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Word-of-mouth (WoM) effect in social

networks [ xphone:is good
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Yxphone is good :

» Word-of-mouth (viral) marketing is believed to be a promising
marketing strategy.

» Increasing popularity of online social networks may enable large
scale viral marketing




Qutline

e Diffusion/propagation models and the
Influence Maximization (IM) problem

e The theory: greedy methods to optimize
submodular functions

o Scalable influence maximization




Diffusion/Propagation Models
and the Influence Maximization
(IM) Problem

v




The first definition of IM problem: A

Markov random fields formulation

e Each node i has random variable X;,
indicating bought the product or not,
X = {Xl’ ...,Xn}

e Markov random field formation: X;depends
on its neighbors’ actions N; € X

« Marketing action M = {M,, ..., M,,}

e Problem: find a choice of M that maximizes

the revenue obtained from the result of X
[Domingos & Richardson KDD 2001, 2002]

Matthew Richardson and Pedro
Domingos:

Mining the network value of
customers.

KDD 2001
http://doi.acm.org/10.1145/502512.5
02525

Matthew Richardson and Pedro
Domingos:

Mining knowledge-sharing sites for
viral marketing.

KDD 2002
http://doi.acm.org/10.1145/775047.7
75057

simplified model here, does not
include product attributes ¥ =

Y1, ... Y}

Computation of revenue includes
marketing cost, discount, and uses
na’we Bayes model, etc. to simplify the
computation.


http://doi.acm.org/10.1145/502512.502525
http://doi.acm.org/10.1145/502512.502525
http://doi.acm.org/10.1145/775047.775057
http://doi.acm.org/10.1145/775047.775057

Discrete diffusion models

 Stafic social network: ¢ = (V,E)
- V: set of nodes, representing individuals

o E: set of edges, representing directed influence
relationships

e Influence diffusion process

- Seed set §: initial set of nodes selected to start the
diffusion

- Node activations: Nodes are activated starting from
the seed nodes, in discrete steps and following
certain stochastic models

- Influence spread a(§): expected number of
activated nodes when the diffusion process starting
from the seed set S ends

David Kempe, Jon Kleinberg, and Eva
Tardos:

Maximizing the spread of influence
through a social network.

KDD 2003
http://doi.acm.org/10.1145/956750.9
56769



http://doi.acm.org/10.1145/956750.956769
http://doi.acm.org/10.1145/956750.956769

Major stochastic diffusion models
e Independent cascade (IC) model
e Linear threshold (LT) model

e General threshold model

e Others

o Voter model
o Heat diffusion model




Independent cascade model

- Each edge (u,v) has
a propagation
probability p(u, v)

- Initially some seed
nodes are activated

- Ateach step t, each
node u activated at
step t — 1 activates
its neighbor v with
probability p(u, v)

- once activated, stay
activated

Q
&

[Kempe, Kleinberg and Tardos, KDD 2003]




Linear threshold model

» Each edge (u,v) has weight
w(u, v):
> when (u,v) € E,w(u,v) =0

o Yuw,v) £1

« Each node v selects a
threshold 6,, € [0,1] uniformly 0.3
at rondom

* Initially some seed nodes
are activated 0.4 o

« Ateach s’reﬁ node
v checks if the weighted
sum of its active neighbors is ~
reater than its threshold 6,,,
if so v is activated

e once activated, stay
activated

[Kempe, Kleinberg and Tardos, KDD 2003]




Influence maximization

o Given a social network, a diffusion model
with given parameters, and a number k,
find a seed set § of at most k nodes such
that the influence spread of S is maximized.

e May be further generalized:

> Instead of k, given a budget constraint and
each node has a cost of being selected as a
seed

o Instead of maximizing influence spread,
maximizing a (submodular) function of the set of
actfivated nodes




Key takeaways for diffusion models

and IM definition

e stochastic diffusion models
o |C model reflects simple contagion

o LT model reflects complex contagion (activation
needs social affrmation from multiple sources
[Centola and Macy, AJS 2007])

e maximization objective focuses on expected
influence spread
> others to be considered later

Damon Centola and Michael Macy:
Complex Contagions and the
Weakness of Long Ties.

