioral Model

A program execution is represented by a behavior.

A behavior is a sequence of states.

A state is an assignment of values to variables.

A program is modeled by a set of behaviors:

the behaviors representing possible executions.

9

An Example: Euclid’s Algorithm

Computes GCD of M and N by:

– Initialize x to M and y to N .

– Keep subtracting the smaller of x and y from the larger.

– Stop when x = y .

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

10

An Example: Euclid’s Algorithm

An algorithm is an abstract program.

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

10

An Example: Euclid’s Algorithm

Computes GCD of M and N by:

– Initialize x to M and y to N .

– Keep subtracting the smaller of x and y from the larger.

– Stop when x = y .

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

10

An Example: Euclid’s Algorithm

Computes GCD of M and N by:

– Initialize x to M and y to N .

– Keep subtracting the smaller of x and y from the larger.

– Stop when x = y .

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

10

An Example: Euclid’s Algorithm

Computes GCD of M and N by:

– Initialize x to M and y to N .

– Keep subtracting the smaller of x and y from the larger.

– Stop when x = y .

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

10

An Example: Euclid’s Algorithm

Computes GCD of M and N by:

– Initialize x to M and y to N .

– Keep subtracting the smaller of x and y from the larger.

– Stop when x = y .

For M = 12 and N = 18, one behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

10

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Safety Property:

False iff violated at some point in behavior.

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Safety Property:

False iff violated at some point in behavior.

Example: partial correctness.

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Liveness Property:

Need to see complete behavior to know if it’s false.

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Liveness Property:

Need to see complete behavior to know if it’s false.

Example: termination.

12

How to Describe a Set of Behaviors

Theorem

Any set B of behaviors =

all behaviors satisfying a safety property S

∩ all behaviors satisfying a liveness property L

Specify a set of behaviors with

– a safety property

– a liveness property

12

In practice, specifying safety is more important.

That’s where errors are most likely to occur.

To save time, I’ll ignore liveness.

12

In practice, specifying safety is more important.

That’s where errors are most likely to occur.

To save time, I’ll ignore liveness.

12

In practice, specifying safety is more important.

That’s where errors are most likely to occur.

To save time, I’ll ignore liveness.

12

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

How to Specify a Safety Property

With two things:

– The set of possible initial states.

– A next-state relation,
describing all possible successor states of any state.

What language should we use?

Let’s act like scientists.

Let’s use math.

13

The Set of Initial States

Described by a formula.

For Euclid’s Algorithm: (x = M) ∧ (y = N)

Only possible initial state: [x = M , y = N]

14

The Set of Initial States

Described by a formula.

For Euclid’s Algorithm: (x = M) ∧ (y = N)

Only possible initial state: [x = M , y = N]

14

The Set of Initial States

Described by a formula.

For Euclid’s Algorithm: (x = M) ∧ (y = N)

Only possible initial state: [x = M , y = N]

14

The Set of Initial States

Described by a formula.

For Euclid’s Algorithm: (x = M) ∧ (y = N)

Only possible initial state: [x = M , y = N]

14

The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

15

The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

15

The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

15

The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

15

The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

15

The Next-State Relation

Described by a formula.

Unprimed variables for current state,
Primed variables for next state.

For Euclid’s Algorithm: (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

15

For Euclid’s Algorithm

Take M = 12, N = 18

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Take M = 12, N = 18

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = 12) ∧ (y = 18)

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 18
∧ x ′ = 12− 18
∧ y ′ = 18)

∨ (18 > 12
∧ y ′ = 18− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (FALSE12 > 18
∧ x ′ = 12− 18
∧ y ′ = 18)

∨ (TRUE18 > 12
∧ y ′ = 18− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 18
∧ x ′ = 12− 18
��
��
�
��

HH
HH

H
HH

FALSE
∧ y ′ = 18)

∨ (18 > 12
∧ y ′ = 18− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 18
∧ x ′ = 12− 18
��
��
�
��

HH
HH

H
HH

FALSE
∧ y ′ = 18)

∨ (18 > 12
∧ y ′ = 18− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 18
∧ x ′ = 12− 18
��
��
�
��

