
Integrated Environment
for Diagnosing Verification Errors

Maria Christakis1, K. Rustan M. Leino1,
Peter Müller2, and Valentin Wüstholz3

1 Microsoft Research, Redmond, USA
{mchri,leino}@microsoft.com

2 Department of Computer Science, ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

3 The University of Texas at Austin, USA
valentin@cs.utexas.edu

Abstract. A failed attempt to verify a program’s correctness can re-
sult in reports of genuine errors, spurious warnings, and timeouts. The
main challenge in debugging a verification failure is to determine whether
the complaint is genuine or spurious, and to obtain enough information
about the failed verification attempt to debug the error. To help a user
with this task, this paper presents an extension of the Dafny IDE that
seamlessly integrates the Dafny verifier, a dynamic symbolic execution
engine, a verification debugger, and a technique for diagnosing timeouts.
The paper also reports on experiments that measure the utility of the
combined use of these complementary tools.

1 Introduction
Software developers today get more assistance than ever before from analy-
ses running in their integrated development environment (IDE). These analyses
scrutinize the code in shallow or deep ways and then display information, issue
warnings, make suggestions, or rewrite the code. Examples include code format-
ting, intelligent code completion, semantic variable renaming, cyclomatic code
complexity analysis, unit test generation, bounds checking, race detection, worst-
case execution time analysis, termination checking, and functional-correctness
verification. As the level of sophistication of an analysis goes up, so does the
level of understanding required for a programmer to diagnose the output of the
analysis and determine how to take corrective action.

In this paper, we consider the problem of diagnosing the output of a program
verifier of the kind where the underlying reasoning engine, typically an SMT
solver, runs without user interaction. Examples of such verifiers are Spec# [3],
Frama-C [15], SPARK 2014 (for Ada) [20], AutoProof (for Eiffel) [40], and Dafny
[29]. In particular, we consider three kinds of output:
1) Timeouts: While SMT solvers are generally both useful and fast in prac-

tice, they occasionally time out. When they do, the information available



2 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

may not be the same as in cases where they output counterexamples. More-
over, a timeout can mask other error messages because it abruptly ends the
counterexample search.

2) Spurious warnings: The logical conditions that a program verifier needs
to resolve are in general undecidable, so it would be too much to expect that
every error message produced by a verifier indicates a real error. However,
in practice, most warnings that are not indicative of errors in the executable
code are not caused by undecidability but by the lack of strong enough
auxiliary specifications (such as loop invariants) in the program.

3) Genuine errors: Sometimes when the program verifier reports a real error,
the programmer’s response can be one of disbelief. Erroneously—perhaps
by habit—assuming the error is caused by an infelicity in the verifier, the
programmer spends time trying to coax the verifier into giving a different
output, only to miss the blatant error that the verifier detected. Such an error
can occur in either the executable code or in the program’s specifications.

The main challenge in debugging verification errors is to determine which of
these cases applies and to obtain enough information about the failed verification
attempt to debug the error. A single tool may not support the best kind of
diagnosing for each output.

In this paper, we contribute comprehensive tool support in a single verifica-
tion environment. The combination of our tools covers all steps of the typical
diagnosis procedures for verification.

We use as our setting the Dafny programming language, verifier, and IDE.
In addition to standard (sequential) imperative and functional constructs, the
language includes constructs for specifications (aka contracts), auxiliary speci-
fications, and proof authoring. The verifier uses these specifications to perform
modular verification. For example, it reasons about a method call solely in terms
of the callee method’s specification and about a loop solely in terms of the loop
invariant.

Dafny has always had a program verifier. In this paper, we extend the Dafny
IDE with a novel dynamic test generator (Delfy), the Boogie Verification Debug-
ger (BVD) [28], and a new mode for diagnosing timeouts4. Using step-by-step
recipes, we show how our seamless integration of these tools helps diagnose ver-
ification problems. Our paper also gives an experimental evaluation of our tool
integration and its effect on diagnosing verification errors. Both Dafny and the
IDE extension are available at http://dafny.codeplex.com (Delfy is currently
not included).

In Sect. 2, we illustrate the use of the combination of our tools on small
representative examples. We then describe in more detail the facilities that our
integrated diagnosis environment offers: hover text in Sect. 3, Delfy in Sect. 4,
BVD integration in Sect. 5, and timeout diagnosis in Sect. 6. We give our ex-

4 A preliminary integration of the verifier and BVD into the Dafny IDE has previously
been described in an informal workshop paper [31]. The full integration of the tools
is new here, as are the test generator and the timeout-diagnosis tool.
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perimental evaluation in Sect. 7. The final sections of the paper discuss related
work and conclude.

