
Context-Sensitive Delta Inference for Identifying
Workload-Dependent Performance Bottlenecks

Xusheng Xiao1 Shi Han2 Dongmei Zhang2 Tao Xie1

1Dept. of Computer Science, North Carolina State University, Raleigh, NC, USA
2Microsoft Research Asia, Beijing, China

1xxiao2@ncsu.edu, 2{shihan, dongmeiz}@microsoft.com, 1xie@csc.ncsu.edu

ABSTRACT
Software hangs can be caused by expensive operations in re-
sponsive actions (such as time-consuming operations in UI
threads). Some of the expensive operations depend on the
input workloads, referred to as workload-dependent perfor-
mance bottlenecks (WDPBs). WDPBs are usually caused
by workload-dependent loops (i.e., WDPB loops) that con-
tain relatively expensive operations. Traditional performance
testing and single-execution profiling may not reveal WDPBs
due to incorrect assumptions of workloads. To address these
issues, we propose the ∆Infer approach that predicts WDPB
loops under large workloads via inferring iteration counts of
WDPB loops using complexity models for the workload size.
∆Infer incorporates a novel concept named context-sensitive
delta inference that consists of two parts: temporal inference
for inferring the complexity models of different program lo-
cations, and spatial inference for identifying WDPB loops as
WDPB candidates. We conducted evaluations on two pop-
ular open-source GUI applications, and identified impactful
WDPBs that caused 10 performance bugs.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; D.4.8 [Software Engineer-
ing]: Performance—Modeling and prediction

General Terms
Measurement, Performance

Keywords
Performance analysis, model prediction

1. INTRODUCTION
Performance problems exist widely in released software [18,

28]. As a type of widespread performance problems, software
hangs cause unresponsiveness of software applications [33,
35]. A recent study of hang problems [33] shows that 27.04%
of the 233 studied hang bugs are caused by time-consuming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$10.00.

operations in responsive actions1, such as expensive com-
putations in the UI thread for GUI applications. Among
the expensive operations that cause hang problems, some
of these operations are constantly expensive (such as server
initializations), whereas some of them depend on the in-
put workloads. These problems are referred to as workload-
dependent performance bottlenecks (WDPBs). WDPBs are
usually caused by workload-dependent loops (referred to as
WDPB loops)2 that contain certain relatively expensive op-
erations, such as temporary-object creation/destruction [37],
file I/O, and UI updates.

To removeWDPBs, a typical solution is to move expensive
operations out of the responsive actions, such as spawning
separate threads to handle expensive operations in the back-
ground for GUI applications [9], or adding program logics to
limit the size of workloads (e.g., allowing only up to a spe-
cific size k of workloads or processing only the first k items
of a workload).

Although WDPBs can be identified with traditional ap-
proaches, such as performance testing and single-execution
profiling (e.g., call-tree profiling [11, 12, 20] and stack sam-
pling [23]), such traditional approaches are ineffective, suf-
fering from two major issues: the insufficiency issue and the
incompleteness issue. First, performance testing mainly re-
lies on black-box random testing or manual input design,
often insufficient to identify WDPBs that may not surface
on small or even relatively large workloads [29]. A huge
amount of existing legacy software lacks workload specifi-
cations, and specifications from performance engineers tend
to be outdated over time. It often remains unclear to per-
formance testers on how large is large enough for workloads
to expose WDPBs (if any indeed exists in the application
under test). A recent study [28] shows that 41 out of 109
studied performance bugs are due to wrong assumption of
workloads. Second, by increasing the input workload, single-
execution profiling may reveal the most expensive WDPBs,
but it is often incomplete in capturing all the WDPBs that
may cause performance problems when the workload size in-
creases. For example, given a large workload, some WDPBs’
cost may occupy more than 90% of the total cost, dominat-
ing the cost of other WDPBs. In other words, some impor-
tant WDPBs can be overshadowed by other WDPBs.

To address these two issues suffered by traditional ap-
proaches, our research contributes a novel predictive ap-
proach, called ∆Infer. ∆Infer predicts occurrences of WDPB

1Actions that are expected to return instantly.
2A loop whose iteration count depends on the input work-
load.

loops within a GUI application3 under large future work-
loads (that have not been generated or executed yet) in con-
trast to existing approaches on performance testing, which
require the generated and executed workloads to directly ex-
pose these WDPB loops. In addition, to gain the prediction
power, our approach infers complexity models of program
locations within the application under analysis from profiles
of multiple workloads instead of the profile from just a sin-
gle workload, which existing approaches on single-execution
profiling focus on. Our approach then infers complexity
models for loops based on the complexity models of pro-
gram locations at the loop bodies. Such complexity model
for a loop captures the relationship between the iteration
count of the loop and the workload size, and then is used to
predict the iteration count of the loop given a workload.
To identify WDPB loops in GUI applications, our ap-

proach addresses two significant challenges: complex con-
texts and implicit loops. First, in GUI applications, devel-
opers usually write code as handlers for various UI events
(e.g., button clicks or item selections). When an event is
fired, the corresponding handlers would be invoked. Such
event-driven nature causes a program location to be invoked
in different contexts. Thus, a program location may exhibit
quite different execution complexities under different call-
ing contexts, posing challenges for a complexity model to
accurately model its complexity. Second, among the most
widely-used UI controls, multi-item UI controls (e.g., ListView
or TreeView) [32] may fire events for each item, behaving like
an implicit loop that invokes the handlers repetitively. Such
implicit loops do not have explicit loop statements in the ap-
plication, posing challenges for manual inspection or static
analysis [13, 22,38] to identify the WDPB loops.
To address the aforementioned challenges, our ∆Infer ap-

proach incorporates a novel general concept: context-sensitive
delta inference, which consists of two major parts: tempo-
ral inference (inferring differences between executions) and
spatial inference (inferring differences between program lo-
cations).
Temporal Inference. The temporal inference analyzes

the differences of execution counts of a specific program lo-
cation among its executions under different workloads to
infer complexity models. ∆Infer employs least-squares re-
gressions (such as linear and power-law regressions) [15] to
infer a complexity model that uses the workload to predict
a program location’s execution count.
To address the challenge of complex contexts posed by

GUI applications, our approach is context-sensitive: our ap-
proach infers complexity models from behaviors exhibited by
the executions of a program location under the same calling
context (from its caller up to the root function such as a main
function or thread-start function), instead of executions of
the program location under different calling contexts.
To improve the accuracy of the inferred complexity mod-

els, ∆Infer starts with training profiles of workloads selected
from the representative usage, and iteratively selects new
workloads to obtain new profiles based on the prediction ac-
curacy of the inferred models in previous iterations. The
iteration of the model inference and refinement continues
until the model accuracy reaches a specified threshold.

3Among applications with WDPBs, our research focuses on
identifying WDPBs in GUI applications, since responsive-
ness in GUI applications is a major source of performance
problems [33,35].

Spatial Inference. The spatial inference analyzes differ-
ences of complexity models across program locations to iden-
tify workload-dependent loops as WDPB candidates. If a
complexity model for the workload is used to describe a pro-
gram location’s execution count (i.e., count = f(workload)),
it can be observed that workload-dependent loop raises the
complexity model of the program locations inside the loop
body to a higher order (such as constant to linear), and
results in a complexity transition. Thus, the order differ-
ences between complexity models of different program loca-
tions, i.e., complexity transitions, can be used to effectively
identify workload-dependent loops. To identify complexity
transitions as workload-dependent loops, the spatial infer-
ence abstracts orders from the inferred complexity models
and compares the orders for a loop’s entry point and pro-
gram locations inside the loop body. If we denote program
locations as methods, then we compare the orders of caller-
callee pairs, since callees inside a loop body would exhibit
different complexity orders.

