Part I → Part III → Part IV → Part V

Challenges

Prove Value for Businesses

- "Design of Viral Marketing Campaigns" as a business proposition has yet to be proven beyond doubt
- Measuring marketing effectiveness is not easy in general
 - How do we compare viral vs traditional marketing?
- Lab experiments?

Prove Value for Social Sciences

 Online data may be huge but it is often neither representative nor complete
(Ask a political scientist what she thinks about your election predictions with Twitter!)

- Offline data is difficult to obtain
 - External influence, e.g., mass media
- The main concern is the input data, how do we address it?

Learn to Design for Virality

- What makes a product/idea/technology viral?
 - Role of content?
 - Role of seeds?
 - Other factors?
- For every video (post) that goes viral on YouTube (Twitter), hundreds fizzle out!
- How can we design a product or meme so that it is intrinsically "sticky"?
- Beyond anecdotes, what do we know about the factors behind successful viral campaigns?

Algorithmic Challenges

- $O(|V|^2)$ algorithms considered not feasible for large graphs (e.g. |V| > 1M)
 - greedy IM algorithm, $\Omega(|V|^2)$
 - all-pair shortest paths or graph diameter, $\Omega(\frac{|V|^2}{\log |V|})$
 - betweenness centrality, $\Omega(|V|^2)$
- Need near-linear time algorithms
 - O(|V| polylog(|V|)) algorithms
 - may need new algorithm paradigm (e.g. Laplacian paradigm [Chrstiano et al. STOC 2011, Spielman & Teng, SIAM JC 2011])
 - may need new complexity research on graph problems

More technical challenges

- Competitive diffusion
 - need more realistic model of competitive diffusion
 - validation by real-world traces
 - need incorporation of individual rationality
 - rationality of individuals in social networks
 - rationality of competing companies
- Adaptive viral marketing
 - use the effect of past diffusion or current partial diffusion to guide further seeding choice
- Handling dynamic changes in social networks
 - network structure, influence strength may change over time

Push Technology out to Applications Beyond Viral Marketing

 Case studies of successful deployment of Influence/Information Propagation/ Maximization Technology in:

- Rumor/Innovation spreading modeling, detection, containment
- Trend detection and prediction
- Infection propagation detection and containment.

And to Conclude

- Great advances in theory, analysis, algorithms related to viral phenomena.
- But engineering of viral phenomena (in the context of any of the apps we have mentioned) has yet to be taken out of the lab!
- Thanks!