HH
HH

H
HH

FALSE
∧ y ′ = 18)

∨ (18 > 12
∧ y ′ = 18− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 6
∧ x ′ = 12− 6
∧ y ′ = 6)

∨ (6 > 12
∧ y ′ = 6− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (TRUE12 > 6
∧ x ′ = 12− 6
∧ y ′ = 6)

∨ (FALSE6 > 12
∧ y ′ = 6− 12
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 6
∧ x ′ = 12− 6
∧ y ′ = 6)

∨ (6 > 12
∧ y ′ = 6− 12
��
�
��

��

HH
H
HH

H
H

FALSE
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (12 > 6
∧ x ′ = 12− 6
∧ y ′ = 6)

∨ (6 > 12
∧ y ′ = 6− 12
��
�
��

��

HH
H
HH

H
H

FALSE
∧ x ′ = 12)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (FALSE6 > 6
∧ x ′ = 6− 6
∧ y ′ = 6)

∨ (FALSE6 > 6
∧ y ′ = 6− 6
∧ x ′ = 6)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (6 > 6
∧ x ′ = 6− 6
��
��
�
��

HH
HH

H
HH

FALSE
∧ y ′ = 6)

∨ (6 > 6
∧ y ′ = 6− 6
��
�
��
�
�

HH
H
HH

H
H

FALSE
∧ x ′ = 6)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

For Euclid’s Algorithm

Init : (x = M) ∧ (y = N)

Next : (6 > 6
∧ x ′ = 6− 6
��
��
�
��

HH
HH

H
HH

FALSE
∧ y ′ = 6)

∨ (6 > 6
∧ y ′ = 6− 6
��
�
��
�
�

HH
H
HH

H
H

FALSE

NO NEXT STATE

∧ x ′ = 6)

Behavior:

[x = 12, y = 18] → [x = 12, y = 6] → [x = 6, y = 6]

17

Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.

18

Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.

18

Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.

18

Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.

18

Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.

18

Euclid’s Algorithm

For any values of x and y , there are unique
values of x ′ and y ′ that make Next true.

Euclid’s algorithm is deterministic.

To Model Nondeterminism

Allow multiple next states for a current state.

Multiple assignments of values to primed variables
that make Next true for a single assignment of values
to unprimed variables.

18

What About Formal Specs?

Need them only to apply tools.

Require a formal language.

18

What About Formal Specs?

Need them only to apply tools.

Require a formal language.

18

What About Formal Specs?

Need them only to apply tools.

Require a formal language.

18

The Language: TLA+

19

The Language: TLA+

This

Init : (x = M) ∧ (y = N)

Next : (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

19

The Language: TLA+

becomes this

MODULE Euclid
EXTENDS Integers

CONSTANTS M , N

VARIABLES x , y

Init
∆
= (x = M) ∧ (y = N)

Next
∆
= (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

19

The Language: TLA+

plus declarations

MODULE Euclid
EXTENDS Integers

CONSTANTS M , N

VARIABLES x , y

Init
∆
= (x = M) ∧ (y = N)

Next
∆
= (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

19

The Language: TLA+

plus some boilerplate.

MODULE Euclid
EXTENDS Integers

CONSTANTS M , N

VARIABLES x , y

Init
∆
= (x = M) ∧ (y = N)

Next
∆
= (x > y

∧ x ′ = x − y

∧ y ′ = y)

∨ (y > x

∧ y ′ = y − x

∧ x ′ = x)

19

The Language: TLA+

You type

------------------ MODULE Euclid -------------------
EXTENDS Integers

CONSTANTS M, N

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == (x > y
/\ x’ = x - y
/\ y’ = y)

\/ (y > x
/\ y’ = y - x
/\ x’ = x)

===

19

You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong

20

You can model check TLA+ specs.

– Checks all executions of a small model.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong

20

You can model check TLA+ specs.

– Checks all executions of a small model.

– Extremely effective and fairly easy.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong
20

You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong

20

You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

– Hard work.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong

20

You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong

20

You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language
with types, procedures, objects, etc.

