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Abstract

This paper addresses the challenge of learning in-
formation by reading natural language text. The
major aim is to map natural language input into
logical expressions anchored upon concise and spe-
cific theories underlying the domains, in such a way
that a reasoning engine can be used to answer ques-
tions about the input. We define a 3-step procedure,
including parsing and abduction, and explore dif-
ferent implementations for the steps. Experiments
were conducted in two domains, chemistry and bi-
ology, and the versatility of the approach suggests
that extension to other domains is possible when
the underlying theories are suitably specified.

1 Introduction

In this paper we address the problem of deriving seman-
tic representations automatically from natural language text.
This longstanding dream of Al has recently been revived in
the Halo Project [Friedland and Allen, 20041, which investi-
gated various existing Knowledge Representation and Rea-
soning (KRR) techniques and descried their potential and
drawbacks.

Since part of the Halo systems’ reading process was per-
formed manually, we decided to investigate the feasibility
of automating the entire process, from natural language sen-
tences as input to answers to questions (that may involve rea-
soning) as output, and to test the implementation(s) in several
domains. This paper is a brief early report of some of our
work.

We modularized the process into a series of steps, namely
NL parsing (Section 2.1), conversion to shallow logical form
(Section 2.2), and abductive mapping to deeper form(s) (Sec-
tion 2.3). To ingest and reason with the results, we employed
two different KRR systems, with underlying models built at
different degrees of completeness (Sections 3.1 and 3.2). The
result is an automated flow from natural language text to a
question-answering ability entirely independent of human in-
tervention. The quality of the learning performed by the sys-
tem has been preliminarily evaluated by asking questions re-
garding the textual input and measuring the amount of infor-
mation automatically learned from natural language data.

We applied the system to two domains:
Chemistry: Two subsections of a high school chemistry text-
book
Biology: Various paragraph-length texts describing the hu-
man heart.

2 Language Processing Steps

2.1 Parsing

In the chemistry domain, the first step was performed by the
Charniak parser [Charniak, 2000]. In the biology domain, we
used the CONTEX parser [Hermjakob and Mooney, 1997]. In
both cases, the parse tree was converted into a shallow logical
form as explained in Section 2.2.

A example parse tree produced by CONTEX for the sen-
tence “the heart is a pump” is:

(SUBJ) [2] The heart [S-NP]
(DET) [3] The [S-DEF-ART]
(PRED) [4] heart [S-COUNT-NOUN]
(PRED) [5] 1is [S-AUX]
(OBJ) [6] a pump [S-NP]
(DET) [7] a [S-INDEF-ART]
(PRED) [8] pump [S-NOUN]

Since we were not in this project focusing on parsing it-
self, we avoided parser problems by manually simplifying
sentences’ syntactic structure prior to parsing where neces-
sary in the following ways:

e Splitting sentences into two if joined by a conjunction.

e Removing appositives (described by bracketed NPs ad-
joining an NP) and writing it as a separate sentence.

e Replacing within-sentence images representing chem-
ical formulae by the chemical formulae expressed in
plain text.

2.2 Shallow Logical Form

In the chemistry domain, the parse tree was first con-
verted into a series of minimal triples called Basic Elements
(BEs) [Hovy et al., 2005], defined as triplets of words con-
sisting of a head and a modifier or argument, with its relation
to the head, and then into a shallow logical form (LF) [Hobbs,
1985; 19981, defined as a list of conjoined expressions with
linked variables.



A sample analysis into BEs for the sentence :

“Citric acid in lemon juice has a sour taste” is

< C’itT'L'CJJ‘NN — JJ|aCidNN > NP

< acidyNy|NN — NNin|juiceny > NP

< lemonnynp|NN — NNP|juiceny > NP
< acidNN\hasAUX|ARG0 >VP

< ARG1|hasavx |tastexnny > VP

< apr|NN — DT|tastexny > NP

< souryjj|NN — JJ|tastenn > NP

In the chemistry domain, a simple script was developed to
map the BEs into LF expressions.

In the biology domain, the CONTEX parse tree was
converted directly into LF using LF Toolkit [Rathod and
Hobbs, 2005], whose rules traverse the parse tree and output
an LF expression for each appropriate word and each syn-
tactic branch node, using composition relations to identify
variables among logical form fragments.

For example the sentence “The heart is a pump” has
the shallow logical form:

be’(e0,x0,x1) & heart-nn’(e2,x0) & pump-nn’(el,xI)

where the variables x0 and x/ represent the heart and
the pump respectively and the variables e0, el and e2 reify
the “be” relation and its components (the properties of being
a heart and being a pump, respectively).

2.3 Transformations to Deeper Semantic Form

The LF shallow representations are not sufficiently ‘seman-
tic’ to support significant reasoning. In particular, sentences
that express rules have to be converted into axiom format, de-
terminers have to be converted into the appropriate referential
expressions, verb arguments have to be provided with explicit
relation names, etc.

