
Influence Maximization 

Part I → Part II → Part III → Part IV → Part V 
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Word-of-mouth (WoM) effect in social 

networks 

 Word-of-mouth (viral) marketing is believed to be a promising 
marketing strategy.  

 Increasing popularity of online social networks may enable large  

scale viral marketing  
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Outline 

 Diffusion/propagation models and the 

Influence Maximization (IM) problem 

 The theory: greedy methods to optimize 

submodular functions 

 Scalable influence maximization 
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Diffusion/Propagation Models 
and the Influence Maximization 

(IM) Problem 
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The first definition of IM problem: A 

Markov random fields formulation 
 Each node 𝑖 has random variable 𝑋𝑖, 

indicating bought the product or not, 
𝑿 = 𝑋1, … , 𝑋𝑛  

 Markov random field formation: 𝑋𝑖depends 

on its neighbors’ actions 𝑵𝑖 ⊆ 𝑿 

 Marketing action 𝑴 = {𝑀1, … ,𝑀𝑛} 

 Problem: find a choice of 𝑴 that maximizes 
the revenue obtained from the result of 𝑿 

5 [Domingos & Richardson KDD 2001, 2002] 



Discrete diffusion models 

 Static social network: 𝐺 = (𝑉, 𝐸) 
◦ 𝑉: set of nodes, representing individuals 

◦ 𝐸: set of edges, representing directed influence 
relationships 

 Influence diffusion process 
◦ Seed set 𝑺: initial set of nodes selected to start the 

diffusion 

◦ Node activations: Nodes are activated starting from 
the seed nodes, in discrete steps and following 
certain stochastic models 

◦ Influence spread 𝝈(𝑺): expected number of 
activated nodes when the diffusion process starting 
from the seed set 𝑆 ends 
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Major stochastic diffusion models 

 Independent cascade (IC) model 

 Linear threshold (LT) model 

 General threshold model 

 Others 

◦ Voter model 

◦ Heat diffusion model 
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Independent cascade model  

• Each edge (𝑢, 𝑣) has 

a propagation 

probability 𝑝(𝑢, 𝑣) 

• Initially some seed 

nodes are activated 

• At each step 𝑡, each  

node 𝑢 activated at 

step 𝑡 − 1 activates 

its neighbor 𝑣 with 

probability 𝑝(𝑢, 𝑣) 

• once activated, stay 

activated 
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Linear threshold model 
 Each edge (𝑢, 𝑣) has weight 
𝑤 𝑢, 𝑣 :  
◦ when 𝑢, 𝑣 ∉ 𝐸, 𝑤 𝑢, 𝑣 = 0 

◦  𝑤 𝑢, 𝑣 ≤ 1𝑢  

 Each node 𝑣 selects a 
threshold 𝜃𝑣 ∈ [0,1] uniformly 
at random 

 Initially some seed nodes 
are activated 

 At each step, node 
𝑣 checks if the weighted 
sum of its active neighbors is 
greater than its threshold 𝜃𝑣, 
if so 𝑣 is activated 

 once activated, stay 
activated 

9 [Kempe, Kleinberg and Tardos, KDD 2003] 



Influence maximization 

 Given a social network, a diffusion model 
with given parameters, and a number 𝑘, 
find a seed set 𝑆 of at most 𝑘 nodes such 
that the influence spread of 𝑆 is maximized.  

 May be further generalized: 
◦ Instead of k, given a budget constraint and 

each node has a cost of being selected as a 
seed 

◦ Instead of maximizing influence spread, 
maximizing a (submodular) function of the set of 
activated nodes 
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Key takeaways for diffusion models 

and IM definition 
 stochastic diffusion models 

◦ IC model reflects simple contagion 

◦ LT model reflects complex contagion (activation 

needs social affirmation from multiple sources 

[Centola and Macy, AJS 2007]) 

 maximization objective focuses on expected 

influence spread 

◦ others to be considered later 
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Time for 
Theory: 