Wrong

20

You can model check TLA+ specs.

You can write formal correctness proofs
and check them mechanically.

But math works only for toy examples.

To model real systems, you need a real language

��
��
��
��

��
��

��
��

��
��
��

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP

with types, procedures, objects, etc.

Wrong

20

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

[W]e have used TLA+ on 10 large complex real-world systems.
In every case TLA+ has added significant value, either
preventing subtle serious bugs from reaching production, or
giving us enough understanding and confidence to make
aggressive performance optimizations without sacrificing
correctness. Executive management are now proactively
encouraging teams to write TLA+ specs for new features and
other significant design changes. In annual planning, managers
are now allocating engineering time to use TLA+.

Chris Newcombe
Amazon Engineer
November, 2013

21

The XBox 360 Memory System

Writing a TLA+ spec caught a bug that would not
otherwise have been found.

That bug would have caused every XBox 360 to crash
after 4 hours of use.

21

The XBox 360 Memory System

Writing a TLA+ spec caught a bug that would not
otherwise have been found.

That bug would have caused every XBox 360 to crash
after 4 hours of use.

21

The XBox 360 Memory System

Writing a TLA+ spec caught a bug that would not
otherwise have been found.

That bug would have caused every XBox 360 to crash
after 4 hours of use.

21

You can learn about TLA+ on the web.

Today, I’ll talk about informal specs, starting with an example.

22

You can learn about TLA+ on the web.

Today, I’ll talk about informal specs, starting with an example.

22

TLATEX — the TLA+ pretty-printer

22

TLATEX — the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

23

TLATEX — the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

The naive output:

Foo ⇒ ∧ a = b

∧ ccc = d

23

TLATEX — the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

The naive output:

Foo ⇒ ∧ a = b

∧ ccc = d

The user probably wanted these aligned.

23

TLATEX — the TLA+ pretty-printer

The input:

Foo => /\ a = b

/\ ccc = d

The right output:

Foo ⇒ ∧ a = b

∧ ccc = d

The user probably wanted these aligned.

23

TLATEX — the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

23

TLATEX — the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

The naive output:

∧ aaa + bb = c

∧ iii = jj ∗ k

23

TLATEX — the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

The naive output:

∧ aaa + bb = c

∧ iii = jj ∗ k

The user probably didn’t wanted these aligned.

23

TLATEX — the TLA+ pretty-printer

The input:

/\ aaa + bb = c

/\ iii = jj * k

The right output:

∧ aaa + bb = c

∧ iii = jj ∗ k

The user probably didn’t wanted these aligned.

23

There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.

24

There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.

24

There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.

24

There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.

24

There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.

24

There is no precise definition of correct alignment.

We can’t specify mathematically what the user wants.

If we can’t specify correctness, specification is useless.
Wrong.

Not knowing what a program should do means
we have to think even harder.

Which means that a spec is even more important.

24

My Spec

6 rules plus definitions (in comments).

Example:

A left-comment token is LeftComment aligned
with its covering token.

24

My Spec

6 rules plus definitions (in comments).

Example:

A left-comment token is LeftComment aligned
with its covering token.

24

My Spec

6 rules plus definitions (in comments).

Example:

A left-comment token is LeftComment aligned
with its covering token.

24

My Spec

6 rules plus definitions (in comments).

Example:

A left-comment token is LeftComment aligned
with its covering token.

Defined term.

24

Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.

25

Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.

25

Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.

25

Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.

25

Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.

25

Why did I write this spec?

It was a lot easier to understand and debug 6 rules
than 850 lines of code.

I did a lot of debugging of the rules, aided by debugging code
to report what rules were being used.

The few bugs in implementing the rules were easy to catch.

Had I just written code, it would have taken me much longer
and not produced formatting as good.

25

Why not a formal spec?

Getting it right not that important.

It didn’t have to work on all corner cases.

There were no tools that could help me.

25

Why not a formal spec?

Getting it right not that important.

It didn’t have to work on all corner cases.

There were no tools that could help me.

25

Why not a formal spec?

Getting it right not that important.

It didn’t have to work on all corner cases.