To address the challenge of implicit loops posed by GUI
applications, ∆Infer uses complexity transitions from certain
UI library calls to the application code to identify implicit
loops. All the complexity transitions inferred by ∆Infer are
considered as WDPB candidates. Based on the complexity
models and the average cost per execution obtained from the
profiles, ∆Infer predicts costs of the complexity transitions
on large workloads to identify WDPBs.

This paper makes the following major contributions:

• A predictive approach for performance analysis that
predicts WDPBs on large workloads based on the con-
cept of context-sensitive delta inference.

• A technique of temporal inference that iteratively in-
fers and refines context-sensitive complexity models
based on the deltas of executions on different work-
loads.

• A technique of spatial inference that abstracts orders
from complexity models of locations and identifies the
order deltas of different locations to infer complex-
ity transitions. The predicted costs of such complex-
ity transitions on large workloads are used to identify
WDPBs.

• Evaluations on two popular open source GUI applica-
tions, the 7-Zip file manager [1] and Notepad++ [7].
The results show that our approach effectively identi-
fies impactful WDPBs that cause 10 performance bugs.

2. PROBLEM FORMULATION
In this section, we formalize the problem of identifying

complexity transitions. For a given application A, we use
the term location, l, to denote a program location (e.g., a
basic block in a method or a method itself) of A, and cost,
y, to denote a location’s performance (e.g., execution count
or time). To formulate our context-sensitive analysis and
complexity transitions, we first define the call graph G for
A and the calling context c of a location l in A.

Definition 1. A call graph is a directed graph G(E, V),
where each vertex v ∈ V denotes a unique method, and each
edge e(a, b) ∈ E denotes a calling relationship from a to b.

Without losing the generality, we use the term belonging
method to denote a method where l is in when l represents
a basic block, or a method represented by l. l’s belonging
method corresponds to a vertex v in G.

Definition 2. A calling context, c, of a location l is a
call path from the root of the call graph (usually a main func-
tion or thread-start function) to the parent vertex (caller) of
vertex v corresponding to l’s belonging method.

To simplify description, we denote a location l under a
calling context c as lc in the rest of the paper. Using the
calling context, we then define the call-tree profiling [11]
used in our approach.

Definition 3. An execution profile, P , obtained by ex-
ecuting an application A on a given input, is a call-tree pro-
file that records the execution counts of each location lc in
A.

An input to A can have a set of parameters that character-
ize the input from different aspects. Based on the scenarios
of A, we identify workload parameters (W1, . . . ,Wd) that
could potentially influence performance, such as the num-
ber of lines or the number of characters for the text input to
a text editor. For k workloads, we have a vector of values for
each workload parameter Wd (< wd,1, . . . , wd,k >) to denote
the values of Wi for these k workloads. After executing the
application A on k workloads to obtain k profiles, we have a
vector of counters for each location lc (< ylc,1, . . . , ylc,k >).
Based on these vectors, we then define the k-profile graph
as below.

Definition 4. A k-profile graph is an annotated call
graph, G(E, V), where a location l with its corresponding
vertex is annotated with a vector of counters for l on k work-
loads for each of its calling context c.

For each location l with its corresponding vertex in the
k-profile graph, our approach infers complexity models
using regression learning.

Definition 5. Given a workload parameter W , a com-

plexity model of a location l under the calling context c is a
function fl,c(W) that predicts l’s execution counts in terms
of values of W under the calling context c.

Based on the definition of a complexity model, we denote
the exponent of the highest order term of the complexity
model as the order of the complexity model, denoted as
O(fl,c(W)). We next define a complexity transition.

Definition 6. Given a workload parameter W , a com-

plexity transition is a pair (n,M), such that

1. n is a vertex (method) in the k-profile graph and M is
a subset of children vertices (callees) of n;

2. fn,c(W) is the complexity model of n under the calling
context c, and fli,ci(W) is the complexity model of the
location li, where li is a location in M and the calling
context ci is c concatenated with n.

3. O(fli,ci(W)) is at least 1 more than O(fn,c(W));
4. ∀li, lj ∈ M, i 6= j, O(fli,ci(W)) = O(flj ,cj (W)).

The definition ensures that a complexity transition cap-
tures the workload-dependent loops whose iteration bounds
have the same order inside the method n under the call-
ing context c. To simplify our description in the rest of the
paper, we use methods as the locations.

3. EXAMPLES
In this section, we use an example to illustrate how ∆Infer

identifies WDPBs. Figure 1 shows two WDPBs found in

1 void CPanel::OnRefreshStatusBar() { // PB 1
2 ...
3 GetOperatedItemIndices(indices);
4 statusBar.SetText(...); // UI operation
5 ... }
6 void CPanel::GetOperatedItemIndices(CRecordVector<UInt32>

&indices) const {
7 GetSelectedItemsIndices(indices);
8 ... }
9 void GetSelectedItemsIndices(CRecordVector<UInt32> &indices) {

10 indices.Clear();
11 for (int i = 0; i < selectedStatusVector.Size(); i++) // PB 2
12 if (selectedStatusVector[i]) indices.Add(i);
13 ... }

Figure 1: Two WDPBs found in the 7-Zip file man-
ager [1]

the 7-Zip file manager [1] written in C++. The first WDPB
(PB1) is caused by the method CPanel::OnRefreshStatusBar, which
contains a non-trivial UI update operation (Line 4). PB1 is
invoked when a selection-change event is fired. The second
WDPB (PB2) is caused by the method GetSelectedItemsIndices,
which contains a workload-dependent loop L (Lines 11-12).
Let us assume that the number of files in the current folder
is n; if a user clicks a file after selecting all files, the selection-
change event will be fired for each file. Such repeated firing
will cause PB1 to be invoked n times (refreshing the status
bar n times), and PB2 to be executed n2 times. Thus, when
n is large, PB1 and PB2 would be very expensive and cause
the 7-Zip file manager [1] to hang.

With ∆Infer, developers can perform the selection-change
action to obtain the profiles on multiple workloads, and use
the prediction results of ∆Infer to identify WDPBs on large
workloads. To simplify the description, here we simply as-
sume that the selected workload values are 50, 100, and 200
files, and we obtain the profiles P50, P100, and P200.

With these profiles as input, ∆Infer infers complexity mod-
els by using regression learning to fit the execution counts of
methods to workload sizes. In Figure 1, CPanel::OnRefreshStatusBar

is associated with a linear complexity model, and any method
call inside the loop (Lines 11-12) is associated with a quadratic
complexity model. By inferring complexity transitions from
lower order to higher order (e.g., constant to linear and lin-
ear to quadratic), the complexity transition from some UI li-
brary call (not shown in Figure 1) to CPanel::OnRefreshStatusBar()

helps identify the implicit loop, and the complexity transi-
tion from GetSelectedItemsIndices to selectedStatusVector.Size helps
identify the loop L. These workload-dependent loops are
considered as WDPB candidates.

To predict whether PB1 and PB2 would cause perfor-
mance problems on large workloads, ∆Infer predicts the ex-
ecution counts of PB1 and PB2 when the workloads be-
come 10 or 100 times larger (i.e., 500 or 5000). With the
predicted execution counts, ∆Infer then uses their average
costs (e.g., execution time) per execution to compute their
estimated costs on these large workloads. Although PB2

belongs to the callees of PB1, the complexity model of PB2

has a higher order than PB1’s model. Thus, ∆Infer sepa-
rates the predicted costs of PB2 from PB1.

