Microsoft Research

Faculty

Summit
2014 15T ANNUAL

2014 15™ ANNUAL

Parallel Programming in the Age
of Ubiquitous Parallelism

Andrew Lenharth sEXAg
Slides: Keshav Pingali
The University of Texas at Austin

== Microsoft

1

W XAg

T

Parallel Programming
N the
Age of Ubiquitous Parallelism

Andrew Lenharth
Slides: Keshav Pingali
The University of Texas at Austin

Parallelism Is everywhere

Texas Advanced
Computing Center

Cell-phones

Parallel programming?

40-50 years of work on parallel
programming in HPC domain

Focused mostly on “regular”
dense matrix/vector algorithms
— Stencil computations, FFT, etc.
— Mature theory and tools

Not useful for “irregular”
algorithms that use graphs, sets,

and other complex data
structures

— Most algorithms are irregular ®
Galois project:

— New data-centric abstractions for
parallelism and locality

— Galois system for multicores and
GPUs

“The Alchemist”
Cornelius Bega (1663)

HPC example

* Finite-difference
computation

* Algorithm

— Operator: five-point stencil
— Different schedules have

different locality

* Regular application

— Application can be
parallelized at compile-

time

i

At At+1

Jacobi iteration, 5-point stencil

//lacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps
for <i,j>in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

Irreqular example

Mesh m = /* read in mesh */ . - : '
. Where is parallelism in
wl.add(m.badTriangles()); program?
while (true) {
if (wl.empty()) break: — Loq \\6‘3 Static analysis
Element e = wl.get(); O’\@ehnd dependence
if (e no longer in mesh) %
continue; (\“\O N graph
Cavity cd:onew ’{\%@(m@ « Static analysis fails to
c.expand(); : :
c retrianguiafe@VLS find parallelism.
m.updatg(§).//update mesh — May be there is no

wl.add(c.badTriangles()); _ _
} parallelism in program?

Data-centric view of algorithm

Before

After

Delaunay mesh refinement (DMR)
Red Triangle: badly shaped triangle
Blue triangles: cavity of bad triangle

Algorithm

— composition of atomic actions on
data structures

Actions: operator

— DMR: {find cavity, retriangulate,
update mesh}

Composition of actions:
— specified by a schedule

Parallelism

— disjoint actions can be
performed in parallel

Parallel data structures
— graph
— worklist of bad triangles

Operator formulation of algorithms

Active element
— Site where computation is needed

Operator

— Computation at active element

— Activity: application of operator to active
element

Neighborhood

— Set of nodes/edges read/written by activity
— Distinct usually from neighbors in graph

Ordering : scheduling constraints
on execution order of activities

— Unordered algorithms: no semantic
constraints but performance may depend
on schedule

— Ordered algorithms: problem-dependent
order
Amorphous data-parallelism AT neighborhood
— Multiple active nodes can be processed in

parallel subject to neighborhood and
ordering constraints

Parallel program = Operator + Schedule + Parallel data structure

Parallelization strategies: Binding Time

When do you know the active nodes and neighborhoods?

Compile-time

After input
is given

During program

execution

After program
is finished

\4

- Inspector-executor (Bellman-Ford)

-+ Interference graph (DMR, chaotic SSSP)

- Static parallelization (stencil codes, FFT, dense linear algebra)

Optimistic
Parallelization (Time-warp)

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011

Galois system

Parallel program = Operator + Schedule + Parallel data structures

Joe Program
* Ubiquitous parallelism:

— small number of expert
programmers (Stephanies) \
must support large number of R

R

application programmers (Joes)
— cf. SQL

* Galois system:

— Stephanie: library of
concurrent data structures and
runtime system

— Joe: application code in
sequential C++

* Galois set iterator for
highlighting opportunities for

oy ()
exploiting ADP - ‘ <A Concurrent
Vi data structures

“Hello graph™ Galois Program

#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph;
typedef Galois::Graph::GraphNode Node;

Graph graph;

struct P {
void operator()(Node n, Galois::UserContext<Node>& ctx) {
graph.getData(n).value +=1;
}
¢

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1));
Galois::for_each(graph.begin(), graph.end(), P());
return O;

}

<

<

Data structure

Declarations

Operator

Galois Iterator

12

Galois: Performance on SGI Ultraviolet

512
480 barnes-hut
delaunay mesh refinem App | Implementation | Threads | Time (s)
448 delaunay triangulat: triangle 1 06
416 betweenness central: dor | Galois ! 155.7
triand Galois 512 0.37
384 g triangle 1 1185
dt (salois 1 56.6
352 (Galois 512 0.18
320 splash2 1 =6000
m bh alois 1 1356
a 288 Galois 512 3.55
o oce HPCS SSCA | 1 6720
! bc Galois 1 5304
0 224 Galois 512 21.6
v graphlab 2 531
192 P tri | Galois 1 7.03
160 / Galois 512 0.028
128 : Table 2: Serial runtime comparisons to other imple-
/ mentations rounded to the nearest second. Included
96 are runtimes for Galois algorithms at 512 threads.
64 The splash2 implementation of bh timed out after
100 minutes.
32
0

0 64 128 192 256 320 384 448 512

Threads

GPU implementation

Single Source Shortest Path

100 & Multi-core
= GPU
0
o 10
£
e
-E 1
c
=]
14
0.1
1 2 4 8 16
Number of threads
Barnes Hut
1000 = Multi-core
== GPU
O
o 100
£
g
= 10
[=
=]
(4
1
1 2 4 8 16
Number of threads
Inputs: SSSP: 23M nodes, 57M edges