There were no tools that could help me.

25

Why not a formal spec?

Getting it right not that important.

It didn’t have to work on all corner cases.

There were no tools that could help me.

25

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Typical About This Spec

The spec is at a higher-level than the code.

It could have been implemented in any language.

No method or tool for writing better code would have
helped to write the spec.

No method or tool for writing better code would have
made the spec unnecessary.

It says nothing about how to write code.

You write a spec to help you think about the problem
before you think about the code. 26

What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27

What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27

What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27

What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27

What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27

What is Not Typical About This Spec

It’s quite subtle.

95% of the code most people write requires less thought;
specs that are shorter and simpler suffice.

It’s a set of rules.

A set of rules/requirements/axioms is usually a bad spec.

It’s hard to understand the consequences of a set of rules.

27

Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.

27

Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.

27

Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.

27

Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.

27

Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.

27

Specifying How to Compute a Function

Specifying what the pretty-printer should do was hard.

Implementing the spec was easy.

Specifying what a sorting program should do is easy.

Figuring out how to implement it efficiently is hard
(if no one has shown you).

It requires thinking, which means writing a specification.

27

An example: Quicksort

A divide-and-conquer algorithm for sorting an array
A[0], . . . , A[N − 1].

For simplicity, assume the A[i] are numbers.

27

An example: Quicksort

A divide-and-conquer algorithm for sorting an array
A[0], . . . , A[N − 1].

For simplicity, assume the A[i] are numbers.

27

An example: Quicksort

A divide-and-conquer algorithm for sorting an array
A[0], . . . , A[N − 1].

For simplicity, assume the A[i] are numbers.

27

It uses a procedure Partition(lo, hi).

It chooses pivot in lo . . . (hi − 1), permutes A[lo], . . . ,A[hi]

to make A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi],
and returns pivot .

For this example, we don’t care how this procedure
is implemented.

28

It uses a procedure Partition(lo, hi).

It chooses pivot in lo . . . (hi − 1), permutes A[lo], . . . ,A[hi]

to make A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi],
and returns pivot .

For this example, we don’t care how this procedure
is implemented.

28

It uses a procedure Partition(lo, hi).

It chooses pivot in lo . . . (hi − 1), permutes A[lo], . . . ,A[hi]

to make A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi],
and returns pivot .

For this example, we don’t care how this procedure
is implemented.

28

Let’s specify Quicksort in pseudo-code.

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?

29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?

29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?

29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?

29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?

29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

Informal: no formal syntax, no declarations, . . .

Easy to understand.

But is it really Quicksort?
29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

Informal: no formal syntax, no declarations, . . .

Easy to understand.

But is it really Quicksort?
29

procedure Partition(lo, hi) {

Pick pivot in lo . . . (hi − 1);

Permute A[lo], . . . ,A[hi] to make
A[lo], . . . ,A[pivot] ≤ A[pivot + 1], . . . ,A[hi];

return pivot ; }

procedure QS (lo, hi) { if (lo < hi) { p := Partition(lo, hi);
QS (lo, p);
QS (p + 1, hi); } }

main { QS (0,N − 1) ; }

But is it really Quicksort?

29

It’s the way Quicksort is almost always described.

But recursion is not a fundamental part of Quicksort.

It’s just one way of implementing divide-and-conquer.

It’s probably not the best way for parallel execution.

30

It’s the way Quicksort is almost always described.

But recursion is not a fundamental part of Quicksort.

It’s just one way of implementing divide-and-conquer.

It’s probably not the best way for parallel execution.

30

It’s the way Quicksort is almost always described.

But recursion is not a fundamental part of Quicksort.

It’s just one way of implementing divide-and-conquer.

It’s probably not the best way for parallel execution.

30

It’s the way Quicksort is almost always described.

But recursion is not a fundamental part of Quicksort.

It’s just one way of implementing divide-and-conquer.

It’s probably not the best way for parallel execution.

30

Problem: Write a non-recursive version of Quicksort.

Almost no one can do it in 10 minutes.

They try to “compile” the recursive version.

30

Problem: Write a non-recursive version of Quicksort.