With the predicted costs on large workloads, ∆Infer ranks
PB1 and PB2 as the top 2 complexity transitions (others
are not illustrated here due to space limit), and their com-
bined costs are 10 times of P100’s cost when the workload is
5000. Such costs significantly degrade the performance and
cause the file manager to hang. Recall that PB1 contains
a UI-update operation and has a non-trivial cost per exe-

Figure 2: Overview of ∆Infer
cution, and the cost of PB2 grows much faster than PB1

due to PB2’s n2 complexity model, even though the cost
per execution for PB2 is not that large.

4. APPROACH OVERVIEW
In this section, we present the overview of ∆Infer. As

shown in Figure 2, ∆Infer consists of two major parts: tem-
poral inference and spatial inference.
The temporal inference accepts profiles of different work-

loads as input and infers context-sensitive complexity mod-
els. ∆Infer starts by applying regression learning on an ini-
tial set of profiles to infer complexity models, and iteratively
selects new workloads to refine the inferred models. To val-
idate the inferred models after each iteration, ∆Infer uses
a random-validation strategy. ∆Infer repeats the model in-
ference and refinement until the model accuracy reaches a
pre-specified threshold.
The spatial inference accepts the inferred complexity mod-

els from temporal inference and infers complexity transitions
as WDPB candidates. In particular, to make the complexity
models comparable, ∆Infer abstracts orders from complex-
ity models, and compares the orders of caller-callee pairs to
infer complexity transitions as WDPB candidates. ∆Infer
then predicts costs of the complexity transitions on large
workloads to identify WDPBs.

5. TEMPORAL INFERENCE
This section describes how the technique of temporal in-

ference infers and refines complexity models.

5.1 Workload Generation and Execution
Our approach focuses on detecting scenario-specificWDPBs

for an application under analysis. Each scenario is assumed
to use a specific configuration of the GUI, such as switching
the GUI to the“Wrap Line”mode for a text editor. Based on
the chosen scenarios, performance analysts select appropri-
ate performance metrics (such as execution time or energy
cost), and characterize the input as performance-relevant
workload parameters [26], such as # lines in a document
as the input to a text editor. When we generate workloads
based on a parameterW (referred to as the focused workload
parameter), we vary workloads only on W , while the values
of other parameters remain the same. For example, when
we vary the focused workload parameter # lines to generate
different workloads, we keep constant the other parameters
such as # of characters in a line. Doing so can help us avoid
the difficulties on inferring models for multiple parameters.
To select an initial set of workloads, performance ana-

lysts are expected to define the representative value range
(RVR) for the focused workload parameter. For example,

the RVR for # lines in a document can be [1, 1280]. Of-
ten the time, performance analysts and developers are well
aware of RVRs and can agree on RVRs with a certain vari-
ance, but it is difficult to know a triggering workload value
for an unknown performance bottleneck. Within the RVR,
performance analysts can select an initial value and vary the
initial value via arithmetic progression or geometric progres-
sion to obtain sorted inputs [38], or can choose the values
randomly. For the least-squares regression used by our ap-
proach, a guideline for selecting the initial values is to avoid
selecting a very small workload, such as 1 or 2 files, as the
initial workload for a file manager. We empirically find that
such small workloads produce noise in the inferred models,
consistent with the finding by Goldsmith et al. [19].

To obtain execution profiles, we instrument the applica-
tion and execute the application on the chosen workloads.
The profiles used by our approach are call-tree profiles, which
measure execution counts of program locations in the in-
strumented application, and distribute the total execution
counts of a location for each of its calling contexts [11]. In
this paper, since we focus on GUI applications whose re-
sponsive action is in the UI thread, our approach uses the
execution profiles of the UI thread as input.

5.2 Least-Squares Regression
Given the counter vector of a location l under a calling

context c (< ylc,1, ylc,2, . . . , ylc,k >) and the value vector
of a workload parameter W (< w1, w2, . . . , wk >), our ap-
proach uses least-squares regressions [15], including linear
and power law regressions, to infer a complexity model us-
ing a set of data points (wi, ylc,i).

Linear Regression. Linear regression infers a complex-
ity model y = A+Bw and predicts ylc,i as ˆylc,i = A+Bwi.
The difference ylc,i − ˆylc,i is called the residual of the fit
at (wi, ylc,i). Linear regression finds parameters A and B

to minimize the sum of squared residuals, Q(A,B), where

Q(A,B) =
∑k

i=1(ylc,i − (A+Bwi))
2.

Power-law Regression. Power-law regression infers a
complexity model y = AwB and predicts ylc,i as ˆylc,i =
AwB

i . Power-law regression finds parameters A and B to
minimize the sum of squared residuals, Q(A,B), where

Q(A,B) =
∑k

i=1(ylc,i − (AwB
i))2.

To measure how good the models fit the data points, our
approach computes the correlation coefficient R2. For the
linear regression, the R2 is defined as below:

R
2 =

(
∑k

i=1 wy − kw̄ȳ)2

(
∑k

i=1 w
2 − kw̄2)(

∑k

i=1 y
2 − kȳ2)

By replacing w with ln(w) and y with ln(y), we can trans-
form a power-law regression model to a linear regression
model: ln(y) = ln(Aln(w)B) = ln(A) + Bln(w). Thus, R2

is applicable to power-law regressions by replacing w with
ln(w) and y with ln(y).

Using both linear and power-law regressions, regressions
can fit a set of data points (wi, ylc,i) of a location l to two
complexity models. Our approach selects the complexity
model with better R2 as the complexity model for l.

5.3 Model Validation
The model validation provides the relative prediction er-

ror of the inferred models. While the correlation coefficient
R2 measures how the models fit the given data points, the
relative prediction error measures how good the prediction

accuracy of the models is. For each iteration of model vali-
dation, the model validation compares the predicted values
of the inferred models to the values of the corresponding lo-
cations in all validation profiles, and computes the average
relative error.
In our current approach, we use a random-validation strat-

egy for the model validation. We randomly select a set of
workload values from a validation value range (VVR) pre-
determined based on a guideline (described below), and ob-
tain a set of corresponding validation profiles for determin-
ing the accuracy of the models. To prevent the models from
overfitting the values within the RVR and better validate
the prediction accuracy of the inferred models, VVR must
include RVR and the value range should be larger than the
RVR. For example, if the RVR is [1, 500], we may set the
VVR as [1, 1000]. We suggest that the range of VVR should
be at least 2 times larger than the RVR. However, a very
large validation range would require more iterations to refine
the models, and large workload values cause long process-
ing time in obtaining validation profiles. Thus, a very large
validation range is not cost-effective for the iterative model
inference and refinement.
The advantage of the random-validation strategy is that

the validation workloads are distributed across the valida-
tion range, preventing models from over-fitting a specific
range of values within the whole validation range. Note that
the randomly selected workload values cannot be the same
as the workload values used to infer the models.

