
Influence Maximization

Part I → Part II → Part III → Part IV → Part V

1

Word-of-mouth (WoM) effect in social

networks

 Word-of-mouth (viral) marketing is believed to be a promising
marketing strategy.

 Increasing popularity of online social networks may enable large

scale viral marketing
2

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

Outline

 Diffusion/propagation models and the

Influence Maximization (IM) problem

 The theory: greedy methods to optimize

submodular functions

 Scalable influence maximization

3

Diffusion/Propagation Models
and the Influence Maximization

(IM) Problem

4

The first definition of IM problem: A

Markov random fields formulation
 Each node 𝑖 has random variable 𝑋𝑖,

indicating bought the product or not,
𝑿 = 𝑋1, … , 𝑋𝑛

 Markov random field formation: 𝑋𝑖depends

on its neighbors’ actions 𝑵𝑖 ⊆ 𝑿

 Marketing action 𝑴 = {𝑀1, … ,𝑀𝑛}

 Problem: find a choice of 𝑴 that maximizes
the revenue obtained from the result of 𝑿

5 [Domingos & Richardson KDD 2001, 2002]

Discrete diffusion models

 Static social network: 𝐺 = (𝑉, 𝐸)
◦ 𝑉: set of nodes, representing individuals

◦ 𝐸: set of edges, representing directed influence
relationships

 Influence diffusion process
◦ Seed set 𝑺: initial set of nodes selected to start the

diffusion

◦ Node activations: Nodes are activated starting from
the seed nodes, in discrete steps and following
certain stochastic models

◦ Influence spread 𝝈(𝑺): expected number of
activated nodes when the diffusion process starting
from the seed set 𝑆 ends

6

Major stochastic diffusion models

 Independent cascade (IC) model

 Linear threshold (LT) model

 General threshold model

 Others

◦ Voter model

◦ Heat diffusion model

7

Independent cascade model

• Each edge (𝑢, 𝑣) has

a propagation

probability 𝑝(𝑢, 𝑣)

• Initially some seed

nodes are activated

• At each step 𝑡, each

node 𝑢 activated at

step 𝑡 − 1 activates

its neighbor 𝑣 with

probability 𝑝(𝑢, 𝑣)

• once activated, stay

activated

0.3

0.1

8 [Kempe, Kleinberg and Tardos, KDD 2003]

0.3

0.1

0.3

0.7

0.3

0.5
0.6

0.3
0.2

0.4

0.8

Linear threshold model
 Each edge (𝑢, 𝑣) has weight
𝑤 𝑢, 𝑣 :
◦ when 𝑢, 𝑣 ∉ 𝐸, 𝑤 𝑢, 𝑣 = 0

◦ 𝑤 𝑢, 𝑣 ≤ 1𝑢

 Each node 𝑣 selects a
threshold 𝜃𝑣 ∈ [0,1] uniformly
at random

 Initially some seed nodes
are activated

 At each step, node
𝑣 checks if the weighted
sum of its active neighbors is
greater than its threshold 𝜃𝑣,
if so 𝑣 is activated

 once activated, stay
activated

9 [Kempe, Kleinberg and Tardos, KDD 2003]

Influence maximization

 Given a social network, a diffusion model
with given parameters, and a number 𝑘,
find a seed set 𝑆 of at most 𝑘 nodes such
that the influence spread of 𝑆 is maximized.

 May be further generalized:
◦ Instead of k, given a budget constraint and

each node has a cost of being selected as a
seed

◦ Instead of maximizing influence spread,
maximizing a (submodular) function of the set of
activated nodes

10

Key takeaways for diffusion models

and IM definition
 stochastic diffusion models

◦ IC model reflects simple contagion

◦ LT model reflects complex contagion (activation

needs social affirmation from multiple sources

[Centola and Macy, AJS 2007])

 maximization objective focuses on expected

influence spread

◦ others to be considered later

11

Time for
Theory:

Optimizing
Submodular

Functions

Credit: Rico3244 @ DeviantArt

12

http://rico3244.deviantart.com/art/Big-Bang-Theory-167066742
http://rico3244.deviantart.com/art/Big-Bang-Theory-167066742

Hardness of influence maximization

 Influence maximization under both IC

and LT models are NP hard

◦ IC model: reduced from k-max cover

problem

◦ LT model: reduced from vertex cover

problem

 Need approximation algorithms

13

Optimizing submodular functions

 Sumodularity of set
functions 𝑓: 2V → 𝑅
◦ for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, all 𝑣 ∈ 𝑉 ∖ 𝑇,
𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇)