Almost no one can do it in 10 minutes.

They try to “compile” the recursive version.

30

Problem: Write a non-recursive version of Quicksort.

Almost no one can do it in 10 minutes.

They try to “compile” the recursive version.

30

Solution:

Maintain a set U of index ranges on which
Partition needs to be called.

Initially, U equals {〈0,N − 1〉}

We could write it in pseudo-code,
but it’s better to simply write Init and Next directly.

31

Solution:

Maintain a set U of index ranges on which
Partition needs to be called.

Initially, U equals {〈0,N − 1〉}

We could write it in pseudo-code,
but it’s better to simply write Init and Next directly.

31

Solution:

Maintain a set U of index ranges on which
Partition needs to be called.

Initially, U equals {〈0,N − 1〉}

We could write it in pseudo-code,
but it’s better to simply write Init and Next directly.

31

Solution:

Maintain a set U of index ranges on which
Partition needs to be called.

Initially, U equals {〈0,N − 1〉}

We could write it in pseudo-code,
but it’s better to simply write Init and Next directly.

31

Init : A = any array of numbers of length N

∧ U = {〈0,N − 1〉}

Before writing Next , let’s make a definition:

Partitions(B , pivot , lo, hi)
∆
=

the set of arrays obtained from B by permuting
B [lo], . . . , B [hi] such that . . .

Next :

A relation between old values of A, U
and new values A′, U ′.

32

Init : A = any array of numbers of length N

∧ U = {〈0,N − 1〉}

Before writing Next , let’s make a definition:

Partitions(B , pivot , lo, hi)
∆
=

the set of arrays obtained from B by permuting
B [lo], . . . , B [hi] such that . . .

Next :

A relation between old values of A, U
and new values A′, U ′.

32

Init : A = any array of numbers of length N

∧ U = {〈0,N − 1〉}

Before writing Next , let’s make a definition:

Partitions(B , pivot , lo, hi)
∆
=

the set of arrays obtained from B by permuting
B [lo], . . . , B [hi] such that . . .

Next :

A relation between old values of A, U
and new values A′, U ′.

32

Init : A = any array of numbers of length N

∧ U = {〈0,N − 1〉}

Before writing Next , let’s make a definition:

Partitions(B , pivot , lo, hi)
∆
=

the set of arrays obtained from B by permuting
B [lo], . . . , B [hi] such that . . .

Next :

A relation between old values of A, U
and new values A′, U ′.

32

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {} Stop if U = {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

34

Why can (almost) no one find this version of Quicksort?

Their minds are stuck in code.

They can’t think at a higher level.

34

Why can (almost) no one find this version of Quicksort?

Their minds are stuck in code.

They can’t think at a higher level.

34

Why can (almost) no one find this version of Quicksort?

Their minds are stuck in code.

They can’t think at a higher level.

34

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Easy to write this as a formula.

35

Next :
U 6= {}

∧ Pick any 〈b, t〉 in U :
IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Pick an arbitrary value

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Pick an arbitrary value is existential quantification.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN Pick any p in b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Pick an arbitrary value is existential quantification.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Pick an arbitrary value is existential quantification.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ = Any element of Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Or sometimes

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and
〈b, p〉 and 〈p+1, t〉 added

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

Or sometimes even simpler.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = U with 〈b, t〉 removed and

ELSE A′ = A

∧ U ′ = U with 〈b, t〉 removed

And so on.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = (U \ {〈b, t〉}) ∪ {〈b, p〉, 〈p+1, t〉}

ELSE A′ = A

∧ U ′ = U \ {〈b, t〉}

And so on.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = (U \ {〈b, t〉}) ∪ {〈b, p〉, 〈p+1, t〉}

ELSE A′ = A

∧ U ′ = U \ {〈b, t〉}

A TLA+ formula.

35

Next :
U 6= {}

∧ ∃ 〈b, t〉 ∈ U :

IF b 6= t

THEN ∃ p ∈ b . . (t−1) :
A′ ∈ Partitions(A, p, b, t)

∧ U ′ = (U \ {〈b, t〉}) ∪ {〈b, p〉, 〈p+1, t〉}

ELSE A′ = A

∧ U ′ = U \ {〈b, t〉}

If you prefer pseudo-code. . .