American Journal of Sociology 2007
http://www.jstor.org/stable/10.1086/
521848



http://www.jstor.org/stable/10.1086/521848
http://www.jstor.org/stable/10.1086/521848
http://www.jstor.org/stable/10.1086/521848

Time for
Theory:
Optimizing
Submodular
Functions

i/




Hardness of influence maximization

e Influence maximization under both IC
and LT models are NP hard

o |C model: reduced from k-max cover
problem

> LT model: reduced from vertex cover
problem

e Need approximation algorithms




Optimizing submodular functions

e Sumodularity of set
functions f:2V - R
oforallSc€cTcV,dlveV\T,

fESU{vh) —f(S) = f(TU{v) —f(T)
o diminishing marginal return

o an equivalent form: for all
S, Tc€V
fEUT)+f(SNT) < f(S)+ f(T)

e Monotonicity of set
functions f:forallSST cV,

f(S) = f(T)

Trs)

|51

fromf(SUT)+ f(SNT) < f(S)+
f(T) toprove f(SU{v}) — f(S) =
f(Tu{v}) - (D),

just consider two sets S U {v} and T,
and apply the first formula

For the opposite direction, Let

T\S = {uy, uyp, ..., ui}, Let T; =

{uy, up, ..., uj}, let 4, =(SNT)VUT;,
andlet B; = SUT; we have

F(A u{wsa}) - £(4) 2

f(Biu{wa}) — £(B)j =
01,2, ..,j — 1.

Summing up all these equations, we

_| have

fM—=fESNT) = fSUT) = f(S).



Example of a submodular function

and its maximization problem
e set coverage

~each entry u is a subset of
some base elements

- coverage f(S) = | Uyesu |

- f(S U {v}) - f£(S): additional
coverage of von top of §

elements

e k-max cover problem

- find k subsets that maximizes
their total coverage
- NP-hard

- special case of IM problem in )
IC model




Greedy algorithm for submodular

function maximization
1:initialize S =0 ;
2:fori = 1to k do
3: select
u = argmaxyepns[f (S U{w}) — f(S))]
4. S = SuU{u}
5: end for
6. output S

Also referred as greedy hill-climbing
algorithm, greedy approximation
algorithm.



G. L. Nemhauser, L. A. Wolsey and M.
L. Fisher:
An analysis of approximations for

PrOperTy Of The greedy Olgorifhm maximizing submodular set functions.

Mathematical Programming 1978
http://dx.doi.org/10.1007/BF0158897

e Theorem: If the set function f is 1
monotone and submodular with f(@) =
0, then the greedy algorithm achieves
(1 —1/e) approximation ratio, that is, the
solution § found by the greedy algorithm
satisfies:

1) = (1= 7) maxgey )/ (51

[Nemhauser, Wolsey and Fisher, Mathematical Programming, 1978]
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http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/BF01588971

Submodularity of influence

diffusion models
e Based on equivalent live-edge graphs

)
8 e |
L

diffusion dynamic random live-edge graph:

edges are randomly removed

Pr(set A is reachable from S in
random live-ledge graph)

Pr(set A is activated given
seed set J)

Based on equivalent live-edge graphs

* Find a random edge selection
process, such that each edge is
either live or blocked, and all live
edges form a random live-edge
graph.

* Show that a diffusion model is
equivalent to the reachability in
random live-edge graphs: Given any
seed set S, the distribution of active
node sets after the diffusion
process with seed set S ends is the
same as the distribution of node set
reachable from S in a random live-
edge graph.

* Applicable to both IC and LT model.