5.4 Model Inference and Refinement
Model inference and refinement accept as input a set of

profiles on initial workloads and a set of validation pro-
files, iteratively select new workloads to improve the inferred
models, and output the inferred complexity models. These
inferred complexity models are then associated with the cor-
responding vertices in the k-profile graph.
The number of initial workloads and the number of new

workloads selected for each iteration can be configured by
performance analysts. The configuration mainly depends
on the value range of the workload parameter and the time
taken to obtain a profile. Adding the new workloads in
subsequent iterations improves the average relative error of
the inferred models. We terminate the iterations if the aver-
age prediction error falls below a predefined prediction-error
threshold (e.g., 5%). In certain cases, after adding new pro-
files, the improvement on the accuracies of the inferred mod-
els may be marginal or even negative, and the number of the
inferred models whose R2 is above a predefined R2 threshold
(referred to as thresholdR2) may not change. We terminate
the iterations for such cases to prevent infinite iterations.
Algorithm 1 shows the details of our iterative algorithm

for model inference and refinement. The main part of the
algorithm is the iteration cycle of inferring and refining com-
plexity models (Lines 3-30), where the guard condition of
the loop at Line 3 ensures that the algorithm terminates af-
ter the predefined maximum number of iterations has been
reached. Lines 1-2 initialize the model count pc and the pre-
diction error epre. pc records the number of models whoseR2

are above thresholdR2 (e.g., 0.9) in the previous iteration,
and epre records the average prediction error in the previ-
ous iteration. Within the iteration cycle, ModelInfer first
infers complexity models (Lines 4-6) based on the set of pro-
files. ModelInfer obtains a k-profile graph by aligning the

set of profiles (Line 4) and retrieves the workload values from
the profiles (Line 5). ModelInfer then applies regression
learning with the workload values and the k-profile graph
as input to infer the complexity models (Line 6). Here re-
gression learning returns only the inferred models whose R2

is above thresholdR2 . In the next step, ModelInfer com-
putes the errors eM for each validation profile (Lines 8-17)
and the average error etotal for all validation profiles (Line
18). Based on the computed errors, ModelInfer terminates
the iteration and returns the current models (Line 31) if one
of the following two conditions is satisfied: (1) the improve-
ment of the average error is less than the threshold of model
improvement thresholdimp (Line 19); (2) the average error
is less than the threshold of prediction error thresholde and
M.Count is the same as the previous iteration pc (Line 22).
If neither of the condition is satisfied, ModelInfer selects a
new workload for obtaining a new profile (Lines 25-26), and
updates the average error epre and model count pc for the
next iteration. After the iteration terminates, these com-
plexity models are then associated with the corresponding
vertices in the k-profile graph.

Algorithm 1 ModelInfer

Require: P as a set of profiles, V P as a set of validation
profiles

Ensure: M as complexity models
1: pc = −1 // previous model count
2: epre = −1 // previous error
3: for ite = 0; ite < max; ite = ite+ 1 do
4: kG = AlignProfiles(P)
5: x = GetWorkloads(P)
6: M = RegressionLearning(x, kG)
7: eM = {}
8: for all vp in V P do
9: w = GetWorkload(vp)
10: evp = 0.0
11: for all m in M do
12: rw = Predict(w,m)
13: am = GetActual(vp,m)

14: evp = evp + Abs(am−rw)
am

15: end for
16: eM = eM .Add(

evp

M.Count
)

17: end for
18: etotal =

Sum(eM)
V P.Count

19: if epre − etotal < thresholdimp then
20: break // improvement is below the threshold
21: end if
22: if etotal < thresholde AND pc == M.Count then
23: break // accuracy is acceptable
24: else
25: np = NewWorkload(P, V P, eM)
26: P = P.Add(np)
27: pc = M.Count

28: epre = etotal
29: end if
30: end for
31: return M

Aligning Profiles. Given k execution profiles on k work-
loads, our approach aligns the locations in the profiles us-
ing calling contexts, and represents the execution counts of
each location l under each calling contex c in k profiles as a

vector: (ylc,1, ylc,2, . . . , ylc,k). Our approach then builds the
k-profile graph by associating the vectors with each location.
Selecting New Workloads. Our workload-augmentation

mechanism (NewWorkload at Line 25) is based on the as-
sumption that a new workload at the area with the highest
prediction error improves most the prediction errors of the
models. NewWorkload first finds the validation profile pe
that has the highest prediction error based on eM , and then
identifies a profile in P whose workload value wc is closest
to the workload value we of pe. NewWorkload returns the
center of wc and we as the new workload value. If the new
workload value exceeds the RVR, our approach doubles the
ranges of RVR and VVR, and selects a new validation pro-
file in the extended range not overlapping with the original
VVR. By doing so, our approach may adaptively evolve the
ranges of RVR and VVR to improve the model accuracies.

6. SPATIAL INFERENCE
This section describes how the technique of spatial infer-

ence infers complexity transitions by comparing abstracted
models and predicts costs of complexity transitions on large
workloads.

6.1 Abstraction of Model
For each vertex associated with a complexity model in the

k-profile graph, model abstraction extracts the exponent of
the highest order term from the complexity model as the
order of the complexity model:

• For a complexity model inferred by linear regressions
(y = A + Bw), the abstracted order of the model is 1
if B is larger than 0; otherwise, the abstracted order
of the model is 0.

• For a complexity model whose orders are decimal val-
ues, the abstracted order of the model is the closest
integer.

• For a complexity model whoseR2 is below thresholdR2 ,
the abstracted order of the model is 0.

These orders are used as the abstracted models for each
complexity model in the k-profile graph, making the com-
plexity models comparable for each caller-callee pair.

6.2 Inference of Complexity Transitions
Our algorithm, TransInfer, accepts as input a k-profile

graph G with vertices associated with abstracted models,
and outputs a set of inferred complexity transitions T . The
details are shown in Algorithm 2.
TransInfer starts by creating an empty set of T , and re-

trieving a vertex v from G.vertices (Lines 1-2). TransInfer
next iterates over each child vertex child of v (Line 3).
For each calling context c of v (Line 4), TransInfer com-
putes the children context cc by appending v to c (Line
5). TransInfer checks whether the order of the complex-
ity model of child under the calling context cc is at least
1 more than the complexity model of v under the calling
context c (Line 6). If the condition at Line 6 is not satis-
fied, TransInfer continues to check the next child vertex
(back to Line 3). If the condition at Line 6 is satisfied,
TransInfer further checks whether there exist complexity
transitions whose complexity model has the same order as
the complexity model of child (Line 10), and appends child
to the transition if the condition at Line 10 is satisfied (Line
12). If TransInfer does not find an existing transition

whose complexity model matches child.model, TransInfer
creates a new complexity transition from v to child under
the calling context c (Line 16). After all children vertices
of v are checked, TransInfer continues to check the next
vertex v (back to Line 2). The algorithm continues until all
the vertices are checked and outputs the set of complexity
transitions T (Line 19), which captures workload-dependent
loops, including implicit loops.

Algorithm 2 TransInfer

Require: G as a k-profile graph with vertices associated
with abstracted models

Ensure: T as complexity transitions
1: T = {} // empty set
2: for all v in G.vertices do
3: for all child in v.Children do
4: for all c in v.Contexts do
5: cc = c.append(v) // children context
6: if child.model(cc).O >= v.model(c).O + 1 then
7: trans = T.GetTransitions(v, c)
8: found = false

9: for all tran in trans do
10: if tran.model.O == child.model(cc).O

then
11: found = true

12: tran.AddV ertex(child)
13: end if
14: end for
15: if !found then
16: T.AddTransition(v, c, child)
17: end if
18: end if
19: end for
20: end for
21: end for
22: return T

6.3 Cost Prediction of Complexity Transitions
To predict costs of complexity transitions (n,M) on large

workloads, our approach computes the average costs per ex-
ecution avglc for each location lc in M and the predicted
execution count predlc for each location lc. To obtain avglc
for a location lc, our approach finds lc on each profile p given
for inferring the complexity models, computes the cost per
execution avglc,p count for each profile p, and then computes
avglc by computing the average of avglc,p for each p. Given
a workload w, our approach predicts the execution count
predlc of a location lc using its complexity model, and then
computes the cost of lc by multiplying predlc with avglc . By
summing up the costs of each location lc in M , our approach
obtains the predicted cost for (n,M).