◦ diminishing marginal return

◦ an equivalent form: for all
𝑆, 𝑇 ⊆ 𝑉
𝑓 𝑆 ∪ 𝑇 + 𝑓 𝑆 ∩ 𝑇 ≤ 𝑓 𝑆 + 𝑓 𝑇

 Monotonicity of set
functions 𝑓: for all 𝑆 ⊆ 𝑇 ⊆ 𝑉,

𝑓 𝑆 ≤ 𝑓(𝑇)
14

|𝑆|

𝑓(𝑆)

Example of a submodular function

and its maximization problem
 set coverage

◦ each entry 𝑢 is a subset of
some base elements

◦ coverage 𝑓 𝑆 = | 𝑢𝑢∈𝑆 |

◦ 𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 : additional
coverage of v on top of 𝑆

 𝑘-max cover problem

◦ find 𝑘 subsets that maximizes
their total coverage

◦ NP-hard

◦ special case of IM problem in
IC model

15

sets
elements

𝑆

𝑇

𝑣

Greedy algorithm for submodular

function maximization
1: initialize 𝑆 = ∅ ;

2: for 𝑖 = 1 to 𝑘 do

3: select
 𝑢 = argmax𝑤∈𝑉∖𝑆[𝑓 𝑆 ∪ 𝑤 − 𝑓(𝑆))]

4: 𝑆 = 𝑆 ∪ {𝑢}

5: end for

6: output 𝑆

16

Property of the greedy algorithm

 Theorem: If the set function 𝑓 is

monotone and submodular with 𝑓 ∅ =
0, then the greedy algorithm achieves

(1 − 1/𝑒) approximation ratio, that is, the

solution 𝑆 found by the greedy algorithm

satisfies:

◦ 𝑓 𝑆 ≥ 1 −
1

𝑒
max𝑆′⊆𝑉, 𝑆′ =𝑘𝑓(𝑆

′)

17 [Nemhauser, Wolsey and Fisher, Mathematical Programming, 1978]

Submodularity of influence

diffusion models
 Based on equivalent live-edge graphs

18

0.3

0.1

diffusion dynamic random live-edge graph:

edges are randomly removed

Pr(set A is activated given

seed set S)

Pr(set A is reachable from S in

random live-ledge graph)

(Recall) active node set via IC

diffusion process
• yellow node set is

the active node

set after the

diffusion process in

the independent

cascade model 0.3

0.1

19

Random live-edge graph for the IC

model and its reachable node set
 random live-edge

graph in the IC model
◦ each edge is

independently
selected as live with its
propagation
probability

 yellow node set is the
active node set
reachable from the
seed set in a random
live-edge graph

 Equivalence is
straightforward

0.3

0.1

20

0.3

0.1

0.3

0.7

0.3

0.5
0.6

0.3
0.2

0.4

0.8

(Recall) active node set via LT

diffusion process
 yellow node set

is the active

node set after

the diffusion

process in the

linear threshold

model

21

0.3

0.1

Random live-edge graph for the LT

model and its reachable node set
 random live-edge

graph in the LT model
◦ each node select at

most one incoming
edge, with probability
proportional to its
weight

 yellow node set is the
active node set
reachable from the
seed set in a random
live-edge graph

 equivalence is based
on uniform threshold
selection from [0,1],
and linear weight
addition

22

Submodularity of influence

diffusion models (cont’d)
• Influence spread of seed set 𝑆, 𝜎(𝑆):

 𝜎 𝑆 = Pr 𝐺𝐿 |𝑅 𝑆, 𝐺𝐿 |𝐺𝐿
,

• 𝐺𝐿: a random live-edge graph

• Pr 𝐺𝐿 : probability of 𝐺𝐿being generated

• 𝑅(𝑆, 𝐺𝐿): set of nodes reachable from 𝑆 in 𝐺𝐿

• To prove that 𝜎 𝑆 is submodular, only need to

show that 𝑅 ⋅, 𝐺𝐿 is submodular for any 𝐺𝐿

• sumodularity is maintained through linear

combinations with non-negative coefficients

23

Submodularity of influence

diffusion models (cont’d)
• Submodularity of

𝑅 ⋅, 𝐺𝐿
• for any 𝑆 ⊆ 𝑇 ⊆ 𝑉,

𝑣 ∈ 𝑉 ∖ 𝑇,

• if 𝑢 is reachable from 𝑣
but not from 𝑇, then

• 𝑢 is reachable from 𝑣 but
not from 𝑆

• Hence, 𝑅 ⋅, 𝐺𝐿 is
submodular

• Therefore, influence
spread 𝜎 𝑆 is
submodular in both IC
and LT models

24

𝑆 𝑇

𝑣

𝑢

marginal contribution

of 𝑣 w.r.t. 𝑇

General threshold model

• Each node 𝑣 has a threshold function
𝑓𝑣: 2

𝑉 → [0,1]