2 Systematic Diagnosis of Verification Failures
In this section, we present systematic approaches to diagnosing the two forms of
verification failures: (1) verification errors, which may be spurious warnings and
genuine errors, as well as (2) timeouts. For each approach, we describe the tool
support we provide and illustrate the approach on a small example program.
Details are described in the subsequent sections.

2.1 Diagnosis of Verification Errors

The main challenge in debugging a verification error is to determine if the com-
plaint is spurious or genuine, and to obtain enough information about the failed
verification attempt to debug the error. For genuine errors, this includes deter-
mining whether to fix the program or the specification. For spurious errors, it
includes determining if more auxiliary specifications are required or if the error
is caused by an incompleteness of the verifier (which happens in particular when
the SMT solver cannot discharge a verification condition even though it holds).

Using the example in Fig. 1, we illustrate how we support this debugging
process. The condition stated by the assert-statement in this program does not
hold along all executions of the program, because Max erroneously computes the
minimum of its arguments. But even if Max had been implemented correctly, the
verifier would report a (spurious) error because the postcondition of Max is too
weak to (modularly) prove the assertion.

Diagnosing verification errors typically proceeds in the following three steps.
Step 1: Fixing simple errors. For certain simple verification errors (such

as omitting a precondition of the method being verified), the error message of

method Main(a: int) {

var aSq := a * a;

var r := Max(a, aSq);

assert r = aSq; // verification fails

}

method Max(a: int, b: int) returns (max: int)
ensures max = a ∨ max = b

{

if a ≤ b { max := a; }

else { max := b; }

}

Fig. 1: A Dafny example that asserts that an integer is never bigger than
its square. The assertion does not hold because method Max returns the
minimum of its arguments; it fails to verify because the postcondition of
Max is too weak to prove it. Note that integers in Dafny are unbounded and
that calls are verified modularly, based solely on the callee’s specification.
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the verifier provides enough information to diagnose and debug the error. To
provide easy, demand-driven access to error messages, the Dafny IDE presents
them in tool tags when hovering over the error location, which is indicated
by red squiggly lines. The hover text also shows inferred specifications (such
as termination metrics) and parts of the counterexample provided by the SMT
solver (as we shall see later in Fig. 5). In our example, the error message is simply
“assertion violation”, which does not point us to the source of the problem.

Step 2: Determining whether errors are spurious. Debugging genuine
verification errors is fundamentally different from debugging spurious errors. For
the former, one needs to determine which aspects of the program or specification
are incorrect and fix them. For the latter, one needs to determine how to convince
the verifier that the program is actually correct.

A common approach to determine if an error is spurious is to create an exe-
cutable test from the counterexample given by the SMT solver [4, 16]. However,
this approach has two major limitations. First, the counterexample reflects the
(modular) verification semantics of a method, where calls are encoded via the
callee’s specification, loops are encoded via loop invariants, etc. By the soundness
of verification, any error in the execution semantics is also an error in the ver-
ification semantics, but not necessarily vice versa. Therefore, it is possible that
a test case derived from the SMT solver’s counterexample does not reveal an
error even though the program fails for other inputs. A programmer might then
conclude incorrectly that the verification error is spurious. Second, SMT solvers
sometimes produce invalid counterexamples, that is, valuations that do not ac-
tually falsify the verification condition. This may be due to an incompleteness
in the SMT solver (e.g., when reasoning about non-linear arithmetic) [33]. Ex-
ecuting such counterexamples does not lead to meaningful conclusions. In fact,
it may not even be possible to generate a test case from such a counterexample.

To avoid these problems, we do not execute counterexamples and instead ap-
ply dynamic symbolic execution (DSE) [8, 24] (also called concolic testing [35])
to generate test cases for the method that contains the verification error. We
have equipped the Dafny IDE with Delfy, a DSE tool that instruments the exe-
cutable code with runtime checks for assertions and then uses dynamic symbolic
execution to systematically explore all paths through a Dafny method up to
a given bound. DSE mitigates the limitations of counterexample execution as
follows. First, it is based on the (non-modular) execution semantics, not on the
verification semantics and, thus, attempts to find inputs for which the execution
of a method leads to an assertion violation. Second, when some constraints in
a proof obligation cause the SMT solver to produce an invalid counterexample
during verification, the same problem may occur during DSE. However, DSE has
the option of replacing symbolic inputs by concrete values, thereby simplifying
the formula, which increases the chance of obtaining a valid counterexample.