7. EVALUATIONS
To show the effectiveness of ∆Infer, we conducted evalua-

tions on popular open source GUI applications (Notepad++ [7]
and 7-Zip [1]). In our evaluations, we seek to answer the fol-
lowing research questions:

• RQ1: How effectively does ∆Infer identify WDPBs?
• RQ2: How effectively does the iterative model refine-

ment improve the accuracy of the inferred complexity
models?

Table 1: Scenarios for the evaluations
ID Scenario W. Param
(S1) open a folder # files
(S2) rename a file # files
(S3) select all items and then click the first

item
files

(S4) create a folder # files
(S5) delete a file # files
(S6) open a file # lines
(S7) enter a character and save the file # lines
(S8) go to the last line # lines
(S9) find a word not present in the file # char
(S10) cut and paste the first character # lines

• RQ3: How effectively does context-sensitive analysis
improve the precision in identifying complexity transi-
tions?

7.1 Subjects and Evaluation Setup
Subject Applications. Since our current implementa-

tion supports only Windows applications, we use two popu-
lar Windows applications from SourceForge [10]4 as the eval-
uation subjects: 7-Zip [1] and Notepad++ [7]. 7-Zip is a file
archiver with high compression ratio, supporting archive file
formats of 7z, zip, and so on. Our evaluations focused on the
file manager of 7-Zip (7-Zip FM), a GUI tool that enables
users to easily navigate and manipulate files for archiving.
This application was rated by 83% of 30,081 users as recom-
mended.5 The version of 7-Zip used for our evaluations is
9.20, which consists of 86 files and 7,280 LOC. Notepad++
is a text editor and source-code editor for Windows, sup-
porting tabbed editing and several programming languages
(e.g., C/C++, Java, and C#). This application was rated
by 94% of 14,950 users as recommended. The version of the
Notepad++ used for our evaluations is 5.9.0, which consists
of 396 files and 155,300 LOC.
These GUI applications represent different types of widely

used GUI applications. Their GUIs consist of various types
of GUI controls, such as buttons, list views, and text edi-
tors. We believe that the characteristics of these applica-
tions’ WDPBs and performance bugs would be representa-
tive for many other GUI applications.
Evaluation Setup. As we do not have the developer

knowledge of these subject applications, we choose scenar-
ios that would manipulate inputs, so that the performance
of the applications will vary based on workloads. Based on
the scenarios, we characterize some inputs as performance-
relevant workload parameters. The details of the scenarios
and focused workload parameters are shown in Table 1. Col-
umn “ID” shows the scenario ID, Column “Scenario” shows
the actions performed in each scenario, and Column “W.
Param” shows the workload parameters that we use to vary
the focused workload values. S1-S5 are scenarios for the 7-
Zip file manager, and S6-S10 are scenarios for Notepad++.
For Notepad++, we configure it to use the “Word Wrap”

mode, so that we can test its functionality of wrapping words
and other functionalities at the same time for each scenario.
We executed the instrumented subject applications on each
workload, performed the interactions described in each sce-
nario, and collected the call-tree profiles after the executions.
Thresholds. In our evaluations, we configure the maxi-

mum iteration count max to be 20, the threshold of R2 for

4The largest open source applications and software directory
5All the rating data was collected on Dec. 23, 2011.

regression learning thresholdR2 to be 0.9, the threshold of
error improvement thresholdimp to be 2%, and the threshold
of prediction error thresholde to be 5%.

Workload Selection. For S1-S8 and S10, we set the
RVR as [1, 1280] for choosing workload values and the VVR
as [1, 2560] for choosing random validation values. For S9,
the value of the workload parameter # char is relatively
large in practice, and thus we set the RVR as [1, 20480] and
the VVR as [1, 40960]. For each scenario, we select 3 values
from the RVR to obtain initial training profiles, and ran-
domly select 5 values from the VVR to obtain validation
profiles. To observe how initial workloads may affect our
algorithm of model inference and refinement, we design two
contrast groups for each subject application by selecting dif-
ferent initial workload values. For the 7-Zip file manager, we
use {20, 40, 80} for S1-S3 and {100, 200, 400} for S4-S5; for
Notepad++, we use {20, 40, 80} for S6-S7, {100, 200, 400}
for S8 and S10, and {1000, 2000, 4000} for S9. When we
choose workload values for the parameter # lines, we keep
the number of characters on each line to be 200.

We applied ∆Infer to infer complexity models using the
training profiles as input and iteratively select new work-
loads to obtain new profiles for improving the accuracies of
the inferred models.

7.2 RQ1: WDPB Identification
To answer RQ1, we first rank the complexity transitions

using the predicted costs, and manually inspect the com-
plexity transitions to confirm whether they will cause per-
formance problems on large workloads. We then report the
performance bugs caused by the identified WDPBs and get
the confirmation from developers. Although it is difficult to
measure the false negatives of ∆Infer, we propose and mea-
sure the cost coverage (i.e., execution time) of the identified
WDPBs as the workloads increase. If the identified WDPBs
achieve high cost coverage, the probability of ∆Infer missing
impactful WDPBs would be low.

7-Zip File Manager. Due to space limit, we describe
only two representative WDPBs in this paper. More details
of the WDPBs can be found on our project website [2]. The
first WDPB is RefreshListCtrl, a common WDPB for the Sce-
narios S1, S2, S3, and S5. In these scenarios, when the user
opens/creates a folder or renames/deletes a file, the method
RefreshListCtrl is invoked to refresh the list-view control. In
RefreshListCtrl, the linear-workload-dependent loop is captured
by the complexity transition (RefreshListCtrl, {GetItemRelPath, ...}).
Inside the loop, GetItemRelPath computes the path prefix of a
file using customized string-concatenation operations, which
create temporary objects and destroy them after the con-
catenation. This computation results in intensive creation-
s/destructions of temporary objects.

Another WDPB is a method that invokes ListView SortItems.
ListView SortItems is a UI library call that repetitively invokes
CompareItems to sort the files, behaving like an implicit loop
whose complexity model is nlog(n) in theory. ∆Infer iden-
tifies this implicit loop with a complexity transition from a
constant order to a power-law order. Due to the inefficient
implementation of retrieving file properties for comparison,
this implicit loop causes a WDPB on large workloads.