• Each node 𝑣 selects a threshold 𝜃𝑣 ∈ [0,1]
uniformly at random

• If the set of active nodes at the end of step

𝑡 − 1 is 𝑆, and 𝑓𝑣 𝑆 ≥ 𝜃𝑣, 𝑣 is activated at step 𝑡

• reward function 𝑟(𝐴(𝑆)): if 𝐴(𝑆) is the final set of

active nodes given seed set 𝑆, 𝑟(𝐴(𝑆)) is the

reward from this set

• generalized influence spread:

 𝜎 𝑆 = 𝐸[𝑟 𝐴 𝑆]
25 [Kempe, Kleinberg and Tardos, KDD 2003]

IC and LT as special cases of

general threshold model
• LT model

• 𝑓𝑣 𝑆 = 𝑤(𝑢, 𝑣)𝑢∈𝑆

• 𝑟(𝑆) = |𝑆|

• IC model

• 𝑓𝑣 𝑆 = 1 − (1 − 𝑝 𝑢, 𝑣)𝑢∈𝑆

• 𝑟(𝑆) = |𝑆|

26

Submodularity in the general

threshold model
 Theorem [Mossel & Roch STOC 2007]:
◦ In the general threshold model,

◦ if for every 𝑣 ∈ 𝑉, 𝑓𝑣(⋅) is monotone and
submodular with 𝑓𝑣 ∅ = 0,

◦ and the reward function 𝑟(⋅) is monotone
and submodular,

◦ then the general influence spread function
𝜎 ⋅ is monotone and submodular.

 Local submodularity implies global
submodularity

27

The greedy approximation

algorithm for the IM problem

• 1 −
1

𝑒
− 𝜀 -approximation greedy algorithm

• Use general greedy algorithm framework

• However, need evaluation of influence spread

𝜎 𝑆 , which is shown to be #P-hard

• Use Monte Carlo simulations to estimate 𝜎 𝑆 to
arbitrary accuracy with high probability

• For any 𝜀 > 0, there exists 𝛾 > 0, s.t. 1 −
1

𝑒
− 𝜀 -

approximation can be achieved with 1 − 𝛾
approximate values of 𝜎 𝑆

28

Performance of greedy algorithm

29

weighted cascade model linear threshold model

• coauthorship graph from arxiv.org, high energy physics section,

n=10748, m53000
• allow parallel edges, 𝑐𝑢,𝑣 = number of edges between u and v

• weighted cascade: 𝑝 𝑢, 𝑣 = 1 − 1 −
1

𝑑𝑣

𝑐𝑢,𝑣

• linear threshold: 𝑤 𝑢, 𝑣 = 𝑐𝑢,𝑣/𝑑𝑣
[Kempe, Kleinberg and Tardos, KDD 2013]

Key takeaways for theory support

 submodularity of diffusion models

◦ diminishing return

◦ shared by many models, but some model

extensions may not be submodular (see Part

IV)

 submodular function maximization

◦ greedy hill-climbing algorithm

◦ approximation ratio (1 − 1/𝑒)

30

Scalable Influence Maximization

31

Theory versus Practice

...the trouble about arguments is,

they ain't nothing but theories,

after all, and theories don't prove

nothing, they only give you a place

to rest on, a spell, when you are

tuckered out butting around and

around trying to find out something

there ain't no way to find out...

There's another trouble about

theories: there's always a hole in

them somewheres, sure, if you

look close enough.

- “Tom Sawyer Abroad”, Mark Twain

32

Inefficiency of greedy algorithm

 It take days to find 50 seeds for a 30K node
graph

 Too many evaluations of influence spread
◦ Given a graph of 𝑛 nodes, each round needs

evaluation of 𝑛 influence spreads, totally 𝑂(𝑛𝑘)
evaluations

 Each evaluation of influence spread is hard
◦ Exact computation is #P-hard, for both IC and LT

models [Chen et al. KDD/ICDM 2010]

◦ Monte-Carlo simulation is very slow

33

Scalable Influence Maximization

 Reduction on the number of influence

spread evaluations.