Running DSE can have three different outcomes: (1) It produces a test case
that leads to an assertion violation. In this case, we can conclude that the error
is definitely not spurious. One can now use a conventional debugger to explore
the execution of the test case and determine how to fix the error. (2) It is
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able to verify the method. This is possible when the method can be tested
without exceeding the bounds of DSE (for instance, the method contains no
input-dependent loops) and when the SMT solver is able to produce concrete
inputs for each constraint [11]. In this case, the error is definitely spurious. It
is now possible to communicate this verification result to the verifier. (3) If
DSE neither verifies nor falsifies the method, our best guess is that the error is
spurious, and we proceed to step 3 below.

Running Delfy on method Main from our example reproduces the error by
generating a test case where a ≤ a*a (necessarily, since this is a mathematical
fact, and thus the then-branch of the conditional in method Max is executed)
and a 6= a*a (such that the assertion is violated), for instance, a = 2. Stepping
through this test case in the debugger immediately reveals that method Max
is incorrect. After fixing the error, verification still fails. Running Delfy again
verifies method Main. We could now communicate this result to the verifier or—
as we describe next—we could try to determine what additional facts are needed
by the verifier to prove the method.

Step 3: Finding the cause of spurious errors. When Delfy cannot re-
produce a verification error, it is necessary to explore the verification semantics,
which is reflected in the counterexample provided by the SMT solver. To do so
in the Dafny IDE, a user can select a verification error by clicking on the red
button next to the assertion (see Fig. 5). The IDE now highlights the program
points along the trace leading to the error using blue buttons. By clicking on one
of them, a user can bring up BVD and inspect the state at this program point
as provided by the counterexample.

In our example, once method Max is fixed, the verification debugger shows
for the program point after the call to Max that a is 2, aSq is 4, and r is 2.
Since running Delfy did not reveal any error, we hypothesize that Max correctly
computes the maximum of its arguments, and conclude that the counterexample
values indicate that the verifier has insufficient information about the result of
Max. We can fix this by strengthening its postcondition, and verification succeeds.

2.2 Diagnosis of Timeouts

The use of undecidable theories, especially quantifiers, in verification conditions
can lead to a very large or even infinite search space for the SMT solver, for
instance, when the verification conditions contain matching loops [19]. Therefore,
Dafny and other automatic verifiers bound the time spent by the SMT solver,
and report a verification failure when a timeout occurs [22]. However, if this
happens, it is often unclear which fragments of a large verification condition
cause the SMT solver to wander off. Moreover, because of the heuristics used
in the SMT solver to instantiate quantifiers, timeouts are often caused by the
interaction of different, often seemingly unrelated, terms in the program or its
specification.

Verification of the example in Fig. 2 fails with a timeout. While trying to
prove the last assertion in method Test, the SMT solver instantiates the universal
quantifier in the postcondition of FacUpTo (and in the axiomatization of the
sequence data type) indefinitely. For the verification to succeed, one needs to
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method FacUpTo(n: int) returns (f: seq〈int〉)
requires 1 ≤ n

ensures |f| = n ∧ f[0] = 1

ensures ∀ i • 1 ≤ i < |f| =⇒ f[i] = f[i - 1] * i

�{. . .}

method Test(n: int)
requires 1 ≤ n

{

var f4 := FacUpTo(4); assert f4[3] = 6;

var f15 := FacUpTo(15); assert f15[14] 6= 0;

var fn := FacUpTo(n);

assert fn[n - 1] 6= 0; // verification times out

}

Fig. 2: A Dafny example that computes the factorial of the first n natural
numbers and asserts that they are positive. The proof requires generaliza-
tion and induction, which Dafny does not perform automatically. Instead,
the SMT solver keeps instantiating the universal quantifier in the post-
condition of the call FacUpTo(n), and verification times out even though, in
principle, many other assertions could be proved.

instruct Dafny to prove by induction that all elements of sequence fn are non-
zero, for instance, by adding the following assertion after the final call in Fig. 2:

assert ∀ i {: induction} • 0 ≤ i < |fn| =⇒ fn[i] 6= 0;