Optimizing 
Submodular 

Functions 

Credit: Rico3244   @ DeviantArt 
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http://rico3244.deviantart.com/art/Big-Bang-Theory-167066742
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Hardness of influence maximization 

 Influence maximization under both IC 

and LT models are NP hard 

◦ IC model: reduced from k-max cover 

problem 

◦ LT model: reduced from vertex cover 

problem 

 Need approximation algorithms 
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Optimizing submodular functions 

 Sumodularity of set 
functions 𝑓: 2V → 𝑅 
◦ for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, all 𝑣 ∈ 𝑉 ∖ 𝑇,  
𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇) 

◦ diminishing marginal return 

◦ an equivalent form: for all 
𝑆, 𝑇 ⊆ 𝑉 
𝑓 𝑆 ∪ 𝑇 + 𝑓 𝑆 ∩ 𝑇 ≤ 𝑓 𝑆 + 𝑓 𝑇  

 Monotonicity of set 
functions 𝑓: for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, 

𝑓 𝑆 ≤ 𝑓(𝑇) 
14 
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Example of a submodular function 

and its maximization problem 
 set coverage 

◦ each entry 𝑢 is a subset of 
some base elements 

◦ coverage 𝑓 𝑆 = | 𝑢𝑢∈𝑆 | 

◦ 𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 : additional 
coverage of v on top of 𝑆 

 𝑘-max cover problem 

◦ find 𝑘 subsets that maximizes 
their total coverage 

◦ NP-hard 

◦ special case of IM problem in 
IC model 
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Greedy algorithm for submodular 

function maximization 
1: initialize 𝑆 = ∅ ; 

2: for 𝑖 =  1 to 𝑘 do 

3:  select  
 𝑢 =  argmax𝑤∈𝑉∖𝑆[𝑓 𝑆 ∪ 𝑤 − 𝑓(𝑆))] 

4:  𝑆 =  𝑆 ∪ {𝑢}  

5: end for 

6: output 𝑆 
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Property of the greedy algorithm 

 Theorem: If the set function 𝑓 is 

monotone and submodular with 𝑓 ∅ =
0, then the greedy algorithm achieves 

(1 − 1/𝑒) approximation ratio, that is, the 

solution 𝑆 found by the greedy algorithm 

satisfies:  

◦ 𝑓 𝑆 ≥ 1 −
1

𝑒
max𝑆′⊆𝑉, 𝑆′ =𝑘𝑓(𝑆

′) 

17 [Nemhauser, Wolsey and Fisher, Mathematical Programming, 1978] 



Submodularity of influence 

diffusion models 
 Based on equivalent live-edge graphs 
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diffusion dynamic random live-edge graph: 

edges are randomly removed 

Pr(set A is activated given 

seed set S) 

Pr(set A is reachable from S in 

random live-ledge graph) 



(Recall) active node set via IC 

diffusion process 
• yellow node set is 

the active node 

set after the 

diffusion process in 

the independent 

cascade model 0.3 

0.1 
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Random live-edge graph for the IC 

model and its reachable node set 
 random live-edge 

graph in the IC model 
◦ each edge is 

independently 
selected as live with its 
propagation 
probability  

 yellow node set is the 
active node set 
reachable from the 
seed set in a random 
live-edge graph 

 Equivalence is 
straightforward 

0.3 

0.1 
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(Recall) active node set via LT 

diffusion process 
 yellow node set 

is the active 

node set after 

the diffusion 

process in the 

linear threshold 

model 
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0.3 

0.1 

Random live-edge graph for the LT 

model and its reachable node set 
 random live-edge 

graph in the LT model 
◦ each node select at 

most one incoming 
edge, with probability 
proportional to its 
weight  

 yellow node set is the 
active node set 
reachable from the 
seed set in a random 
live-edge graph 

 equivalence is based 
on uniform threshold 
selection from [0,1], 
and linear weight 
addition 
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Submodularity of influence 

diffusion models (cont’d) 
• Influence spread of seed set 𝑆, 𝜎(𝑆): 