 Batch computation of influence spread

 Scalable heuristics for influence spread

computation

34

Lazy forward optimization
 Exploiting submodularity, significantly reduce # influence

spread evaluations
◦ 𝑆𝑡−1 − seed set selected after round 𝑡 − 1

◦ 𝑣𝑡 − selected as seed in round 𝑡: 𝑆𝑡 = 𝑆𝑡−1 ∪ {𝑣𝑡}

◦ 𝑢 is not a seed yet, 𝑢’s marginal gain 𝑀𝐺 𝑢 𝑆𝑡 = 𝜎(𝑆𝑡 ∪ {𝑢}) −
𝜎(𝑆𝑡)

◦ by submodularlity, 𝑀𝐺 𝑢 𝑆𝑡 ≤ 𝑀𝐺(𝑢|𝑆𝑡−1)

◦ This implies, if 𝑀𝐺 𝑢 𝑆𝑡−1 ≤ 𝑀𝐺(𝑣|𝑆𝑡) for some node 𝑣, then no
need to evaluate 𝑀𝐺 𝑢 𝑆𝑡 in round 𝑡 + 1.

◦ Can be implemented efficiently using max-heap
 take the top of the heap, if it has 𝑀𝐺 for the current round, then it is the

new seed;
 else compute its 𝑀𝐺, and re-heapify

 Often, top element after round 𝑘 − 1 remains top in round
𝑘.

 Up to 700 X speedup

35 [Leskovec et al., KDD 2007]

CELF++

 With each heap node 𝑢, further maintain
◦ 𝑢.𝑚𝑔1 = 𝑀𝐺(𝑢|𝑆), 𝑆 = current seed set.

◦ 𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡 = node with max. MG in the current
iteration, among nodes seen before 𝑢;

◦ 𝑢.𝑚𝑔2 = 𝑀𝐺(𝑢|𝑆 ∪ {𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡});
◦ 𝑢. 𝑓𝑙𝑎𝑔 = iteration where 𝑢.𝑚𝑔1 was last updated;

 𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡 chosen in current iteration  no
need to compute 𝑀𝐺(𝑢|𝑆 ∪ {𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡}) in next
iteration.

 𝑀𝐺(𝑢|𝑆 ∪ {𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡}) can be computed
efficiently along with 𝑀𝐺(𝑢|𝑆) in one run of MC.

36 [Goyal, Lu and L., WWW 2011]

CELF++ (contd.)

• Pick the top node 𝑢 in the heap

• 𝑢. 𝑓𝑙𝑎𝑔 = |𝑆|  𝑢.mg1 is correct 𝑀𝐺, thus 𝑢 is the best pick

of current itn; add 𝑢 to 𝑆; remove from 𝑄;

• else, if 𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡 = 𝑙𝑎𝑠𝑡_𝑠𝑒𝑒𝑑 & 𝑢. 𝑓𝑙𝑎𝑔 = |𝑆| − 1

𝑢.𝑚𝑔1  𝑢.𝑚𝑔2 (no need to compute 𝑀𝐺(𝑢|𝑆 +
𝑙𝑎𝑠𝑡_𝑠𝑒𝑒𝑑))

37

Batch computation of

influence spread
 Based on equivalence to reachable set in

live-edge graphs

◦ Generate a random live-edge graph

◦ batch computation of size of reachable set of

all nodes [Cohen, JCSS 1997]

◦ repeat above to increase accuracy

 In conflict with lazy-forward optimization

◦ MixedGreedy: In the first round uses reachability-
based batch computation; in remaining rounds,

use lazy forward optimization
38 [Chen, Wang and Yang, KDD 2009]

Scalable heuristics for

influence spread computation
 MIA: for IC model [Chen, Wang and

Wang, KDD 2010]

 LDAG: for LT model [Chen, Yuan and
Zhang, ICDM 2010]

 Features:
◦ Focus on a local region

◦ Find a graph spanner allow efficient
computation

◦ Batch update of marginal influence spread

39

Maximum Influence Arborescence

(MIA) Heuristic
 Local influence

regions of node 𝑣
◦ For every nodes 𝑢, find

the maximum influence
path (MIP) from 𝑢 to 𝑣,
ignore it if Pr (𝑝𝑎𝑡ℎ) < 𝜆 (𝜆
is a small threshold value)

◦ all MIPs to 𝑣 form its
maximum
influence in-
arborescence (MIIA)

◦ MIIA can be efficiently
computed

◦ influence to 𝑣 is
computed over MIIA

0.3

0.1

𝑢

𝑣

40

MIA Heuristic III: Computing

Influence through the MIA

structure
 Recursive computation of activation probability 𝑎𝑝(𝑢)

of a node 𝑢 in its in-arborescence, given a seed set 𝑆

(𝑁𝑖𝑛(𝑢) is the in-neighbors of 𝑢 in its in-arborescence)