Diagnosing such timeouts typically proceeds in the following two steps.
Step 1: Determining whether the program satisfies its specifica-

tion. Like for verification errors, it is useful to run the test case generator Delfy
on the method whose verification times out. Note that the common approach
of generating test cases from counterexamples is not applicable here since SMT
solvers usually generate an incomplete counterexample or none at all in case of a
timeout. In contrast, since Delfy relies only on the program and its specification,
it can be used to diagnose timeouts. If Delfy generates a failing test, the pro-
gram or its specification should be fixed before diagnosing the timeout. If Delfy
manages to verify the method, Dafny can be notified such that it is no longer
essential to debug the timeout. Delfy might succeed on examples that time out
in the verifier because it uses a different axiomatization of data types such as
sets and sequences. Moreover, Delfy’s SMT queries are constraints that describe
a single path through a method, whereas Dafny’s verification conditions reflect
all paths. Therefore, Delfy’s queries might provide fewer terms that are used by
the SMT solver to instantiate quantifiers.

In the example from Fig. 2, Delfy neither generates a failing test nor manages
to verify method Test; this is due to the input-dependent loop in the body (not
shown) of method FacUpTo, which is called. Thus, we proceed to the second step.
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Step 2: Narrowing down the cause of the timeout. We have devel-
oped a dedicated diagnostic mode for Dafny, which splits up the verification
condition into smaller fragments and invokes the SMT solver multiple times to
narrow down which assertions may cause the timeout. For each invocation, this
algorithm tries to prove some of the fragments, and ignores the rest. If the SMT
solver fails, an error is reported. If it succeeds, the algorithm recurs and attempts
to verify the fragments previously ignored. If no such fragments exist, verifica-
tion succeeds. Finally, if the SMT solver still times out, the algorithm recurs on
fewer fragments or, if there is just a single fragment, “blames” that fragment for
the timeout.

In our example, the timeout diagnosis determines that out of the nine as-
sertions in method Test (three for precondition checks, three for bounds checks,
and three for assert-statements), eight verify and only the last one times out.
This clearly indicates that the user should provide more hints to help the verifier
in proving this assertion.

The above recipes allow a programmer to systematically diagnose and de-
bug all three kinds of verification failures. Our recipes are supported by a novel
integration of the following components into the Dafny IDE: (1) an advanced
hover text mechanism, (2) the Delfy test case generator, (3) the Boogie Verifica-
tion Debugger, and (4) a technique for diagnosing timeouts. We describe these
components in detail in the following sections.

3 Hover Text
Verifiers typically accumulate a lot of information, including error messages,
inferred specifications (such as termination metrics), or verification counterex-
amples. However, most often, the user is interested only in a small fraction of this
information, and specifically, in whatever helps to diagnose verification errors.

The hover text mechanism that we have integrated in the Dafny IDE ad-
dresses this need without overwhelming the user with too much information.
Our mechanism uses the parser, type checker, and verifier to collect warnings,
inferred specifications, and other information, which it attaches to the relevant
parts of the Dafny abstract syntax tree. As a result, the IDE displays only the
most critical information at all times (that is, squiggly lines for verification er-
rors), and the user may access all other information on demand, by hovering
over the relevant parts of the program text. For instance, a warning emitted by
the verifier is shown when hovering over the corresponding squiggly line, and the
values of the variables in a verification counterexample are shown when hovering
over the variable usages (see Fig. 5).

4 Delfy, the Test Case Generator
In this section, we present Delfy, a dynamic test generation tool for Dafny. In
addition to handling advanced constructs of the language, Delfy is designed to
exchange information with Dafny about the verification status of all assertions
via annotations in the code [12]. Consequently, Dafny does not need to check
assertions that have already been proven correct by Delfy and vice versa.
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4.1 Dynamic Symbolic Execution for Dafny

Delfy implements dynamic symbolic execution, in which the concrete and sym-
bolic executions of a method under test happen simultaneously. Given a Dafny
method under test, Delfy compiles the code into .NET bytecode and runs the
compiled method. The compiled code includes call-backs that trigger the sym-
bolic execution. All constraints are solved with Z3 [18].

Delfy introduces runtime checks for Dafny specifications, including loop in-
variants, termination metrics, pre- and postconditions, assumptions, assertions,
and frame specifications, which serve as test oracles.