  𝜎 𝑆 =   Pr 𝐺𝐿 |𝑅 𝑆, 𝐺𝐿 |𝐺𝐿
, 

• 𝐺𝐿: a random live-edge graph  

• Pr 𝐺𝐿 : probability of 𝐺𝐿being generated 

• 𝑅(𝑆, 𝐺𝐿): set of nodes reachable from 𝑆 in 𝐺𝐿 

• To prove that 𝜎 𝑆  is submodular, only need to 

show that 𝑅 ⋅, 𝐺𝐿  is submodular for any 𝐺𝐿 

• sumodularity is maintained through linear 

combinations with non-negative coefficients 
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Submodularity of influence 

diffusion models (cont’d) 
• Submodularity of 

𝑅 ⋅, 𝐺𝐿  
• for any 𝑆 ⊆ 𝑇 ⊆ 𝑉,  

𝑣 ∈ 𝑉 ∖ 𝑇,  

• if 𝑢 is reachable from 𝑣 
but not from 𝑇, then 

• 𝑢 is reachable from 𝑣 but 
not from 𝑆 

• Hence, 𝑅 ⋅, 𝐺𝐿  is 
submodular 

• Therefore, influence 
spread 𝜎 𝑆  is 
submodular in both IC 
and LT models 
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General threshold model 

• Each node 𝑣 has a threshold function 
𝑓𝑣: 2

𝑉 → [0,1] 

• Each node 𝑣 selects a threshold 𝜃𝑣 ∈ [0,1] 
uniformly at random 

• If the set of active nodes at the end of step 

𝑡 − 1 is 𝑆, and 𝑓𝑣 𝑆 ≥ 𝜃𝑣, 𝑣 is activated at step 𝑡 

• reward function 𝑟(𝐴(𝑆)): if 𝐴(𝑆) is the final set of 

active nodes given seed set 𝑆, 𝑟(𝐴(𝑆)) is the 

reward from this set 

• generalized influence spread: 

   𝜎 𝑆 = 𝐸[𝑟 𝐴 𝑆 ] 
25 [Kempe, Kleinberg and Tardos, KDD 2003] 



IC and LT as special cases of  

general threshold model 
• LT model 

• 𝑓𝑣 𝑆 =  𝑤(𝑢, 𝑣)𝑢∈𝑆  

• 𝑟(𝑆)  =  |𝑆| 

• IC model 

• 𝑓𝑣 𝑆 = 1 − (1 − 𝑝 𝑢, 𝑣 )𝑢∈𝑆  

• 𝑟(𝑆)  =  |𝑆| 
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Submodularity in the general 

threshold model 
 Theorem [Mossel & Roch STOC 2007]:  
◦ In the general threshold model,  

◦ if  for every 𝑣 ∈ 𝑉, 𝑓𝑣(⋅) is monotone and 
submodular with 𝑓𝑣 ∅ = 0,  

◦ and the reward function 𝑟(⋅) is monotone 
and submodular,  

◦ then the general influence spread function 
𝜎 ⋅  is monotone and submodular. 

 Local submodularity implies global 
submodularity 

27 



The greedy approximation 

algorithm for the IM problem 

• 1 −
1

𝑒
− 𝜀 -approximation greedy algorithm 

• Use general greedy algorithm framework 

• However, need evaluation of influence spread 

𝜎 𝑆 , which is shown to be #P-hard 

• Use Monte Carlo simulations to estimate 𝜎 𝑆  to 
arbitrary accuracy with high probability 

• For any 𝜀 > 0, there exists 𝛾 > 0, s.t. 1 −
1

𝑒
− 𝜀 -

approximation can be achieved with 1 − 𝛾 
approximate values of 𝜎 𝑆   
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Performance of greedy algorithm 

 