41

MIA Heuristic IV: Efficient updates

on incremental activation

probabilities

 𝑢 is the new seed in 𝑀𝐼𝐼𝐴(𝑣)

 Naive update: for each candidate

𝑤, redo the computation in the

previous page to compute 𝑤’s

marginal influence to 𝑣

◦ 𝑂(𝑀𝐼𝐼𝐴 𝑣 2)

 Fast update: based on linear

relationship of activation

probabilities between any node

𝑤 and root 𝑣, update marginal

influence of all 𝑤’s to 𝑣 in two

passes

◦ 𝑂(|𝑀𝐼𝐼𝐴(𝑣)|)

𝑣

𝑢

𝑤

𝑀𝐼𝐼𝐴(𝑣)

42

Experiment Results on MIA heuristic

Experiment setup:

• 35k nodes from coauthorship graph in physics archive

• influence probability to a node 𝑣 = 1 / (# of neighbors of 𝑣)

• running time is for selecting 50 seeds
43

103 times
speed up

close to Greedy,
49% better than Degree,

15% better than
DegreeDiscount

Influence spread vs. seed set
size

running time

Time for some simplicity

44

The SimPath Algorithm

In lazy forward manner, in each

iteration, add to the seed set, the

node providing the maximum

marginal gain in spread.

45

Simpath-Spread

Vertex Cover

Optimization

Look ahead

optimization

Improves the efficiency

in the first iteration

Improves the efficiency

in the subsequent iterations

Compute marginal gain by

enumerating simple paths

[Goyal, Lu, & L. ICDM 2011]

Estimating Spread in SimPath (2)

 Thus, the spread of a node can be

computed by enumerating simple paths

starting from the node.

46

= 1 + (0.3 + 0.4 * 0.5) + (0.4 + 0.3 * 0.2) = 1.96

Influence Spread of node x is

x

y

z
0.4

0.3

0.1

0.2

0.5
Influence of x on x itself

Influence of x on y

Influence of x on z

Total influence of

node x is 1.96

Estimating Spread in SimPath (3)

6.22.014.01)()()(  yxS xVyV 

Let the seed set S = {x,y}, then influence spread of S is

x

y

z
0.4

0.3

0.1

0.2

0.5

Influence of node y in a

subgraph that does not

contain x

Influence of node x in a

subgraph that does not

contain y

Total influence of the

seed set {x, y} is 2.6

47

Estimating Spread in SimPath (4)

Thus, influence can be estimated

by enumerating all simple paths

starting from the seed set.

48

Enumerating all simple

paths is #P hard

The majority of influence flows in a

small neighborhood.

On slightly

different subgraphs

Look Ahead Optimization (1/2)

 As the seed set grows, the time spent in

estimating spread increases.

◦ More paths to enumerate.

 A lot of paths are repeated though.

 The optimization avoids this repetition

intelligently.

 A look ahead parameter ‘l’.

49

Look Ahead Optimization (2/2)

50

y

x

Seed Set Si after iteration i

....

Let y and x be

prospective seeds

from CELF queue

1. Compute spread achieved by S+y
2. Compute spread achieved by S+x

A lot of paths are enumerated repeatedly

l = 2 here

SimPath vs LDAG

51

Other means of speedup

 Community-based approach

 Network sparsification

 Simulated Annealing

52

[Wang et al. KDD 2010]

[Mathioudakis et al, KDD 2011]

[Jiang et al. AAAI 2011]

Community-based influence

maximization
 Use influence parameters to partition graph

into communities
◦ different from pure structure-based partition

 Influence maximization within each
community

 Dynamic programming for selecting top
seeds

 Orthogonal with scalable influence
computation algorithms

53 [Wang et al. KDD 2010]

Sparsification of influence networks

 Remove less important edges for

influence propagation

 Use action traces to guide graph

trimming

 Orthogonal to scalable influence

computation algorithms

54 [Mathioudakis et al, KDD 2011]

Simulated annealing

 Following simulated annealing

framework

◦ not going through all nodes to find a next

seed as in greedy

◦ find a random replacement (guided by

some heuristics)

 Orthogonal to scalable influence

computation algorithms

55

Key takeaways for scalable

influence maximization
 tackle from multiple angles

◦ reduce #spread evaluations: lazy-forward

◦ scale up spread computation:

 use local influence region (LDAG, MIA, SimPath)

 use efficient graph structure (trees, DAGs)

 model specific optimizations (simple path

enumerations)

◦ graph sparsifications, community partition, etc.

 upshot: can scale up to graphs with millions

of nodes and edges, on a single machine

56