35

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

PlusCal

Like a toy programming language.

Algorithm appears in a comment in a TLA+ module.

An expression can be any TLA+ expression.

Constructs for nondeterminism.

Compiled to an easy to understand TLA+ spec.

Can apply TLA+ tools.

36

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

Programs that Run Forever

I’ve been talking about programs that compute a function.

Programs that run forever usually involve concurrency:

– Operating systems.

– Distributed systems.

Few people can get them right by just thinking (and writing).

I’m not one of them.

We need tools to check what we do.

Use TLA+/ PlusCal.

37

The Other 95%

Prose

Most code is really simple.

38

The Other 95%

/***
* CLASS ResourceFileReader *
* *
* A ResourceFileReader returns an object for reading a *
* resource file, which is a file kept in the same *
* directory as the tlatex.Token class. The constructor *
* takes a file name as argument. The object’s two public *
* methods are *
* *
* getLine() : Returns the next line of the file as a *
* string. Returns null after the last line. *
* *
* close() : Closes the file. *
***/

38

Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

General rule:
A spec of what the code does should say everything
that anyone needs to know to use the code.

39

Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

General rule:
A spec of what the code does should say everything
that anyone needs to know to use the code.

39

Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

General rule:
A spec of what the code does should say everything
that anyone needs to know to use the code.

39

Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

General rule:
A spec of what the code does should say everything
that anyone needs to know to use the code.

39

Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

General rule:
A spec of what the code does should say everything
that anyone needs to know to use the code.

39

Why did I write that spec?

To be sure I knew what the code should do before writing it.

Without writing a spec, I only thought I knew what it should do.

Later, I didn’t have to read the code to know what it did.

How the code worked was too simple to require a spec.

39

What programmers should know about thinking.

Everyone thinks they think.

If you don’t write down your thoughts,
you’re fooling yourself.

39

What everyone should know about thinking.

Everyone thinks they think.

If you don’t write down your thoughts,
you’re fooling yourself.

39

What everyone should know about thinking.

Everyone thinks they think.

If you don’t write down your thoughts,
you’re fooling yourself.

39

What everyone should know about thinking.

Everyone thinks they think.

If you don’t write down your thoughts,
you’re fooling yourself.

39

What programmers should know about thinking.

You should think before you code.

A spec is simply what you write before coding.

40

What programmers should know about thinking.

You should think before you code.

A spec is simply what you write before coding.

40

What programmers should know about thinking.

You should write before you code.

A spec is simply what you write before coding.

40

What programmers should know about thinking.

You should write before you code.

A spec is simply what you write before coding.

40

What code should you specify?

Any piece of code that someone else might want to
use or modify.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else might want to
use or modify.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else
you

might want to
use or modify in a month.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else
you

might want to
use or modify in a month.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else
you

might want to
use or modify in a month.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else
you

might want to
use or modify in a month.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else
you

might want to
use or modify in a month.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What code should you specify?

Any piece of code that someone else
you

might want to
use or modify in a month.

It could be:

An entire program or system.

A class.

A method.

A tricky piece of code in a method.

40

What should you specify about the code?

What it does.

Everything anyone needs to know to use it.

Maybe: how it does it.

The algorithm / high-level design.

41

What should you specify about the code?

What it does.

Everything anyone needs to know to use it.

Maybe: how it does it.

The algorithm / high-level design.

41

What should you specify about the code?

What it does.

Everything anyone needs to know to use it.

Maybe: how it does it.

The algorithm / high-level design.

41

What should you specify about the code?

What it does.

Everything anyone needs to know to use it.

Maybe: how it does it.

The algorithm / high-level design.

41

What should you specify about the code?

What it does.

Everything anyone needs to know to use it.

Maybe: how it does it.

The algorithm / high-level design.

41

How should you think about / specify the code?

Above the code level.

In terms of states and behaviors.

Mathematically, as rigorously / formally as necessary.

Perhaps with pseudo-code or PlusCal if specifying how.