29 

weighted cascade model linear threshold model 

• coauthorship graph from arxiv.org, high energy physics section, 

n=10748, m53000 
• allow parallel edges, 𝑐𝑢,𝑣 = number of edges between u and v 

• weighted cascade: 𝑝 𝑢, 𝑣 = 1 − 1 −
1

𝑑𝑣

𝑐𝑢,𝑣
 

• linear threshold: 𝑤 𝑢, 𝑣 = 𝑐𝑢,𝑣/𝑑𝑣  
[Kempe, Kleinberg and Tardos, KDD 2013] 



Key takeaways for theory support   

 submodularity of diffusion models 

◦ diminishing return 

◦ shared by many models, but some model 

extensions may not be submodular (see Part 

IV) 

 submodular function maximization 

◦ greedy hill-climbing algorithm 

◦ approximation ratio (1 − 1/𝑒) 
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Scalable Influence Maximization 

31 



Theory versus Practice  

  

...the trouble about arguments is,  

they ain't nothing but theories,  

after all, and theories don't prove  

nothing, they only give you a place  

to rest on, a spell, when you are  

tuckered out butting around and  

around trying to find out something  

there ain't no way to find out... 

There's another trouble about  

theories: there's always a hole in  

them somewheres, sure, if you  

look close enough. 

- “Tom Sawyer Abroad”, Mark Twain 
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Inefficiency of greedy algorithm 

 It take days to find 50 seeds for a 30K node 
graph 

 Too many evaluations of influence spread 
◦ Given a graph of 𝑛 nodes, each round needs 

evaluation of 𝑛 influence spreads, totally 𝑂(𝑛𝑘) 
evaluations 

 Each evaluation of influence spread is hard 
◦ Exact computation is #P-hard, for both IC and LT 

models [Chen et al. KDD/ICDM 2010] 

◦ Monte-Carlo simulation is very slow 
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Scalable Influence Maximization 

 Reduction on the number of influence 

spread evaluations.  

 Batch computation of influence spread 

 Scalable heuristics for influence spread 

computation 
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Lazy forward optimization 
 Exploiting submodularity, significantly reduce #  influence 

spread evaluations 
◦ 𝑆𝑡−1 − seed set selected after round 𝑡 − 1 

◦ 𝑣𝑡 − selected as seed in round 𝑡:  𝑆𝑡 = 𝑆𝑡−1 ∪ {𝑣𝑡} 

◦ 𝑢 is not a seed yet, 𝑢’s marginal gain 𝑀𝐺 𝑢 𝑆𝑡 = 𝜎(𝑆𝑡 ∪ {𝑢}) −
𝜎(𝑆𝑡) 

◦ by submodularlity, 𝑀𝐺 𝑢 𝑆𝑡 ≤ 𝑀𝐺(𝑢|𝑆𝑡−1) 

◦ This implies, if  𝑀𝐺 𝑢 𝑆𝑡−1 ≤ 𝑀𝐺(𝑣|𝑆𝑡) for some node 𝑣, then no 
need to evaluate 𝑀𝐺 𝑢 𝑆𝑡  in round 𝑡 + 1.  

◦ Can be implemented efficiently using max-heap 
 take the top of the heap, if it has 𝑀𝐺 for the current round, then it is the 

new seed; 
 else compute its 𝑀𝐺, and re-heapify 

 Often, top element after round 𝑘 − 1 remains top in round 
𝑘.  

 Up to 700 X speedup 

35 [Leskovec et al., KDD 2007] 



CELF++  

 With each heap node 𝑢, further maintain  
◦ 𝑢.𝑚𝑔1 =  𝑀𝐺(𝑢|𝑆), 𝑆 = current seed set. 

◦ 𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡 = node with max. MG in the current 
iteration, among nodes seen before 𝑢;  

◦ 𝑢.𝑚𝑔2 =  𝑀𝐺(𝑢|𝑆 ∪ {𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡});  
◦ 𝑢. 𝑓𝑙𝑎𝑔 = iteration where 𝑢.𝑚𝑔1 was last updated;  

 𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡  chosen in current iteration  no 
need to compute 𝑀𝐺(𝑢|𝑆 ∪ {𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡}) in next 
iteration.  