Since these transformations may influence one another, and
since they are in some cases not deterministic but depend on
(usually correct) assumptions, we employ the abductive rea-
soner Mini-Tacitus [Hobbs er al., 1993] to perform them. In
a sense, the resulting formulation provides the best (abduc-
tive) explanation of the content of the sentence. Axioms were
crafted manually to allow the system to backchain from the
shallow logical form to a form that could be used by the KRR
system. In the biology domain, for example, the KRR sys-
tem required both part-of-speech information as well as verb
argument names from its component library relations. The
following example shows an input sentence, its shallow logi-
cal form, and the final output after transformation.

Oxygenated blood returns to the heart.
oxygenate-vb’(e5,x2,x0) &  blood-nn’(e2,x0)

& return-vb’(e0,x0) & to’(el,e0,x1) & heart-
nn’(e4,x1)

((x2 agent-of €5 )
( x0 object-of €0 )

( x4 instance-of heart )
(‘heart pos noun )

( x0 instance-of blood )
('blood pos noun )

( x0 object-of 5 )

( x4 destination-of e0 )
(e5 instance-of oxygenate )
(‘oxygenate pos verb )
(€20 eventuality-of to )
(e0tox0)

( e0 instance-of return )
( return pos verb ))

Note the insertion of verb argument names such as object-of,
destination-of, agent-of etc. The relation instance-of con-
nects arguments to their model types.

3 Knowledge Representation and Reasoning

For the chemistry domain, we employed the KRR system
PowerLoom [Chalupsky er al., 20061, built at ISI, for which
first-order logical axioms had to be created manually at ISI.
In the biology domain, we employed the KRR system Knowl-
edge Machine (KM) [Clark er al., 2003], built at the Univer-
sity of Texas in Austin, using models of the domain built by
our collaborators in Texas. The details are explained in Sec-
tions 3.1 and 3.2.

3.1 Chemistry Domain

The corpus for the chemistry domain was a high school chem-
istry textbook. We tested the system with two selected sub-
sections of the textbook, a total of 133 sentences, concerning
acids and bases.

Technical Details
The input to PowerLLoom was first-order logic axioms, rep-
resented in the Knowledge Interchange Format (KIF) [Gene-
sereth, 1991]. Three types of knowledge were captured.
General Facts: Because we were processing a textbook, it
is reasonable to resolve what in isolation would be a generic-
specific ambiguity in favor of the generic interpretation. This
allowed many sentences to be converted into axioms in which
the subject implies the predicate. Frequently, for example, the
subject is a chemical term and the predicate defines this term,
as in
An H+ ion is a proton.
(FORALL (72 ?x1 %e4 7x2 %3)
(=(AND (nn ?e4 ?x2 7x1)
(h+ 7e3 7x2)
(ion ?e2 7x1))
(EXISTS (?e8 76 ?z1 7x3)
(AND (be ?e8 ?e2 76 7z1)
(proton ?e6 ?x3)

M)

That is, if something is an ion bearing some underspecified
relation “nn” to H+, then it is a proton.

Causal Facts: The presence of such causal keywords
as “because”, “when”, and “implies” licenses the extraction
and formulation as axioms of causal rules, as in



When bases are added to acids, they lower the
amount of acid.
(FORALL (?e3 ?z1 7x1 7x2 ?e4
2e5 7s1 2e10 ?e6 27 29 7s2)
(= (AND (add ?e3 ?z1 ?x1 ?x2)
(base ?e4 7x1)
(plural ?e5 ?7x1 ?s1)
(they ?e10 ?x1)
(to ?e6 7e3 7x2)
(acid ?e7 7x2)
(plural ?e9 7x2 ?s2))
(EXISTS (?€2 7x4 13 214 7x5 2e15 2%e13)
(AND (when ?e13 ?e3 2e2)
(lower ?e2 ?x1 7x4)
(amount ?e13 ?7x4)
(of 2e14 7x4 ?x5)
(acid ?e15 7x5)))))

This axiom captures the relation between the “add” and
“lower” in the sentence through “when”. When the adding
event e3 is performed, the lowering event e2 occurs.

Reaction Theory: In sentences involving chemical re-
actions, predicates such as “dissociate” in theshallow logical
form can be mapped to an underlying theory of reactions, as
in

NaOH dissociates into Na+ and OH- ions when it
dissolves in water.
(FORALL (7218 ?el 2217 2216 217 2e4
2e0 7x5 ?e8 7x1)
(= (AND (REACTION ?¢218 ?el ?e217)
(in ?e216 ?e8 2¢217)
(when ?e17 7¢218 ?e8)
(into ?e4 ?e218 ?e0)
(water ?e217 ?7x5)
(naoh ?el 7x1))
(EXISTS (?e5 ?e10 72x3 ?7x2 ?e11 ?e16 ?s1)
(AND (FORMS ?¢8 ?e1 ?e0)
(into ?e4 ?7e218 ?e0)
(and ?e0 ?e5 ?e10)
(ION ?e5 7x3 na+)
(ION ?e10 ?x2 oh-)
(ion ?el1l 7x2)
(plural ?e16 ?x2 ?s1)))))

Here the words “dissociate” and “dissolve” are mapped into
the core theory concepts REACTION and FORMS.