Survey Propagation

10000 @ Multi-core
== GPU
1000
100
10
1 2 4 8 16
Number of threads
Points-to Analysis
1000 = Multi-core
== GPU
0
[}]
£
= 100
(=]
c
'
c
=]
14
10
1 2 4 8 16

Number of threads

SP: 1M literals, 4.2M clauses

Running time (s)

Delaunay Mesh Refinement
100

W \|ulti-core
== GPU

10

1 2 4 8 16
Number of threads

Multicore: 24 core Xeon
GPU: NVIDIA Tesla

DMR: 10M triangles

BH: 5M stars

PTA: 1.5M variables, 0.4M constraints

Runtime Ratios

Galois: Graph analytics

Ligra PowerGraph
Galois Galois
10000 =
1000 = +
100 =
10 = + + +
1- o -+ + + ¥ +
-l-
10000 =
1000 = + + +t o+
100 = +
109 4+ + +
1 —
| | | * | | | | | |

bfs cc dia pr sssp

bfs cc dia pr sssp

0glanimy

peol

Runtime Ratios

=M

—_—

Ligra

Ligra—g

PowerGraph

PowerGraph—g

+ 4+ +

—r

bfs cc dia

pr sssp

bfs cc dia

« Galois lets you code more effective algorithms for graph
analytics than DSLs like PowerGraph (left figure)

« Easy to implement APIs for graph DSLs on top on Galois and

exploit better infrastructure (few hundred lines of code for

PowerGraph and Ligra) (right figure)

“A lightweight infrastructure for graph analytics” Nguyen, Lenharth, Pingali (SOSP 2013)

|
pr

|
SSSp

SIS

peo.

Galois vs. Graph Frameworks

Intel Study

@ Combblas @ Graphlab = Native [E1Combblas @ Graphlab

B Native

Giraph & Galois

[Socialite

& Galois

N Giraph

[Socialite

10

21319YJuAg

DRURRNNNNNNNNY

eIpadijim
v »00Qqade4
v |eulnoldAI
s = ~— °

1

21319YuAS

elpadiyim

}00Qgade4

|leulnolaAl

-
o

0.01

(spuo2as) uoneusanl Jad swiy

(b) Breadth-First Search

(a) PageRank

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

FPGA Tools

Maze Router Execution Time

B VvPR50 [Galois T Galois [Galois [] Galois
(Baseling) (1 Thread) (2 Threads) (4 Threads) (8 Threads)

(s) Deterministic Scheduler (s) Non-Deterministic Scheduler
450 1 450 -
300 - 300
150 m iijh Ik:l 150 o
o - T |i]:h|Ii:h| Ii:h:hll]:hli:i:hl 1 T 1 0+
™ A_\. M - s = e ,13. @ . ™ N E‘.‘.?.. = L .
o & + cgfq?@f:ﬁg’b T TS e < a’x‘f@f CHER g
o P _}a é.u Q,‘F ¢ W A {;‘.: £ X ‘}a & w
& SH 4 & & & &
Averages VPR 5.0 134 6 seconds VPR 5.0 134 .6 seconds
Galois (1 Thread) 162.4 seconds Galois (1 Thread) 145.3 seconds
Galois (2 Threads) 106.6 seconds Galois (2 Threads) 88.8 seconds
Galois (4 Threads) 592 seconds Galois (4 Threads) 43.0 seconds
Galois (8 Threads) 33.7 seconds Galois (8 Threads) 22.6 seconds

Moctar & Brisk, “Parallel FPGA Routing based on the Operator Formulation”
DAC 2014

Conclusions

* Yesterday:
— Computation-centric view of RIS DR

parallelism SO N DA /IR0 e
o VipinireeVe e

— Data-centric view of parallelism

— Operator formulation of
algorithms

— Permits a unified view of
parallelism and locality in
algorithms

— Joe/Stephanie programming
model

— Galois system is an
Implementation

 Tomorrow:
— DSLs for different applications
— Layer on top of Galois

Parallel program = Operator + Schedule + Parallel data structure

More Information

» Website
— http://iss.ices.utexas.edu

* Download
— Galois system for multicores
— Lonestar benchmarks
— All our papers

http://iss.ices.utexas.edu/

GFLOPS

40 -

30 -

10 -

SGD — Recommender System

20

nomad with 40 threads on bgg does not converge

40

125 - netflix

!

]
100 -
75 -

_—

50 -

25 -]
O —

20 40
Threads

30 -

20 -

10 -

yahoo

20

Kind
~ galois
| graphlab
—_— nomad
40
20

Relation to other
parallel programming models

Galois:
— Parallel program = Operator + Schedule + Parallel data structure
— Operator can be expressed as a graph rewrite rule on data structure
Functional languages:
— Semantics specified in terms of rewrite rules like B-reduction
— Rules rewrite program, not data structures
Logic programming:
— (Kowalski) Algorithm = Logic + Control
— Control ~ Schedule
Transactions:

— Activity in Galois has transactional semantics (atomicity, consistency,
Isolation)

— But transactions are synchronization constructs for explicitly parallel
languages whereas Joe programming model in Galois is sequential

Save the planet and return
your name badge before you
leave (on Tuesday)

Microsoft Privacy Policy statement applies to all information collected. Read at research.microsoft.com

Microsoft

© 2014 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on
the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