 𝑀𝐺(𝑢|𝑆 ∪ {𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡}) can be computed 
efficiently along with 𝑀𝐺(𝑢|𝑆) in one run of MC.  

36 [Goyal, Lu and L., WWW 2011] 



CELF++ (contd.)  

• Pick the top node 𝑢 in the heap 

• 𝑢. 𝑓𝑙𝑎𝑔 = |𝑆|  𝑢.mg1 is correct 𝑀𝐺, thus 𝑢 is the best pick 

of current itn; add 𝑢 to 𝑆; remove from 𝑄;  

• else, if 𝑢. 𝑝𝑟𝑒𝑣_𝑏𝑒𝑠𝑡 = 𝑙𝑎𝑠𝑡_𝑠𝑒𝑒𝑑 & 𝑢. 𝑓𝑙𝑎𝑔 =  |𝑆| − 1 

𝑢.𝑚𝑔1  𝑢.𝑚𝑔2 (no need to compute 𝑀𝐺(𝑢|𝑆 +
𝑙𝑎𝑠𝑡_𝑠𝑒𝑒𝑑)) 
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Batch computation of  

influence spread 
 Based on equivalence to reachable set in 

live-edge graphs 

◦ Generate a random live-edge graph 

◦ batch computation of size of reachable set of 

all nodes [Cohen, JCSS 1997] 

◦ repeat above to increase accuracy 

 In conflict with lazy-forward optimization 

◦ MixedGreedy: In the first round uses reachability-
based batch computation; in remaining rounds, 

use lazy forward optimization 
38 [Chen, Wang and Yang, KDD 2009] 



Scalable heuristics for  

influence spread computation 
 MIA: for IC model [Chen, Wang and 

Wang, KDD 2010] 

 LDAG: for LT model [Chen, Yuan and 
Zhang, ICDM 2010] 

 Features: 
◦ Focus on a local region 

◦ Find a graph spanner allow efficient 
computation 

◦ Batch update of marginal influence spread 
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Maximum Influence Arborescence 

(MIA) Heuristic 
 Local influence 

regions of node 𝑣 
◦ For every nodes 𝑢, find 

the maximum influence 
path (MIP) from 𝑢 to 𝑣, 
ignore it if Pr (𝑝𝑎𝑡ℎ) < 𝜆 (𝜆 
is a small threshold value) 

◦ all MIPs to 𝑣 form its 
maximum 
influence in-
arborescence (MIIA) 

◦ MIIA can be efficiently 
computed 

◦ influence to 𝑣 is 
computed over MIIA 

 

 

 
 

 

0.3 

0.1 

𝑢 

𝑣 
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MIA Heuristic III: Computing 

Influence through the MIA 

structure 
 Recursive computation of activation probability 𝑎𝑝(𝑢) 

of a node 𝑢 in its in-arborescence, given a seed set 𝑆 

(𝑁𝑖𝑛(𝑢) is the in-neighbors of 𝑢 in its in-arborescence) 
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MIA Heuristic IV: Efficient updates 

on incremental activation 

probabilities 

 𝑢 is the new seed in 𝑀𝐼𝐼𝐴(𝑣) 

 Naive update: for each candidate 

𝑤, redo the computation in the 

previous page to compute 𝑤’s 

marginal influence to 𝑣 

◦ 𝑂( 𝑀𝐼𝐼𝐴 𝑣 2) 

 Fast update: based on linear 

relationship of activation 

probabilities between any node 

𝑤 and root 𝑣, update marginal 

influence of all 𝑤’s to 𝑣 in two 

passes 

◦ 𝑂(|𝑀𝐼𝐼𝐴(𝑣)|) 

𝑣 

𝑢 

𝑤 

𝑀𝐼𝐼𝐴(𝑣) 
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Experiment Results on MIA heuristic 

Experiment setup: 

• 35k nodes from coauthorship graph in physics archive 

• influence probability to a node 𝑣 = 1 / (# of neighbors of 𝑣) 

• running time is for selecting 50 seeds 
43 

103 times 
speed up 

close to Greedy,  
49% better than Degree, 

15% better than 
DegreeDiscount 

Influence spread vs. seed set 
size 

running time 



Time for some simplicity 
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The SimPath Algorithm 

In lazy forward manner, in each 

iteration, add to the seed set, the 

node providing the maximum 

marginal gain in spread. 