(Recall) active node set via IC

diffusion process

- yellow node set is
the active node
set after the
diffusion process in
the independent
cascade model




Random live-edge graph for the IC
model and its reachable node set

e random live-edge
graph in the IC model
each edge is
independently
selected as live with its
propagation
probability

« yellow node set is the
active node set
reachable from the
seed set in a random
live-edge graph

e Equivalenceis
straightforward




(Recall) active node set via LT

diffusion process

e yellow node set
Is the active
node set after
the diffusion
process in the
linear threshold
model




Random live-edge graph for the LT
model and its reachable node set

« random live-edge %
S

\\ Q\D CL)j/l -q;

S

O-.J\ N

graph in the LT model ,&B
each node select at &
most one incoming
edge, with probability
propoertional to its
Welgh’f A it
- I

e yellow node set is the
active node set
reachable from the
seed set in a random
live-edge graph

» equivalence is based
on uniform threshold
selection from [0,1],
and linear weight
addition




Submodularity of influence

diffusion models (cont'd)
Influence spread of seed set S, a(S):
a(S) = ZGL Pr(G,) |R(S,G,)|,
G,. arandom live-edge graph
Pr(G,) : probability of G being generated
R(S,G.): set of nodes reachable from S in G,

To prove that o(S) is submodular, only need to
show that |R(-, G;)| is submodular for any G;

sumodularity is maintained through linear
combinations with non-negative coefficients




Submodularity of influence
dlffu5|on models (cont'd)

Submodularity of

|IR(-, G|

« foranyScTcV,
veV\T,

if uis reachable from v
but not from T, then

u is reachable from v but v
not from S
Hence, |R(-,G.)| is 4
submodular
Therefore, influence marginal contribution
spread a(S) is of vw.rt. T

submodular in both IC
and LT models




General threshold model

Each node v has a threshold function
fo:2¥ - [0,1]

Each node v selects a threshold 6, € [0,1]

uniformly at random

If the set of active nodes at the end of step
t—1isS, and £,(S) = 6, vis activated at step t

reward function r(A(S)): if A(S) is the final set of
active nodes given seed set S, r(A(S)) is the
reward from this set

generalized influence spread:

U(S) =E [T'(A (S))] [Kempe, Kleinberg and Tardos, KDD 2003]




IC and LT as special cases of
general threshold model
- LT model

* fo(S) = Luesw(u, v)
© 7)) = ||

- |C model

* fo(8) =1—]lyes(1 —p(u,v))
- r(S) = ||




Submodularity in the general

threshold model

e Theorem [Mossel & Roch STOC 2007]:

> In the general threshold model,

o if foreveryv eV, f,(-) is monotone and
submodular with f£,(@) = 0,

- and the reward function r(:) is monotone
and submodular,

> then the general influence spread function
o(-) is monotone and submodular.

e Local submodularity implies global
submodularity

Elchanan Mossel, Sébastien Roch: On
the submodularity of influence in
social networks. STOC’2007. 128-134



The greedy approximation
algorithm for the IM problem

(1 - é - e)—opproximaﬁon greedy algorithm

« Use general greedy algorithm framework

« However, need evaluation of influence spread
o(S), which is shown to be #P-hard

« Use Monte Carlo simulations to estimate a(S) to
arbitrary accuracy with high probability

« Forany e > 0, there exists y > 0, s.t. (1 — é - s)-

approximation can be achieved with 1 —y
approximate values of a(S)
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Performance of greedy algorithm

weighted cascade model

linear threshold model
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« coauthorship graph from arxiv.org, high energy physics section,
n=10748, m~53000

+ dllow parallel edges, ¢, , = number of edges between u and v

» weighted cascade: p(u,v) =1 - (1 - di)cu'v

v
» linear threshold: w(u, v) = ¢, ,/d, .
3 [Kempe, Kleinberg and Tardos, KDD 2013]




Key takeaways for theory support

e submodularity of diffusion models
> diminishing return
- shared by many models, but some model

extensions may not be submodular (see Part
V)

e submodular function maximization
» greedy hill-climbing algorithm
- approximation ratio (1 —1/e)




Scalable Influence Maximization

v




Theory versus Practice

...the trouble about arguments is,
they ain't nothing but theories,
after all, and theories don't prove
nothing, they only give you a place
to rest on, a spell, when you are
tuckered out butting around and
around trying to find out something
there ain't no way to find out...
There's another trouble about
theories: there's always a hole in
them somewheres, sure, if you

look close enough.