Notepad++. We describe two representative WDPBs
for Notepad++. The first WDPB is WrapLines that appears in
every scenario. In these scenarios, when the user opens a file
or modifies the content of the file (S7 and S10), the method

(a) 7-Zip FM (S1) (b) 7-Zip FM (S3) (c) Notepad++-(S6) (d) Notepad++-(S9)

Figure 3: Cost coverages of identified WDPBs as workloads increase

WrapLines is invoked to recompute the word-wrapping data
structures by invoking WrapOneLine. WrapOneLine computes the
layout of a line, creating temporary objects and dynamically
allocating memory chunks for the computation results; such
computation is quite expensive when the workload is large.
The second WDPB is Document::FindText for S9. ∆Infer

identifies that Document::FindText contains a linear-workload-
dependent loop and performs string comparison to find the
matching word in the document. Although the cost per it-
eration is not high, the workload value in terms of # chars
is easy to become huge in practice. For example, search-
ing a 10MB file for matching a character not present in the
document would cause the loop in Document::FindText to ex-
ecute 10M times. Thus, word search is usually considered
expensive; and many editors or viewers (such as Adobe PDF
Viewer) spawn a separate thread to do so.
Cost Coverage. Figure 3 shows the cost coverage of the

representative WDPBs on larger workloads. Due to space
limit, we choose four scenarios to show the cost coverage of
representative WDPBs. For 7-Zip, we choose S1 to show
the coverage of the WDPB caused by RefreshListCtrl, and S3
for the WDPB caused by RefreshStatusBar. For Notepad++,
we choose S6 for the WDPB caused by WrapLines and S9 for
the WDPB caused by Document::FindText. The results show
that the identified WDPBs account for more than 75% of all
the scenarios when the workloads increase, indicating that
the probability of missing impactful WDPBs is low. More-
over, as shown in Figure 3(b), the cost coverage increases
so quickly that it reaches more than 90% on the workload
of 8000 files. The reason is that the WDPB of S3 has the
quadratic complexity model.
Bug Confirmation. We reported the detected bugs to

the project’s forum, and the responses of the developers of 7-
Zip are quite encouraging. They confirmed the bugs caused
by RefreshListCtrl in S1, S2, S3, and S5 (4 out of 5 bugs re-
ported), and plan to fix the bugs in the next version [5].
Although the bug in S1 was reported by others in the de-
velopers’ bug database (#3193577), our approach further
identifies the WDPBs as the root cause of the bug. Captur-
ing the bug caused by OnRefreshStatusBar in S4 demonstrates
the advantages of using predictive models in our approach.
Such bug is difficult for traditional performance testing to
detect without knowing the triggering workload. This newly
detected bug has been dormant since it was introduced in
version 4.25 beta (released on 2005-08-01), and still remains
in the latest version 9.22 (released on 2011-4-18). After we
reported the bug at the forum [6], the developers confirmed
the bug and plan to fix it in the next version.
For Notepad++, the performance problem of wrapping

words in Scenario S6 is confirmed as bug #2909745 in the
project’s forum. Moreover, our approach further identifies
that WrapLines causes performance bugs in Scenarios S7, S8,

Table 2: Results of model inference and refinement
ID # Ite. # W. E. I. E. E. M. I. M. E.
(S1) 4 6 35.95 0.62 752 657
(S2) 4 6 62.31 0.47 1341 1283
(S3) 4 6 29.68 0.85 1234 1223
(S4) 4 6 4.71 0.20 1299 1267
(S5) 3 5 5.94 0.18 1630 1282
(S6) 6 8 536.74 8.62 742 1441
(S7) 5 7 455.00 7.69 789 1329
(S8) 7 9 17.12 5.51 448 1505
(S9) 4 6 138.36 1.83 1287 205
(S10) 7 9 7.38 1.86 324 296

and S10 after a document is modified. We are waiting for
their responses for these not-yet-confirmed bugs. For the
performance bug of opening a file, the developers confirmed
that Notepad++ did not have good performance on large
files, and stated that a patch could be applied to improve
the performance [4]. We reported the new bug of finding a
word in S9, and are still waiting for the response.

7.3 RQ2: Model Inference and Refinement
To answer RQ2, we measure the improvement of model

accuracies after the iterations of model refinement termi-
nate, and the prediction accuracies of execution counts on
large workloads.

Model Refinement. To show the improvement of model
accuracies, we measure the average relative error of the in-
ferred models with the initial workloads, measure the aver-
age relative error of the inferred models after the iterations
of model refinement terminate, and compare the errors. Ta-
ble 2 shows the results of RQ2. Column “ID” shows the ID
of scenarios. Column “# Ite.” shows the number of itera-
tions used to refine the complexity models. Column “# W.”
shows the number of workloads used to infer the complex-
ity models when the iterations terminate. Column “E. I.”
shows the average relative errors of the inferred complexity
models on the initial workloads, and Column “E. E.” shows
the average relative errors of the inferred complexity mod-
els when the iterations terminate. Column “M. I.” shows
the number of the inferred complexity models on the initial
workloads, and Column “M. E.” shows the number of the
inferred complexity models when the iterations terminate.

On average, it takes about 5 iterations (using 7 workloads)
for ∆Infer to terminate, and improves the average relative
error to 2.78%. From the results, we can see that the ac-
curacies of the inferred models are significantly improved.
For example, the average relative error of S6 is improved
from 536.74% to 8.62%. The results of Columns “M. I.”
and “M. E.” indicate that certain locations that are incor-
rectly inferred as workload-dependent can be filtered out
after iterative refinements. Different initial workloads may
result in different initial accuracies. But with our workload-
augmentation mechanism, these differences are not obvious

Table 3: Results of cost prediction
ID 10 (%) 20 (%) 50 (%)
(S1) 3.18 4.45 6.16
(S2) 2.98 4.07 5.55
(S3) *1.40 *1.60 *1.86
(S4) 1.65 2.29 3.08
(S5) 1.58 2.19 2.95

(Ave(7-Zip)) *2.35 *3.25 *4.44
(S6) 18.51 26.38 47.24
(S7) 16.84 22.56 36.28
(S8) 16.80 24.45 35.23
(S9) 11.15 15.97 39.09
(S10) 10.79 15.50 24.63

(Ave(Notepad++)) 14.82 20.97 36.49

after a few iterations, indicating that our approach is in-
sensitive to the potential variance of intial workloads. In
summary, the results show that our algorithm requires a
reasonable number of iterations to achieve substantial im-
provement of model accuracy.
Cost Prediction. To show prediction accuracies on large

workloads, we select the workload values that are 10, 20, and
50 times the upper bound of the RVR, obtain the profiles
of these workloads, and compare the predicted execution
counts and the actual execution counts to compute average
relative errors. Table 3 shows the results of RQ2. Column
“ID”shows the ID of scenarios. Columns“10”, “20”, and“50”
show the average relative errors when the workloads are 10,
20, and 50 times the upper bound of the RVR. For example,
for S1, we use the workload values {12800, 25600, 64000}.
On average, when the workload is 50 times of the upper

bound of the RVR, the prediction error for the 7-Zip file
manager (marked with *) is just 4.44% (excluding S3), and
the prediction error for Notepad++ is acceptable (36.49%).
For S3 (marked with *), due to the quadratic workload-
dependent loop, our profiler reaches its profiling limitations
when the workload value exceeds 10,000. Thus, we use
workload values {4000, 6000, 8000} to estimate the predic-
tion errors. The reason why Notepad++ has a relatively
high prediction error is that the developers of Notepad++
optimize the message processing during idle time, causing
certain workload-dependent loops to exhibit a bit different
complexities under the same contexts. Such result shows
that ∆Infer is robust even under such complex situations.