Analysis

The correct logical forms were generated for 91 out of the
133 sentences. Among the causes of errors were parse errors
generated by the Charniak parser, errors due to incorrect link-
ing of modifiers with the syntactic head in the BEs, and bugs
in the conversion from BEs to logical form.

The compatibility of the NL and KRR systems can best be
judged by the degree to which the latter can reason with data
generated by the former. PowerLLoom was able to perform
certain transitivity inferences and also answer what and how
questions.

Knowledge from NL:

H30+ is the conjugate acid of H20.
Acids cause certain dyes to change color.
Bases have a bitter taste and feel slippery.
Soap is a base.

Questions

Question(T/F): H30+ causes certain dyes to change
color.

Answer: True

Question (what): Soap has WHAT taste?

Answer: 1: ?what=taste 2: ?what=bitter

Question (how): Soap feels how?

Answer: 1: Thow=slippery

Such examples show that the system is indeed learning from
the text by being able to perform appropriate derivations in
some cases.

Nevertheless, PowerLoom encountered several problems.
The most significant problem was that natural language tends
to be much more verbose than the theories typically handled
by theorem provers. Also, there was a lack of connection
between the knowledge that was extracted and a background
theory to link and constrain the NL output to. PowerLoom
could not ignore irrelevant information in the axioms derived
from the input text, which caused explosion in forward chain-
ing. Because of the forall — there exists structure of the ax-
ioms, this involved an explosion in the number of Skolem
constants and functions generated.

3.2 Biology Domain

In the biology domain, several dozen paragraph-length texts
describing the human heart were analyzed. Underlying do-
main models were built at the University of Texas at Austin
and implemented in KM.

Technical Details

The KM system takes as input the triples produced by Mini-
Tacitus and matches them with its pre-built models of de-
vices. Combining elements from the input and the models, it
constructs a model of the new device, in this case, the heart.
When complete, inference procedures developed for the Halo
project are used for answering questions. An example of the
input required was given in Section 2.3.

Analysis

Unlike PowerL.oom, KM ignores any information that it can-
not process. As a result, verbose outputs from the NL com-
ponent do not create problems. However, KM is not robust
against errors in the logical form. For example, if NL fails
to link the structures in different parts of a sentence appropri-
ately, some information is lost during KM reasoning.

We developed rules for Mini-Tacitus to transform input
into the appropriate logical form in several stages, testing the
coverage of each stage on unseen, novel input for the next.
The initial set of rules, developed for a set of 8 sentences,
handled enough of the second batch of input (17 sentences)
that only 15 new LF Toolkit rules had to be added (10 of
them for labeling the arguments of new verbs). With these
additions, almost all the triples produced were matched to the
KM models, causing 9 models to be created.



For the third stage, a paragraph of 10 new sentences was
read without any human intervention or addition of new
rules. The triples for 5 of the 10 sentences were successfully
matched with the KM models, resulting in a model structure
in 2 of these cases.

These results are encouraging, in that most of the errors can
be attributed to shortcomings in the LF Toolkit rules we have
so far implemented, which amounts to the lack of syntactic
and lexical knowledge. We are addressing these shortcomings
in a systematic fashion.

4 Comparing KRR Systems and Their
Knowledge Bases

We make the following observations when comparing Pow-
erLoom and KM for the task of learning by reading:

e KM is more tolerant to natural language verbosity than
PowerLoom, since it rejects unwanted triplets and works
only with data it understands.

e PowerLoom is a pure reasoning system, without any pre-
constructed models or ontologies. Its domain models
have to be specially built, a task that requires non-trivial
expertise. In contrast, KM has a standard ontology and
set of models, built for the Halo project. While building
and extending its models also require considerable ex-
pertise, a methodology is in place, together with a stan-
dard library of building blocks.

e Learning and QA are easier to understand and trace in
PowerLoom than KM. In KM it is difficult to determine
whether the answers derive entirely from the text or from
the already present models. However it can be argued
that models are only selected when KM receives suffi-
cient backing from the NL output.

e Due to the built-in models in KM, and the explanation
capabilities developed for Halo, the outputs it generates
are more precise and robust than those of PowerLoom.

S Summary and Future

In this paper, we have described two experiments in learning
knowledge from textbooks. In the first, in the chemistry do-
main, we used a relatively knowledge-poor theorem prover,
PowerLoom, and showed its utility in answering questions
about the text requiring inferences. In the second experi-
ment, in the biology domain, we have shown that interpreting
textbook-like passages with respect to a rich set of models of
devices, built in the KM system, can be used to create more
complex models.

In both cases, we envision cycling from chapter to chapter,
e.g., learning a theory of chemical reactions from Chapter 2
and using that to interpret and reason about the information
on acids and bases in Chapter 5. A feedback loop in which the
model built for the text so far would be used in interpreting
and disambiguating subsequent sentences in the text, and in
fact possibly produce specific requests to the NL engine to
locate and read passages about specific topics, presents an
interesting challenge for the future.

Both experiments indicate that NL. and KR technologies
have reached a point where learning by reading is a serious
possibility.
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