- “Tom Sawyer Abroad”, Mark Twain




Inefficiency of greedy algorithm

e |t take days to find 50 seeds for a 30K node
graph

e« ToO many evaluations of influence spread

> Given a graph of n nodes, each round needs
evaluation of n influence spreads, totally 0(nk)
evaluations

e Each evaluation of influence spread is hard

» Exact computation is #P-hard, for both IC and LT
models [Chen et al. KDD/ICDM 2010]

- Monte-Carlo simulation is very slow

33




Scalable Influence Maximization

e Reduction on the number of influence
spread evaluations.

e Batch computation of influence spread

e Scalable heuristics for influence spread
computation

34




Lazy forward optimization

e Exploiting submodularity, significantly reduce # influence
spread evaluations

= S;-1 — seed set selected afterround t — 1

- v, — selected as seed inround t: S; = S;_1 U {v,}

: u(lfq r)lo‘r a seed yet, u's marginal gain MG (u|S;) = (S, U {u}) —
oot
by submodularlity, MG (u|S,) < MG (u|Si-4)
This implies, if MG(u|S;-,) < MG(v|S;) for some node v, then no
need to evaluate MG (u|S,) inround t + 1.

Can be implemented efficiently using max-heap

take the top of the heap, if it has MG for the current round, then it is the
new seed:;

else compute its MG, and re-heapify

o kOﬁen, top element after round k — 1 remains top in round

 Up to 700 X speedup
35 [Leskovec ef al., KDD 2007]

35

Leskovec J, Krause A, Guestrin C,
Faloutsos C, VanBriesen J, Glance NS
(2007) Cost-effective outbreak
detection in networks. In: KDD ’07
Chen W, Wang Y, Yang S (2009)



(ELFE

 With each heap node u, further maintain
cu.mgl = MG(ulS), S = current seed set.

- u.prev_best = node with max. MG in the current
iteration, among nodes seen before u;

u.mg2 = MG(u|S VU {u.prev_best});
- u. flag = iteration where u.mg1 was last updated;

e u.prev_best chosen in current iteration = no

need to compute MG (u|S U {u.prev_best}) in next
iteration.

e MG(u|S U {u.prev_best}) can be computed
efficiently along with MG (u|S) in one run of MC.

[Goyal, Lu and L., WWW 2011]

36

Amit Goyal, Wei Lu, and Laks V.S.
Lakshmanan. CELF++: Optimizing the
Greedy Algorithm for Influence
Maximization in Social Networks. In
WWW 2011 (poster).



CELF++ (conid.)

- Pick the top node uin the heap

» u.flag = |S| = u.mgl is correct MG, thus u is the best pick
of current itn; add u to S; remove from Q;

- else, if u.prev_best = last_seed & u.flag = |S|— 1=
u.mgl € u.mg2 (no need to compute MG (u|S +
last_seed))

Dataset Running time (min) Avg. # node lookups

CELF | CELF++ | Gain | CELF | CELF++ | Gain
Hept WC | 245 178 27% 18.7 13.6 27.2%
Hept IC 5269 2082 60.5% | 190.5 113.0 40.7%
Phy WC 1242 1028 17.2% | 18.6 17.9 3.8%

Table 1: Comparison between CELF and CELF++.
Number of seeds = 100 in all test cases.