7.4 RQ3: Context-Sensitive Analysis
Existing approaches [16, 19] that infer complexity models

using profiles of multiple workloads are context-insensitive.
To show effectiveness of context-sensitive analysis and an-
swer RQ3, we compare the number of complexity transitions
identified by using context-sensitive analysis and context-
insensitive analysis. We first apply ∆Infer to infer complex-
ity transitions using the inferred complexity models. We
then apply regression learnings on profiles collected to infer
complexity models without calling context, and use these
complexity models to infer another set of complexity transi-
tions. We compare these two sets of complexity transitions
to show the effectiveness of our context-sensitive analysis.
Table 4 shows the results of RQ3. Column“ID” shows the

ID of scenarios. Column“∆Infer” shows the number of com-
plexity transitions inferred by ∆Infer, and Column “# L.”
shows the number of the inferred complexity transitions that
are workload-dependent loops. Column “InSen.” shows the
number of complexity transitions inferred by the context-
insensitive analysis, referred to as ContextIns. Column “#

Table 4: Comparison to context-insensitive analysis
ID ∆Infer # L. InSen. # Miss.
(S1) 11 10 521 6
(S2) 21 19 579 12
(S3) 17 16 486 10
(S4) 21 19 640 12
(S5) 22 20 546 12
(S6) 10 10 509 3
(S7) 29 14 877 6
(S8) 10 10 526 5
(S9) 20 20 131 0
(S10) 12 11 861 3

Miss.” shows the number of complexity transitions inferred
by ∆Infer but not ContextIns.

The results show that ContextIns identifies much more
(32.8 times on average) complexity transitions than ∆Infer,
and more than 90% of them do not help identify workload-
dependent loops, producing many false positives. Such re-
sult is mainly due to the complex contexts posed by the
event-driven nature of GUI applications. Based on man-
ual inspection, 86.1% of the complexity transitions inferred
by ∆Infer are workload-dependent loops (including implicit
loops), and 13.9% of them are false positives. Most of the
false positives (15 in S7) are complexity transitions inside
an internal string-allocator function of basic string. The others
involve top-level message handlers, such as WindowProcedure.
These false positives can be reduced by excluding low-level
and top-level system libraries in the analysis. Moreover,
the results of Column “# Miss.” show that ContextIns
misses about 39.9% of the complexity transitions identified
by ∆Infer. Based on manual inspection, some of these miss-
ing complexity transitions are real WDPBs that cause per-
formance problems. Thus, ContextIns also produces false
negatives. We also find that ∆Infer does not miss any
WDPB detected by ContextIns. In summary, ∆Infer out-
performs ContextIns in terms of greatly reducing false pos-
itives and false negatives.

8. THREATS TO VALIDITY
The threats to external validity include the representa-

tiveness of the subject applications and the chosen scenarios
and focused workload parameters for our evaluations. The
current subjects include GUI applications of two kinds of
daily used productivity tools: file archivers and text edi-
tors. These two applications are popular open source ap-
plications from the SourceForge repository, and their bug
databases and forums are actively maintained. This threat
can be further reduced by more studies on more kinds of
GUI applications. The threat to internal validity includes
the human factor for determining whether an identified tran-
sition is a WDPB. To reduce this threat, we first searched
their bug databases to see whether there are reported perfor-
mance bugs for the WDPBs. We also posted the identified
WDPBs on the forums of the subject applications, and got
most of them confirmed by the developers.

9. DISCUSSION AND FUTURE WORK
Generalization to Other Types of Applications.

Our current approach focuses on detecting WDPBs for GUI
applications. However, our approach is applicable to any
type of application that requires operations in responsive
actions not to block subsequent operations, such as message-
queue systems, event-driven servers, and chained filters. Our

approach is also applicable to identify energy bugs [31] in
mobile applications by using profiles of energy costs. More-
over, our approach can be used to assist tasks of performance
analytics, such as predicting whether the execution time of
complexity transitions exceeds the response requirement on
a given workload or estimating a lower bound on the work-
load that causes the execution time of complexity transitions
to violate the response requirement. We plan to investigate
such applications in our future work.
Workload Parameters. Our current approach infers

models by varying workload values on one focused workload
parameter. To identify performance bottlenecks that require
combinations of parameters [25], our approach can be used
to infer multiple models by varying different parameters sep-
arately. Based on the order differences of the inferred mod-
els for different workload parameters, we can know that the
execution count increases more quickly on which workload
parameter; such information is sufficient for our approach
to identify complexity transitions. Multi-dimensional mod-
els for multiple workload parameters are often in complex
forms or even have no analytic form, making it difficult to
uncover such models directly. Existing research [36] requires
user-provided information for interdependencies of parame-
ters to infer the models. By adapting the divide-and-conquer
strategy to infer one model for one focused parameter, our
approach reduces computational complexity without requir-
ing information for the interdependencies of parameters, and
yet preserves the effectiveness.
Value-Dependent Performance Bottlenecks. Some

performance bottlenecks may depend on specific values of
the input, instead of input workloads. Existing approaches [14]
have explored the research of this direction, but have lim-
itations due to the lack of runtime information. Moreover,
there are other performance bottlenecks that may be trig-
gered by combinations of configuration values as investigated
by Hoffmann et al. [25]. These approaches can be leveraged
to infer configurations for the scenarios, and our approach
can be applied to automatically predict WDPBs afterwards.
Scalability of Scenario-Based Profiling. Our ap-

proach instruments an application under analysis and col-
lects profiles for each scenario to detect scenario-specific
WDPBs. Scenario-based instrumentation is widely adopted
for testing/debugging, and the state of the practice is ob-
served in many popular software products from leading soft-
ware companies, e.g., PerfTrack [8] based on the Event Trac-
ing for Windows (ETW) [3] platform from Microsoft. Based
on such technologies, scenario-based tracing has been used
as an automated and scalable solution for complex large-
scale software products, e.g., Windows. Moreover, our ap-
proach can be fully automated with automatic GUI test
scripts, reducing human efforts and improving scalability.

10. RELATED WORK
Model Inference using Multi-Profiles. Goldsmith

et al. [19] propose an approach that fits performance mea-
surements of clusters of basic blocks to workload sizes. Za-
paranuks et al. [38] propose an approach that infers an em-
pirical cost function of an application automatically, and
Coppa et al. [16] propose an approach that measures the
size of the input given to a generic code fragment. Un-
like their model inference based on sorted or random in-
puts, our approach iteratively refines the inferred models
based on the model accuracy from the previous iteration.

Moreover, our approach uses context-sensitive analysis to
address complex contexts in GUI applications. Westermann
et al. [36] propose an approach to infer the prediction mod-
els between interdependent, performance-relevant configu-
ration parameters and the performance metric of interest.
All these approaches infer a single complexity model for a
program, while our approach infers context-sensitive com-
plexity models for locations inside a program, and identifies
workload-dependent loops using complexity transitions.

Static Analysis. Chang et al. [14] propose an approach
that combines taint analysis with control dependency anal-
ysis to detect high-complexity control structures, such as
recursive calls and nested loops. Wang et al. [35] propose
an approach that statically searches for the intersections of
blocking and responsive invocations as the potential hang
bugs based on patterns around method invocations. Ap-
proaches of purely static analysis face challenges in identi-
fying implicit loops or resolving complex contexts in GUI
applications, and in handling many runtime features, such
as indirect method calls via function pointers.

Performance Analysis. Traditional performance analy-
sis centers around analyzing the performance measurements
obtained by profiling program executions, such as call-tree
and call graph profiles [11]. There also exist approaches
that assist searching [12] and summarizing [34] profiles to
find performance problems. These approaches rely on man-
ual efforts to explore traces or search to identify bottlenecks,
while our approach infers WDPBs from multiple profiles.