45 

Simpath-Spread 

Vertex Cover 

Optimization 

Look ahead 

optimization 

Improves the efficiency  

in the first iteration 

Improves the efficiency 

in the subsequent iterations 

Compute marginal gain by  

enumerating simple paths 

[Goyal, Lu, & L. ICDM 2011] 



Estimating Spread in SimPath (2) 

 Thus, the spread of a node can be 

computed by enumerating simple paths 

starting from the node.  

46 

= 1 + (0.3 + 0.4 * 0.5) + (0.4 + 0.3 * 0.2) = 1.96 

Influence Spread of node x is  

x 

y 

z 
0.4 

0.3 

0.1 

0.2 

0.5 
Influence of x on x itself 

Influence of x on y 

Influence of x on z 

Total influence of  

node x is 1.96 



Estimating Spread in SimPath (3) 

6.22.014.01)()()(   yxS xVyV 

Let the seed set S = {x,y}, then influence spread of S is   

x 

y 

z 
0.4 

0.3 

0.1 

0.2 

0.5 

Influence of node y in a  

subgraph that does not  

contain x 

Influence of node x in a  

subgraph that does not  

contain y 

Total influence of the 

seed set {x, y} is 2.6 
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Estimating Spread in SimPath (4) 

Thus, influence can be estimated 

by enumerating all simple paths 

starting from the seed set. 

48 

Enumerating all simple 

paths is #P hard 

The majority of influence flows in a 

small neighborhood. 

On slightly  

different subgraphs 



Look Ahead Optimization (1/2) 

 As the seed set grows, the time spent in 

estimating spread increases. 

◦ More paths to enumerate. 

 A lot of paths are repeated though. 

 The optimization avoids this repetition 

intelligently. 

 A look ahead parameter ‘l’. 

49 



Look Ahead Optimization (2/2) 
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y 

x 

Seed Set Si after iteration i 

.... 

Let y and x be  

prospective seeds 

from CELF queue 

1. Compute spread achieved by S+y 
2. Compute spread achieved by S+x 

A lot of paths are enumerated repeatedly 

l = 2 here 



SimPath vs LDAG 
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Other means of speedup  

 Community-based approach  

 

 Network sparsification  

 

 Simulated Annealing   
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[Wang et al. KDD 2010] 

[Mathioudakis et al, KDD 2011] 

[Jiang et al. AAAI 2011] 



Community-based influence 

maximization 
 Use influence parameters to partition graph 

into communities 
◦ different from pure structure-based partition  

 Influence maximization within each 
community 

 Dynamic programming for selecting top 
seeds 

 Orthogonal with scalable influence 
computation algorithms 

53 [Wang et al. KDD 2010] 



Sparsification of influence networks 

 Remove less important edges for 

influence propagation 

 Use action traces to guide graph 

trimming 

 Orthogonal to scalable influence 

computation algorithms 
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Simulated annealing 

 Following simulated  annealing 

framework 

◦ not going through all nodes to find a next 

seed as in greedy 

◦ find a random replacement (guided by 

some heuristics) 

 Orthogonal to scalable influence 

computation algorithms 
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Key takeaways for scalable 

influence maximization 
 tackle from multiple angles 

◦ reduce #spread evaluations: lazy-forward 

◦ scale up spread computation: 

 use local influence region (LDAG, MIA, SimPath) 

 use efficient graph structure (trees, DAGs) 

 model specific optimizations (simple path 

enumerations) 

◦ graph sparsifications, community partition, etc. 

 upshot: can scale up to graphs with millions 

of nodes and edges, on a single machine 
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