37




Batch computation of

influence spread

e Based on equivalence to reachable set in
live-edge graphs
- Generate a random live-edge graph

- batch computation of size of reachable set of
all nodes [Cohen, JCSS 1997]

repeat above to increase accuracy

e In conflict with lazy-forward optimization

- MixedGreedy: In the first round uses reachability-
based batch computation; in remaining rounds,

use lazy forward optimization
[Chen, Wang and Yang, KDD 2009]

38

Chen W., Wang Y., and Yang S.,
Efficient influence maximization in
social networks. In: KDD ’09. [pdf]

E. Cohen. Size-estimation framework
with applications to transitive closure
and reachability. J. Comput. Syst. Sci.,
55(3):441-453, 1997.


http://research.microsoft.com/en-us/people/weic/kdd09_influence.pdf

Scalable heuristics for

influence spread computation

e MIA: for IC model [Chen, Wang and
Wang, KDD 2010]

e LDAG: for LT model [Chen, Yuan and
/hang, ICDM 2010]

e Features:
- Focus on a local region

- Find a graph spanner allow efficient
computation

Batch update of marginal influence spread

39

Chen W., Wang C,, and Wang Y.
Scalable influence maximization for
prevalent viral marketing in large-scale
social networks. In: KDD ’10. [pdf]
Journal version:

Chi Wang, Wei Chen, and Yajun Wang.
Scalable influence maximization for
independent cascade model in large-
scale social networks. Data Mining
and Knowledge Discovery Journal, to

appear, 2012. [pdf]

Chen W, Yuan Y., Zhang L.

Scalable influence maximization in
social networks under the linear
threshold model. In: ICDM °10.
[pdf][full technical report: MSR-TR-
2010-133


http://research.microsoft.com/en-us/people/weic/kdd10_influence_revised.pdf
http://research.microsoft.com/en-us/people/weic/dami12-mia-official.pdf
http://research.microsoft.com/en-us/people/weic/icdm10_influence_ldag.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
http://research.microsoft.com/apps/pubs/default.aspx?id=139254
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Maximum Influence Arborescence
(MIA) Heuristic

e Local influence
regions of node v

» For every nodes u, find
the maximum influence
path (MIP) from u to v,
ignore it if Pr(path) < A (4
is a small threshold value)

= all MIPs to v form its
maximum
influence in-
arborescence (MIIA)

= MIIA can be efficiently
computed

« influence tovis
computed over MIIA




MIA Heuristic lll: Computing
Influence through the MIA
structure

e Recursive computation of activation probability ap(w)
of a node u in its in-arborescence, given a seed set §
(N™(w) is the in-neighbors of u in its in-arborescence)

Algorithm 2 Computing activation probability of u, ap(u, S)
if u € S then

ap(u) =1
else if N (u) = 0 then

ap(u) =0
else

ap(u) =1 =1l cnm (1 — ap(w) - p(w, u))
end if

oev O S - ). e




MIA Heuristic |V: Efficient updates
on incremental activation
probabilities

« uis the new seed in MIIA(v) MIIA(v)

« Naive update: for each candidate
w, redo the computation in the
previous page to compute w's
marginal influence to v

O(IMITA(W)|?)

» Fast update: based on linear
relationship of activation
probabilities between any node
w and root v, update marginal
influence of all w's to v in two v
passes

O(IMIA(v) | )
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Experiment Results on MIA heuristic

ln'il'uence spread

Influence spread vs. seed set running time
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Experiment setup:

« 35k nodes from coauthorship graph in physics archive

« influence probability to a node v = 1 / (# of neighbors of v)
« running time is for selecting 50 seeds




Time for some simplicity

e —
Oh great!
That's what I call a simple interface.
Just one button.




The SimPath Algorithm

Vertex Cover Look ahead

Optimization optimization
Improves the efficiency Improves the efficiency

in the first iteration in the subsequent iterations

In'lazy forward]manner, in each
iteration, add to the seed seft, the
(node providing the maximum |
marginal gain in spread.

[Goyal, Lu, & L. ICDM 2011] Simp&h-SpreOd

Compute marginal gain by
enumerating simple paths

Amit Goyal, Wei Lu, and Lakshmanan.
Simpath: An Efficient Algorithm for
Influence Maximization under the
Linear Threshold Model. In ICDM
2011.



Estimating Spread in SimPath (2)

e Thus, the spread of a node can be
computed by enumerating simple paths
starting from the node.