Foo et al. [17] and Jiang et al. [27] propose approaches
to learn signatures or baselines from previous runs, and
then detect performance problems by comparing current
runs against the derived performance signatures or baselines.
Grechanik et al. [21] propose an approach that automati-
cally clusters the input space into good and bad performance
test cases, and drill down to the most significant methods
to identify performance bottlenecks. Zhang et al. [39] pro-
pose a symbolic-execution-based approach to generate load
tests for exposing performance bottlenecks. Our previous
work [24] mines large-scale traces to identify performance
bugs. All these approaches require WDPBs to surface on the
analyzed executions, suffering from the insufficiency issue of
identifying WDPBs. Nistor et al. [30] propose an approach
to detect performance problems via identifying loops whose
computation has similar memory-access patterns across loop
iterations. Their approach relies on loop events for analysis,
and thus cannot identify implicit loops without modelling
UI libraries calls.

11. CONCLUSION
We have presented the ∆Infer approach that predicts WDPB

loops under large workloads via inferring iteration counts of
WDPB loops using complexity models for the workload size.
∆Infer incorporates the novel concept of context-sensitive
delta inference that consists of two parts: temporal infer-
ence for inferring the complexity models of different pro-
gram locations, and spatial inference for identifying WDPB
loops as WDPB candidates. We conducted evaluations on
∆Infer with two popular open source GUI applications, 7-
Zip and Notepad++. The results show that ∆Infer infers
high-quality complexity models with iterative refinements,
performs much better than the context-insensitive analysis,
and effectively identifies highly impactful WDPBs that cause
10 performance bugs.

Acknowledgment
Tao Xie’s work is supported in part by NSF grants CCF-
0845272, CCF-0915400, CNS-0958235, CNS-1160603.

12. REFERENCES
[1] 7-Zip. http://www.7-zip.org/.

[2] ∆Infer.
https://sites.google.com/site/asergrp/projects/deltainfer/.

[3] Event Tracing for Windows (ETW).
http://msdn.microsoft.com/en-
us/library/windows/desktop/bb968803(v=vs.85).aspx.

[4] https://sourceforge.net/projects/notepad-plus/
forums/forum/331753/topic/5101818.

[5] https://sourceforge.net/projects/sevenzip/forums/
forum/45797/topic/4941337.

[6] https://sourceforge.net/projects/sevenzip/forums/
forum/45797/topic/4941343/.

[7] Notepad++. http://notepad-plus-plus.org/.

[8] PerfTrack.
http://channel9.msdn.com/Blogs/Charles/Inside-
Windows-7-Reliability-Performance-and-PerfTrack.

[9] Preventing Hangs in Windows Applications.
http://msdn.microsoft.com/en-us/library/dd744765.

[10] SourceForge. http://sourceforge.net/.

[11] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context
sensitive profiling. In Proc. PLDI, pages 85–96, 1997.

[12] G. Ammons, J. deok Choi, M. Gupta, and N. Swamy.
Finding and removing performance bottlenecks in
large systems. In Proc. ECOOP, pages 170–194, 2004.

[13] T. Ball, O. Kupferman, and M. Sagiv. Leaping loops
in the presence of abstraction. In Proc. CAV, pages
491–503, 2007.

[14] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan,
and V. Shmatikov. Inputs of coma: Static detection of
denial-of-service vulnerabilities. In Proc. CSF, pages
186–199, 2009.

[15] S. Chatterjee and A. Hadi. Regression Analysis by
Example. Wiley series in probability and mathematical
statistics. Wiley-Interscience, 2006.

[16] E. Coppa, C. Demetrescu, and I. Finocchi.
Input-sensitive profiling. In Proc. PLDI, pages 89–98,
2012.

[17] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan,
Y. Zou, and P. Flora. Mining performance regression
testing repositories for automated performance
analysis. In Proc. QSIC, pages 32–41, 2010.

[18] Q. Fu, J.-G. Lou, Q.-W. Lin, R. Ding, D. Zhang,
Z. Ye, and T. Xie. Performance issue diagnosis for
online service systems. In Proc. SRDS, pages 273–278,
2012.

[19] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson.
Measuring empirical computational complexity. In
Proc. ESEC/FSE, pages 395–404, 2007.

[20] S. L. Graham, P. B. Kessler, and M. K. Mckusick.
Gprof: A call graph execution profiler. In Proc. PLDI,
pages 120–126, 1982.

[21] M. Grechanik, C. Fu, and Q. Xie. Automatically
finding performance problems with feedback-directed
learning software testing. In Proc. ICSE, pages
156–166, 2012.

[22] S. Gulwani, K. K. Mehra, and T. M. Chilimbi.
SPEED: precise and efficient static estimation of
program computational complexity. In Proc. POPL,
pages 127–139, 2009.

[23] R. J. Hall. CPPROFJ: Aspect-capable call path
profiling of multi-threaded Java applications. In Proc.
ASE, pages 107–116, 2002.

[24] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie.
Performance debugging in the large via mining
millions of stack traces. In Proc. ICSE, pages 145–155,
2012.

[25] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for
responsive power-aware computing. In Proc. ASPLOS,
pages 199–212, 2011.

[26] R. Jain. The art of computer systems performance
analysis: techniques for experimental design,
measurement, simulation, and modeling. Wiley
professional computing, 1991.

[27] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automated performance analysis of load tests. In
Proc. ICSM, pages 125–134, 2009.

[28] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance
bugs. In Proc. PLDI, pages 77–88, 2012.

[29] I. Molyneaux. The Art of Application Performance
Testing - Help for Programmers and Quality
Assurance. O’Reilly Media, 2009.

[30] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler:
detecting performance problems via similar
memory-access patterns. In Proc. ICSE, pages
562–571, 2013.

[31] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping
energy debugging on smartphones: a first look at
energy bugs in mobile devices. In Proc. HotNets, pages
5:1–5:6, 2011.

[32] H. Song, Y. Qi, X. Tian, and D. Xu. Navigating and
visualizing long lists with fisheye view and graphical
representation. In Proc. DMAMH, pages 123–128,
2007.

[33] X. Song, H. Chen, and B. Zang. Why software hangs
and what can be done with it. In Proc. DSN, pages
311–316, 2010.

[34] K. Srinivas and H. Srinivasan. Summarizing
application performance from a components
perspective. In Proc. ESEC/FSE, pages 136–145, 2005.

[35] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang,
and Z. Zhang. Hang analysis: fighting responsiveness
bugs. In Proc. EuroSys, pages 177–190, 2008.

[36] D. Westermann, J. Happe, R. Krebs, and
R. Farahbod. Automated inference of goal-oriented
performance prediction functions. In Proc. ASE, pages
190–199, 2012.

[37] G. H. Xu, D. Yan, and A. Rountev. Static detection of
loop-invariant data structures. In Proc. ECOOP,
pages 738–763, 2012.

[38] D. Zaparanuks and M. Hauswirth. Algorithmic
profiling. In Proc. PLDI, pages 67–76, 2012.

[39] P. Zhang, S. Elbaum, and M. B. Dwyer. Automatic
generation of load tests. In Proc. ASE, pages 43–52,
2011.

	Introduction
	Problem Formulation
	Examples
	Approach Overview
	Temporal Inference
	Workload Generation and Execution
	Least-Squares Regression
	Model Validation
	Model Inference and Refinement

	Spatial Inference
	Abstraction of Model
	Inference of Complexity Transitions
	Cost Prediction of Complexity Transitions

	Evaluations
	Subjects and Evaluation Setup
	RQ1: WDPB Identification
	RQ2: Model Inference and Refinement
	RQ3: Context-Sensitive Analysis

	Threats to Validity
	Discussion and Future Work
	Related Work
	Conclusion
	References