Delfy has support for features of Dafny that are typically not found in main-
stream programming languages, for instance, non-deterministic assignments, non-
deterministic if-statements, and non-deterministic while-statements. For each
non-deterministic value, the symbolic execution in Delfy introduces a fresh sym-
bolic variable, as if they were inputs to the method under test. Consequently, the
symbolic execution collects constraints on such variables and generates inputs
for them, which guide execution toward all those unexplored paths.

Dafny also supports uninterpreted functions and assign-such-that-statements,
which assign a value to a variable such that a condition holds. Delfy handles these
by introducing a fresh symbolic variable for the return value of an uninterpreted
function or the assigned variable of an assign-such-that-statement. This sym-
bolic variable is constrained by a condition of the form Assume(c), saying that
the variable must satisfy the function specifications or the such-that-condition
in each test case.

When the programmer provides a loop invariant for an input-dependent loop,
Delfy can either impose a bound on the number of explored loop iterations
or treat the invariant as a summary for the loop [10]. In the latter case, the
symbolic execution of the loop body is turned off, and instead, the provided
loop invariant serves as a symbolic description of the loop body. (Note that we
abuse the term “summary” to express that reasoning about many loop iterations
happens in one shot, although we do not refer to a logic formula of loop pre- and
postconditions, as is typically the case in compositional symbolic execution [23,
1].) Summarization of an input-dependent loop might lead to spurious warnings
when the loop invariant is too weak, in which case Delfy resembles the verifier.
However, when the loop invariant is precise, this technique can be very useful in
diagnosing verification errors and timeouts as it helps the exploration in covering
the code after the loop.

A consequence of this approach for summarizing input-dependent loops is
that the body of such a loop might not be thoroughly exercised since it is only
executed concretely, and not symbolically; therefore, paths and bugs might be
missed. To address this, Delfy supports a mode for thoroughly checking if an
invariant is maintained by all iterations of an input-dependent loop [10].

4.2 Delfy in the Dafny IDE

We now present how we have integrated Delfy in the Dafny IDE. Fig. 3 shows
the error emitted by the verifier (denoted by the red button) for the assertion



Integrated Environment for Diagnosing Verification Errors 9

Fig. 3: A smart tag allowing the user to invoke Delfy on a method under
test, and a verification error emitted by the verifier (denoted by the red
button in the assertion).

in method Main from Fig. 1. Delfy is run through a smart tag, shown in Fig. 3.
Fig. 4 shows how the test cases generated by Delfy are displayed for method
Main from Fig. 1.

The main characteristics of this IDE integration are as follows.
Color coding of assertions. To give users a sense of where they should

focus their manual diagnosis, the IDE uses colors for assertions. A green color
shows that the assertion has been proven, either by Dafny or Delfy. A red color
denotes that an assertion definitely does not hold, that is, Dafny has emitted
a verification error, and Delfy has generated a test case that fails due to this
assertion. An orange color indicates that the assertion requires the attention of
the user because Dafny has emitted a verification error, and Delfy has neither
verified nor falsified it. One could further refine this color scheme by reflecting
how thoroughly Delfy covered an orange assertion [10].

Selective test generation. Delfy allows the user to select an assertion that
has not been verified by Dafny, and explore only those paths that reach this
assertion. If a programmer selects a red button in a method under test and runs
Delfy, then only those test cases that exercise the corresponding unverified as-
sertion are generated, regardless of whether there are other unverified assertions
in the method under test. We determine which test cases to generate using a
technique based on static symbolic execution [10].

Debugging failing tests. Delfy also makes it possible to debug the gener-
ated test cases. A smart tag allows users to run a failing test case in the .NET
debugger, such that they can step through the execution and observe the values
of variables.

Fig. 4: Delfy displays the generated tests. The user can choose to inspect
all generated tests, or categorize them based on their outcome.
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Fig. 5: Inspecting values from the counterexample for the error in method
Main of Fig. 1. The hover text shows the value of variable r and the BVD
window on the right shows the values of all variables.

5 Integration of the Verification Debugger
Counterexamples, which are provided by the verifier and the underlying solver,
often include valuable information for diagnosing verification errors. Since these
counterexamples reflect the verification semantics (for instance, by reasoning
about method calls modularly), this holds in particular for intricate verification
errors that cannot be reproduced by Delfy. (Recall that Delfy is based on the
non-modular execution semantics.) BVD makes the verification counterexamples
accessible through the Dafny IDE, which allows users to inspect the values of
variables (including heap locations), much like in a conventional debugger. How-
ever, unlike in most runtime debuggers, a user can inspect the counterexample
at any relevant point during the execution.