41

How should you think about / specify the code?

Above the code level.

In terms of states and behaviors.

Mathematically, as rigorously / formally as necessary.

Perhaps with pseudo-code or PlusCal if specifying how.

41

How should you think about / specify the code?

Above the code level.

In terms of states and behaviors.

Mathematically, as rigorously / formally as necessary.

Perhaps with pseudo-code or PlusCal if specifying how.

41

How should you think about / specify the code?

Above the code level.

In terms of states and behaviors.

Mathematically, as rigorously / formally as necessary.

Perhaps with pseudo-code or PlusCal if specifying how.

41

How should you think about / specify the code?

Above the code level.

In terms of states and behaviors.

Mathematically, as rigorously / formally as necessary.

Perhaps with pseudo-code or PlusCal if specifying how.

41

How do you learn to write specs?

By writing formal specs.

41

How do you learn to write specs?

By writing formal specs.

41

How do you learn to write formal specs?

You learned to write programs by writing them,
running them, and correcting your errors.

You can learn to write formal specs by writing
them, “running” them with a model checker,
and correcting your errors.

TLA+ may not be the best language for your formal
specification needs.

But it’s great for learning learning to think mathematically.

42

How do you learn to write formal specs?

You learned to write programs by writing them,
running them, and correcting your errors.

You can learn to write formal specs by writing
them, “running” them with a model checker,
and correcting your errors.

TLA+ may not be the best language for your formal
specification needs.

But it’s great for learning learning to think mathematically.

42

How do you learn to write formal specs?

You learned to write programs by writing them,
running them, and correcting your errors.

You can learn to write formal specs by writing
them, “running” them with a model checker,
and correcting your errors.

TLA+ may not be the best language for your formal
specification needs.

But it’s great for learning learning to think mathematically.

42

How do you learn to write formal specs?

You learned to write programs by writing them,
running them, and correcting your errors.

You can learn to write formal specs by writing
them, “running” them with a model checker,
and correcting your errors.

TLA+ may not be the best language for your formal
specification needs.

But it’s great for learning learning to think mathematically.

42

How do you learn to write formal specs?

You learned to write programs by writing them,
running them, and correcting your errors.

You can learn to write formal specs by writing
them, “running” them with a model checker,
and correcting your errors.

TLA+ may not be the best language for your formal
specification needs.

But it’s great for learning learning to think mathematically.

42

How do you connect the spec to the code?

Comments connecting mathematical concepts and their
implementation.

Example:

Mathematical concept: graph

Implementation: array of node objects & array of link objects

43

How do you connect the spec to the code?

Comments connecting mathematical concepts and their
implementation.

Example:

Mathematical concept: graph

Implementation: array of node objects & array of link objects

43

How do you connect the spec to the code?

Comments connecting mathematical concepts and their
implementation.

Example:

Mathematical concept: graph

Implementation: array of node objects & array of link objects

43

How do you connect the spec to the code?

Comments connecting mathematical concepts and their
implementation.

Example:

Mathematical concept: graph

Implementation: array of node objects & array of link objects

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

What about coding?

Nothing I have said implies anything about
how you should code.

You still have to think while you code.

What you write while coding is code.

I have nothing to say about how you should code.

Use any programming language you want.

Use any coding methodology you want:
test-driven development, agile programming, . . .

43

You’ll still have to test and debug.

Writing specs is an additional step.

It may save time by catching errors early,
when they’re easier to correct.

It will improve your programming,
so you write better programs.

44

You’ll still have to test and debug.

Writing specs is an additional step.

It may save time by catching errors early,
when they’re easier to correct.

It will improve your programming,
so you write better programs.

44

You’ll still have to test and debug.

Writing specs is an additional step.

It may save time by catching errors early,
when they’re easier to correct.

It will improve your programming,
so you write better programs.

44

You’ll still have to test and debug.

Writing specs is an additional step.

It may save time by catching errors early,
when they’re easier to correct.

It will improve your programming,
so you write better programs.

44

Why are programmers reluctant to write specs?

Writing is hard.

44

Why are programmers reluctant to write specs?

