

Parallel Programming in the Age
of Ubiquitous Parallelism
Andrew Lenharth
Slides: Keshav Pingali
The University of Texas at Austin

Andrew Lenharth
Slides: Keshav Pingali

The University of Texas at Austin

Parallel Programming
in the

Age of Ubiquitous Parallelism

Parallelism is everywhere

Texas Advanced

Computing Center

Cell-phones

Laptops

Parallel programming?

“The Alchemist”

Cornelius Bega (1663)

• 40-50 years of work on parallel
programming in HPC domain

• Focused mostly on “regular”
dense matrix/vector algorithms
– Stencil computations, FFT, etc.

– Mature theory and tools

• Not useful for “irregular”
algorithms that use graphs, sets,
and other complex data
structures
– Most algorithms are irregular 

• Galois project:
– New data-centric abstractions for

parallelism and locality

– Galois system for multicores and
GPUs

HPC example

Jacobi iteration, 5-point stencil

At At+1

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

• Finite-difference
computation

• Algorithm
– Operator: five-point stencil
– Different schedules have

different locality

• Regular application
– Application can be

parallelized at compile-
time

Irregular example

• Where is parallelism in

program?

– Loop: do static analysis

to find dependence

graph

• Static analysis fails to

find parallelism.

– May be there is no

parallelism in program?

Mesh m = /* read in mesh */

WorkList wl;

wl.add(m.badTriangles());

while (true) {

if (wl.empty()) break;

Element e = wl.get();

if (e no longer in mesh)

continue;

Cavity c = new Cavity();

c.expand();

c.retriangulate();

m.update(c);//update mesh

wl.add(c.badTriangles());

}

Data-centric view of algorithm

• Algorithm
– composition of atomic actions on

data structures

• Actions: operator
– DMR: {find cavity, retriangulate,

update mesh}

• Composition of actions:
– specified by a schedule

• Parallelism
– disjoint actions can be

performed in parallel

• Parallel data structures
– graph

– worklist of bad triangles

Delaunay mesh refinement (DMR)
Red Triangle: badly shaped triangle

Blue triangles: cavity of bad triangle

Operator formulation of algorithms
• Active element

– Site where computation is needed

• Operator
– Computation at active element
– Activity: application of operator to active

element

• Neighborhood
– Set of nodes/edges read/written by activity
– Distinct usually from neighbors in graph

• Ordering : scheduling constraints
on execution order of activities
– Unordered algorithms: no semantic

constraints but performance may depend
on schedule

– Ordered algorithms: problem-dependent
order

• Amorphous data-parallelism
– Multiple active nodes can be processed in

parallel subject to neighborhood and
ordering constraints

: active node

: neighborhood

Parallel program = Operator + Schedule + Parallel data structure

Parallelization strategies: Binding Time

Optimistic
Parallelization (Time-warp)

Interference graph (DMR, chaotic SSSP)

Inspector-executor (Bellman-Ford)

Static parallelization (stencil codes, FFT, dense linear algebra)Compile-time

After input
is given

During program
execution

After program
is finished

1

2

3

4

When do you know the active nodes and neighborhoods?

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011

Galois system

• Ubiquitous parallelism:
– small number of expert

programmers (Stephanies)
must support large number of
application programmers (Joes)

– cf. SQL

• Galois system:
– Stephanie: library of

concurrent data structures and
runtime system

– Joe: application code in
sequential C++

• Galois set iterator for
highlighting opportunities for
exploiting ADP

Algorithms

Data structures

Parallel program = Operator + Schedule + Parallel data structures

Joe: Operator + Schedule

Stephanie: Parallel data structures

Concurrent
data structures

main()
….
for each …..{
…….
…….
}
.....

Master

Joe Program

i1

i2

i3

i4

i5

“Hello graph” Galois Program

#include “Galois/Galois.h”

#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph;

typedef Galois::Graph::GraphNode Node;

Graph graph;

struct P {

void operator()(Node n, Galois::UserContext<Node>& ctx) {

graph.getData(n).value += 1;

}

};

int main(int argc, char** argv) {

graph.structureFromGraph(argv[1]);

Galois::for_each(graph.begin(), graph.end(), P());

return 0;

}

12

Data structure
Declarations

Galois Iterator

Operator

Galois: Performance on SGI Ultraviolet

Inputs: SSSP: 23M nodes, 57M edges SP: 1M literals, 4.2M clauses DMR: 10M triangles

BH: 5M stars PTA: 1.5M variables, 0.4M constraints

GPU implementation

Multicore: 24 core Xeon

GPU: NVIDIA Tesla

Galois: Graph analytics

• Galois lets you code more effective algorithms for graph
analytics than DSLs like PowerGraph (left figure)

• Easy to implement APIs for graph DSLs on top on Galois and
exploit better infrastructure (few hundred lines of code for
PowerGraph and Ligra) (right figure)

“A lightweight infrastructure for graph analytics” Nguyen, Lenharth, Pingali (SOSP 2013)

Galois vs Other Graph Frameworks

Intel Study: Galois vs. Graph Frameworks

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

FPGA Tools

Moctar & Brisk, “Parallel FPGA Routing based on the Operator Formulation”

DAC 2014

Conclusions
• Yesterday:

– Computation-centric view of
parallelism

• Today:
– Data-centric view of parallelism

– Operator formulation of
algorithms

– Permits a unified view of
parallelism and locality in
algorithms

– Joe/Stephanie programming
model

– Galois system is an
implementation

• Tomorrow:
– DSLs for different applications

– Layer on top of Galois

Joe: Operator + Schedule

Stephanie: Parallel data structures

Parallel program = Operator + Schedule + Parallel data structure

More information

• Website

– http://iss.ices.utexas.edu

• Download

– Galois system for multicores

– Lonestar benchmarks

– All our papers

http://iss.ices.utexas.edu/

SGD – Recommender System

20nomad with 40 threads on bgg does not converge

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●●●●

●

●●●

●

●

●●

●

●●●

●●●●●●

●

●●●

●●

●

●

●●●●●●●●

●

●●●●

●●

●●

●

●●

●

●●

●

●●●●

●

●●●

●

●●●

●

●

●

●●●●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●●●●●●

●●

●●●●●●●
●●●
●●●●●
●
●●

●●●●●●●

●●
●
●
●●●●

●●●●●●●●

●

●

●●●●●●●

●●●

●

●●

bgg netflix yahoo

0

10

20

30

40

0

25

50

75

100

125

10

20

30

20 40 20 40 20 40
Threads

G
FL

O
P

S Kind

galois

graphlab

nomad

Relation to other

parallel programming models

• Galois:
– Parallel program = Operator + Schedule + Parallel data structure

– Operator can be expressed as a graph rewrite rule on data structure

• Functional languages:
– Semantics specified in terms of rewrite rules like b-reduction

– Rules rewrite program, not data structures

• Logic programming:
– (Kowalski) Algorithm = Logic + Control

– Control ~ Schedule

• Transactions:
– Activity in Galois has transactional semantics (atomicity, consistency,

isolation)

– But transactions are synchronization constructs for explicitly parallel
languages whereas Joe programming model in Galois is sequential

Microsoft Privacy Policy statement applies to all information collected. Read at research.microsoft.com

Save the planet and return
your name badge before you

leave (on Tuesday)