BVD is invoked by clicking on the red button that is associated with each
verification error. Now, several blue buttons appear along the trace that leads to
the error (see Fig. 5). Clicking on any of them shows the counterexample state
at that program point. For instance, a user may diagnose a verification error by
starting at the failing assertion and gradually moving backward in the program
to understand how the failing state was reached.

6 Timeout Diagnosis
As discussed in Sect. 2.2, users occasionally encounter timeouts when verifying
non-trivial programs. Timeouts often indicate that the verifier is unable to derive
a certain fact on its own, and requires hints from the user. To detect timeouts
quickly and to ensure a responsive user interaction, the Dafny IDE defaults to
a time limit of ten seconds per method or function.

If this time is not enough, the user can increase the limit or use our technique
for diagnosing timeouts. In the latter case, we instruct the verifier to produce
slightly different verification conditions, which can be decomposed more easily
and on demand. This makes it possible to split up the verification conditions
and, thereby, identify those assertions that are responsible for the timeout.

Conceptually, our alternative verification conditions insert an assumption
Fk =⇒ Ak before every assertion Ak, where a Fk is an undefined boolean func-
tion. Initially nothing is known about these functions. That is, the solver needs
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procedure d i agno s e (VC, U, D, T) {
i f ( |U | = 0) {

i f (0 < |T | ) {
report the timed-out assertions in T;
r e t u r n TimeOut ;

}
r e t u r n V e r i f i e d ;

}
choose S, such that S ⊆ U ∧ |S| = max(|U| / D, 1);
va r R := check_some (VC, S , TL ) ;
i f (R = E r r o r ) {

r e t u r n R;
} e l s e i f (R = V e r i f i e d ) {

r e t u r n d i agno s e (VC, U \ S , 1 , T) ;
} e l s e {

i f (2 ≤ ( |U| / D) ) {
r e t u r n d i agno s e (VC, U, 2 ∗ D, T) ;

} e l s e {
r e t u r n d i agno s e (VC, U \ S , 1 , T ∪ S ) ;

}
}

}

Fig. 6: Algorithm for diagnosing timeouts.

to consider the case that all Fk functions yield false and, thus, this instrumen-
tation does not affect verifiability of the verification condition. However, once
a timeout occurs, we can define some of the Fk functions to yield true, thus,
temporarily disabling assertions and simplifying the verification task.

Fig. 6 shows our algorithm for decomposing the verification task once there
has been a timeout. Procedure diagnose takes four arguments: (1) the current
verification condition VC, (2) the set of unverified assertions U (initially contains
all assertions in the verification condition), (3) the integer D (for denominator)
to determine what fraction of these assertions to check next (initially set to 2),
and (4) the set of timed-out assertions T (initially empty).

If set U is empty, we are done. We return Verified if set T of timed-out
assertions is empty, and TimeOut otherwise. If set U is non-empty, we choose a
subset S of the unverified assertions and check only these assertions for a fixed
time limit TL (set by default to 10% of the time limit for the entire method
or function). If we find a failing assertion, we terminate immediately. If the
check successfully verifies the assertions in S, we recursively diagnose the timeout
among the remaining assertions. Otherwise, we try to check a smaller set of
assertions by invoking procedure diagnose with 2 * D. If doubling D is not possible
without exceeding the cardinality of U, we have found assertions to blame for the
timeout, collect them in T, and proceed to also check the remaining assertions.
If the algorithm reports any blamed assertions, it is reported that each of them
timed out individually, given time limit TL. This shows exactly which assertions
the user should focus on in order to prevent the timeout.

The procedure check_some checks the verification condition after temporar-
ily disabling some assertions. To do so efficiently, it makes use of scopes in the
solver that push and later pop constraints about the Fk functions for assertions
that are not in set S.
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Challenge Error ID Spurious? Extension
Hover text Hover text Delfy BVD
(w/o CEX) (only CEX)

SumMax 1 no 3 3 – 3

2 no 3 3 3 3

3 yes 3 3 3 3

4 yes 7 3 3 3

MaxArray 5 no 3 3 – 3

6 no 3 3 3 3

7 yes 3 3 3 3

8 yes 3 3 3 3

9 yes 3 7 3 3

10 yes 3 3 3 3

11 yes 7 7 3 3

BinarySearch 12 no 3 3 – 3

13 no 3 3 3 3

14 yes 3 3 3 3

15 no 3 3 3 3

16 no 3 3 – 3

17 no 3 3 3 3

18 no 3 7 3 3

19 no 3 3 – 3

20 yes 7 7 3 3

Tab. 1: Errors diagnosed while solving three verification challenges.