Writing is hard.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

Why is writing hard?

Writing requires thinking.

Thinking is hard.

It’s easier to think your thinking.

Writing is like running.

The less you do it, the slower you are.

You have to strengthen your writing muscles.

It takes practice.

It’s easier to find an excuse not to.

44

What if the spec is wrong?

Maybe you made a mistake.

Maybe the requirements change,
or an enhancement is needed.

The code will have to be changed,
maybe even before the program is finished.

This eventually happens to all useful programs.

45

What if the spec is wrong?

Maybe you made a mistake.

Maybe the requirements change,
or an enhancement is needed.

The code will have to be changed,
maybe even before the program is finished.

This eventually happens to all useful programs.

45

What if the spec is wrong?

Maybe you made a mistake.

Maybe the requirements change,
or an enhancement is needed.

The code will have to be changed,
maybe even before the program is finished.

This eventually happens to all useful programs.

45

What if the spec is wrong?

Maybe you made a mistake.

Maybe the requirements change,
or an enhancement is needed.

The code will have to be changed,
maybe even before the program is finished.

This eventually happens to all useful programs.

45

What if the spec is wrong?

Maybe you made a mistake.

Maybe the requirements change,
or an enhancement is needed.

The code will have to be changed,
maybe even before the program is finished.

This eventually happens to all useful programs.

45

In an ideal world, a new spec would be written
and the code completely rewritten.

In the real world, the code is patched
and maybe the spec is updated.

If this is inevitable, why write specs?

45

In an ideal world, a new spec would be written
and the code completely rewritten.

In the real world, the code is patched
and maybe the spec is updated.

If this is inevitable, why write specs?

45

In an ideal world, a new spec would be written
and the code completely rewritten.

In the real world, the code is patched
and maybe the spec is updated.

If this is inevitable, why write specs?

45

Reason 1

Whoever has to modify the code will be grateful for
every word or formula of spec you write.

And “whoever” may be you.

That’s why you should update the spec when
changing the code.

45

Reason 1

Whoever has to modify the code will be grateful for
every word or formula of spec you write.

And “whoever” may be you.

That’s why you should update the spec when
changing the code.

45

Reason 1

Whoever has to modify the code will be grateful for
every word or formula of spec you write.

And “whoever” may be you.

That’s why you should update the spec when
changing the code.

45

Reason 1

Whoever has to modify the code will be grateful for
every word or formula of spec you write.

And “whoever” may be you.

That’s why you should update the spec when
changing the code.

45

Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower

46

Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower

46

Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower

46

Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower

46

Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower

46

Reason 2

Every time code is patched, it becomes a little uglier,
harder to understand, and harder to maintain.

If you don’t start with a spec, every piece of the code
you write is a patch.

The program starts out ugly, hard to understand,
and hard to maintain.

“No battle was ever won according to plan,
but no battle was ever won without one.”

Dwight D. Eisenhower

46

Some people will tell you that writing specs is a waste of time.

In some situations it is. Sometimes there’s no need to think
about what you’re doing.

But remember: when they’re telling you not to write a spec,
they’re really telling you not to think.

47

Some people will tell you that writing specs is a waste of time.

In some situations it is. Sometimes there’s no need to think
about what you’re doing.

But remember: when they’re telling you not to write a spec,
they’re really telling you not to think.

47

Some people will tell you that writing specs is a waste of time.

In some situations it is. Sometimes there’s no need to think
about what you’re doing.

But remember: when they’re telling you not to write a spec,
they’re really telling you not to think.

47

Some people will tell you that writing specs is a waste of time.

In some situations it is. Sometimes there’s no need to think
about what you’re doing.

But remember: when they’re telling you not to write a spec,
they’re really telling you not to think.

47

Thinking doesn’t guarantee that you won’t make mistakes.

Not thinking usually guarantees that you will.

47

Thinking doesn’t guarantee that you won’t make mistakes.

Not thinking usually guarantees that you will.

47

To find out more about TLA+, go to my home
page and click on:

The TLA Web Page

47

To find out more about TLA+, go to my home
page and click on:

The TLA Web Page

Thank You

47