0.4 Influence of x on z
< d 2/ Influence of x on y
\0,3 0.2, ,
¢ Influence of x on x itself

o /e Total influence of
node xis 1.96

Influence Spread of node{T ] [ L. ,]+[T ]

=[I}*[(03+04 05)]*{(04+03 oz]fw%




Estimating Spread in SimPath (3)

Theorem 1. In the LT model, the spread of a set S is the sum
of the spread of each node u € S on subgraphs induced by

ye=orw Thabds Total influence of the
o(S) = Z oV =S+tu(y) seed set {x, y}is 2.6

ucesS

Influence of node y in @
Subgraph that does not
ontain x
Influence of node xin a
subgraph that does not
contain y

Let the seed set S = {x,y}, then influence spread of S is

o) :(a""-"(xj-l{a'/“" ( yj{l . 0.4}{1 ¥ 0.%{2.6}

0.4




Estimating Spread in SimPath (4)

Thus, influence can be estimated
b)y enumerating all simple paths
onsianiy STArting from the seed set.

different subgraphs
The majority of influence flows in a
small neighborhood.

48




Look Ahead Opftimization (1/2)

e As the seed set grows, the time spent in
estimating spread increases.

> More paths to enumerate.
e A lot of paths are repeated though.

e The optimization avoids this repetition
intelligently.

e A look ahead parameter ‘|'.




Look Ahead Opftimization (2/2)

| =2 here Seed Set S, ofter iteration i

Let y and x be J

prospective seeds
fromm CELF queue

A lot of paths are enumerated repeatedly
b ' o(Si + ) = 33 anieved By 1




SimPath vs LDAG

TABLE II
SIMPATH’S IMPROVEMENT OVER LDAG

Dataset [mprovement in
Spread | Running Time | Memory
NetHEPT 8.7% 21.7% 62.9%
Last.fm 1.7% 42.9% 86.5%
Flixster [ 8.9% 33.6D Q7.5D
DBLP 2.3% 67.2% 87.1%




Other means of speedup

« Community-based approach
[Wang et al. KDD 2010]

e Network sparsification
[Mathioudakis et al, KDD 2011]

e Simulated Annealing
[Jiang et al. AAAI 2011]

Use this slide in lieu of the next three
if running out of time.



Community-based influence

maximization

e Use influence parameters to partition graph
info communities

- different from pure structure-based partition

e Influence maximization within each
community

e Dynamic programming for selecting top
seeds

e Orthogonal with scalable influence

computation algorithms
[Wang et al. KDD 2010]

Yu Wang, Gao Cong, Guojie Song,
Kunging Xie: Community-based greedy
algorithm for mining top-K influential
nodes in mobile social networks. KDD
2010: 1039-1048



Sparsification of influence networks

e Remove less important edges for
influence propagation

e Use action traces to guide graph
trimming

e Orthogonal to scalable influence
computation algorithms

[Mathioudakis et al, KDD 2011]

Michael Mathioudakis, Francesco
Bonchi, Carlos Castillo, Aristides
Gionis, Antti Ukkonen: Sparsification
of influence networks. KDD 2011: 529-
537



Simulated annealing

e Following simulated annealing
framework

-not going through all nodes to find a next
seed as in greedy

> find a random replacement (guided by
some heuristics)

» Orthogonal to scalable influence
computation algorithms

Qingye Jiang, Guojie Song, Gao Cong,
Yu Wang, Wenjun Si, Kunging Xie:
Simulated Annealing Based Influence
Maximization in Social Networks. AAAI
2011



Key takeaways for scalable

Influence maximization

e tackle from multiple angles
» reduce #spread evaluations: lazy-forward

> scale up spread computation:
use local influence region (LDAG, MIA, SimPath)
use efficient graph structure (trees, DAGS)

model specific optimizations (simple path
enumerations)

o graph sparsifications, community partition, etc.

e Upshot: can scale up to graphs with millions
of nodes and edges, on a single machine