7 Experimental Evaluation
In this section, we evaluate our extensions of the Dafny IDE on diagnosing both
verification errors and timeouts.

7.1 Verification Errors

To demonstrate that even simple programming tasks exhibit different forms of
verification errors, we have evaluated our extensions on Dafny solutions we devel-
oped to three challenges posed in verification competitions and benchmarks. We
used the Dafny IDE to diagnose each verification error we encountered during
the three verification sessions, and report the results in Tab. 1.

Challenge SumMax is taken from verification competition VSComp-2010 [27].
It consists in computing the sum and max of the elements in an array and prov-
ing that sum ≤ N ∗max, where N is the length of the array. Challenge MaxAr-
ray is taken from verification competition COST-2011 [6]. Given a non-empty
integer array, MaxArray requires that we verify that the index returned by
a given method points to an element maximal in the array. Challenge Bina-
rySearch is taken from a set of verification benchmarks [41], and consists in
verifying an implementation of binary search over an array. All versions of our so-
lutions to these challenges are numbered by a verification-error identifier, which
is shown in the second column of the table, and can be provided upon request.
The third column indicates that roughly half of the verification errors are spu-
rious, which is not uncommon.

To diagnose the errors, we used hover text information about error messages
and inferred specifications (fourth column), hover text information about veri-
fication counterexamples (fifth column), Delfy (sixth), and BVD (seventh). As
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described earlier, each of these extensions may provide complementary insights
to the user about the cause of verification errors. In the table, we indicate helpful
insights (3) as well as information that did not help in the diagnosis of a veri-
fication error (7). However, note that such insights are not necessarily sufficient
for diagnosing the error—multiple steps may be needed and the use of more
than one of our extensions; also, different users may find some feedback more
insightful than others. For instance, the counterexample information (through
the hover text or the verification debugger) is perhaps more suitable for experi-
enced users. Consequently, in particular for spurious errors, there is usually no
definite answer about which extension pinpointed the source of an error.

Note that we have created a separate column for the counterexample infor-
mation that is available in the hover text to highlight the difference with BVD.
As shown in the table, the hover text is sufficient to diagnose most verification er-
rors. BVD only becomes essential when inspecting values within data structures,
such as arrays, which are not shown in the hover text. Fixing spurious errors
without counterexample information would require significant mental effort and
time from users since they would often need to resort to trial-and-error to identify
which information the verifier is missing. In principle, Delfy could provide help
with such cases. However, since all of our programs contained input-dependent
loops, Delfy was not able to show that an error is definitely spurious.

In a few cases (indicated by a ‘–’ in the table), Delfy was not applicable.
This was the case when the cause of a verification error was a specification that
Dafny guessed heuristically, such as a termination metric. Even though, at the
moment, Delfy does not support runtime checks for such guessed specifications,
it automatically and reliably detected all other genuine errors. Without Delfy,
this would have required manual effort from the user, for instance, to inspect
counterexamples. In other words, no extension of the Dafny IDE is absolutely
indispensable, but each extension can significantly reduce the user effort for
diagnosing errors.

We also found situations where the hover text about error messages and in-
ferred specifications (fourth column of the table) provided limited support. In
particular, there is no indication of how much progress a user makes in fixing
a verification error. For instance, they might add one of two loop invariants
that are necessary for proving a failing assertion, but the error message remains
unchanged. They are, therefore, not confident that the change is a step in the
right direction by only reading the hover text. In contrast, our other extensions
provide better support in such cases; for instance, in this example, the coun-
terexample state after the loop would now be different due to the additional
invariant.

7.2 Timeouts

We have evaluated our technique for diagnosing timeouts by running it on 39 pro-
grams taken from real verification sessions, which were recorded with the Dafny
IDE [32] and can be provided upon request. We compare two configurations
that only differ by parameter TL from Fig. 6: (1) Low (10% of the time limit per
method/function), and (2) High (20% of the time limit per method/function).
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Time limit
Low High

TimeOut (in %) 57.89 50.00
Error (in %) 17.11 20.69
Verified (in %) 25.00 29.31
Average number of solver queries 65.67 51.00
Average time (relative to time limit per method/function) 6.24 9.25
Average number of assertions to blame 2.67 (0.15%) 1.84 (0.11%)

Tab. 2: Comparison between two configurations for diagnosing timeouts.

Tab. 2 demonstrates the different trade-offs. While configuration Low is sig-
nificantly faster by using a larger number of short solver queries, it results in
timeouts more often and is able to narrow down the set of timed-out assertions
less effectively. For verification conditions that still result in a timeout, configu-
ration Low reports on average 0.15% (at most 10 assertions) of all assertions in
that method/function as responsible. For configuration High, these numbers are
significantly lower (0.11% on average, at most 4 assertions).

Independently, both configurations are able to prevent a large number of
timeouts by decomposing the verification tasks (as shown by the first three rows
in Tab. 2). For instance, with configuration High, the algorithm from Fig. 6 re-
turns the result Verified or Error for 50% of the timed-out verification conditions.
Therefore, for these verification conditions, none of the assertions required more
time than the limit. This suggests that the user might be able to prevent the
timeout by increasing the time limit for the corresponding method or function.

8 Related Work
Verification IDEs. Several verification tools are integrated into development
environments and show verification errors either continuously or at the touch of
a button, e.g., [3, 15, 13, 20, 26, 14]. Our work goes beyond the integration of a
single tool, instead providing in one package a collection of tools with comple-
mentary strengths.

The Isabelle environment for mathematical formulas integrates both interac-
tive proof assistance and automatic counterexample search [42, 5].

The Eiffel Verification Environment analyzes programs in two independent
ways [39]. Essentially, one way strives to fully verify the program, whereas the
other cuts corners in order to provide quick turnaround with understandable
error messages. This two-step verification resembles the combination of two of
our tools, the Dafny verifier and Delfy.

Dynamic symbolic execution. Dynamic symbolic execution has been im-
plemented in many popular tools over the last decade, e.g., SAGE [25], EXE [9],
jCUTE [34], Pex [38], KLEE [7], BitBlaze [37], and Apollo [2]. In contrast to
these tools, Delfy targets a verification language for proving functional correct-
ness of programs and, therefore, supports specification constructs and operations
that are not found in mainstream programming languages.

Delfy implements dynamic, rather than static, symbolic execution for two
important reasons. First, DSE can alleviate the limitations of an underlying
SMT solver by replacing complex symbolic conditions in SMT queries with their
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concrete values [24]. Second, the dynamic aspect has applications beyond the
scope of this paper, in particular for learning specifications [21, 17, 36].

Exploring counterexamples. BVD [28] lets one inspect counterexamples
to verification conditions generated by Boogie, VCC [13], and Dafny. Besides
integrating BVD into the Dafny IDE, we provide easy access to excerpts from
the counterexample through hover text. OpenJML [14] also provides such hover
text, but not the full BVD experience.

An alternative to a dedicated counterexample debugger is to generate an
executable program that encodes the verification semantics and the counterex-
ample, for instance, by extracting a value for a non-deterministic choice from the
counterexample [33]. This approach allows one to use a conventional debugger
to explore the counterexamples.

Several tools generate executable tests from counterexamples [4, 16]. In con-
trast, Delfy lets one explore the program independently of the verification se-
mantics that is reflected in the counterexample.

Timeouts. Unlike Boogie’s existing verification-condition splitting [30], our
technique for diagnosing timeouts is not concerned with parallelizing verification
tasks. Instead of iteratively creating smaller and smaller program fragments that
are fed to the verifier, our technique generates a single verification condition once
and uses the SMT solver to decompose it in case of a timeout. Besides this, our
technique is able to identify all assertions that time out individually after a given
time limit.

9 Concluding Remarks
In this paper, we have enhanced the IDE of the verification-aware language
Dafny with a comprehensive set of problem-diagnosing tools, including a new
timeout-diagnosis tool and the novel Delfy dynamic test generator. The seamless
integration of these tools, alongside the on-demand information that the IDE
now provides via hover text, lets a user obtain useful feedback when trying to
understand and remedy verification failures. While in this work we have made
the sophisticated diagnostic information easily accessible to users, we hope in
future work to also see automatic suggestions of remedies.

Acknowledgments. We are grateful to Patrick Emmisberger and Patrick Spet-
tel for their contributions to Delfy.
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