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Abstract 
 
As the volume of scientific literature grows faster it becomes more difficult for researchers to identify 
promising papers that are likely to become influential in their field. We study the problem of predicting 
future citation counts of papers given information available at the time of publication (five years forward in 
our pilot study). We apply machine learning techniques on a dataset of millions of academic papers from 
several research domains to identify predictive features including venue reputation, authors and 
institutions, citation networks and content measures.  We identify how these features are differentially 
predictive in various domains and identify possible reasons where citation behaviors might lead to these 
differences. 
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Introduction 

 The task of citation count prediction has gained a lot of attention in recent years as the usage of 
these counts for assessment of scholarly impact became more pronounced. For example the usage of 
citation counts in Google Scholar’s ranking algorithm affects dramatically the exposure papers receive 
and as a consequence strengthens the Matthew Effect (Beel & Gipp, 2009). Additionally, as the volume of 
published works increases it becomes more difficult for researchers to keep up with the state of the art in 
their field by identifying key works as soon as they are published. 
 In this paper we tackle the task of citation count prediction using existing and new features. We 
apply the technique to multiple domains, identifying differences both in the ability to predict citation counts 
as well as the nature of features that contribute to the prediction. For example we find the rich get richer 
phenomenon of famous authors attracting more citations is more apparent in Biology and Medicine 
compared with other domains.   Additionally, while the popularity of a paper’s references is predictive of 
the paper’s success in most domains it this is clearly not the case in Engineering and Physics. Finally, 
unlike most previous studies that evaluated their models using cross validation on a cohort of papers 
published in the same year our evaluation is done in a more realistic set up where the model is used to 
predict citations 5 years out (using data from 2000 and 2005 to predict out to 2005 and 2010). When 
cross validation is used to explain variation it is possible the model captures dynamics that are only true 
for the cohort of papers used. 

 Related Work 

 Early work on citation count prediction focused on a limited set of features and applied simple 
models such as linear regression and decision trees on relatively small datasets. For example, (Callaham, 
Wears, & Weber, 2002) studied 204 publications and using decision trees they were able to explain 0.14 
in the variation of citation counts 3.5 years after publication, with the journal’s impact factor being the 
most predictive feature. (Kulkarni, Busse, & Shams, 2007) used linear regression to study 328 articles 
published in 2000 and reported R2 of 0.2 in predicting citation counts 5 years ahead. (Castillo, Donato, & 
Gionis, 2007) used linear regression and decision trees to predict citation counts 4.5 years ahead. They 
found that future citation counts were highly correlated with the citation counts accumulated within the first 
year after publication and that by adding features describing author’s reputation they were able to 
improve their predictions. Two recent works (Fu & Aliferis, 2008; Ibáñez, Larrañaga, & Bielza, 2009) 
considered the usage of content to improve prediction, i.e. by identifying keywords in the text that are 
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associated with high citations. (Didegah & Thelwall, 2012) studied several features and found venue 
prestige to be the strongest feature, followed by the number of citations attracted by the references of a 
paper. (Yan, Huang, Tang, Zhang, & Li, 2012) studied features covering venue prestige, content novelty 
and diversity and authors’ influence and activity. They also accounted for temporal dynamics by taking a 
recent version of each feature calculated on a limited time window. (Shi, Leskovec, & McFarland, 2010) 
analyzed properties of the citation networks projected by the references of a paper and found some 
patterns are more common in the projected networks of highly cited papers. 

  Data 

 In this work we experiment with a uniquely large and diverse dataset, extracted from Microsoft 
Academic Search. The dataset consists of 38 million papers and 19 million authors, and covers 15 
academic domains. Due to the size of the corpus, the metadata associated with each publication 
(including author, venue, references, and citations) was automatically extracted. Because of variation in 
coverage of different domains, we focus most of our analysis on papers from 2000 to 2005 from seven 
key domains. This yields a corpus of 12.7 million papers and 3 million authors, published at over 17,000 
venues (see Table 1 for a breakdown). 
 
Table 1 
Domain Statistics 

 
Domain #Venues  #Papers 

2000  
#Papers 
2005  

Authors 
per paper 
2000  

Authors 
per paper 
2005  

CS  4,851 59,116 110,506 2.43 2.75 
Biology  2,082 59,395 93,792 3.58 4.04 
Chemistry 811 26,496 50,381 3.56 3.99 
Medicine 5,524 125,113 214,854 3.52 3.67 
Engineering 2,589 43,440 77,664 3.20 3.53 
Mathematics 581 11,057 17,317 1.75 1.90 
Physics 688 25,393 42,955 4.41 5.05 
 

Methods 

Features 
 
 We consider five groups of features, which we refer to as Authors, Institutions, Venue, 
References Network and Content Similarity. The first three—Authors, Institutions and Venue—describe 
the reputation of the paper’s venue, of its authors and of its author’s institutions. We start by calculating 
the following features for each venue, author and institution in the dataset: log of the sum of citation 
counts of papers published by the entity, log mean citations over papers published by the entity and log 
max citations, e.g. the citation count of the most cited work by the entity. We also calculate the h-index 
and g-index of these entities. The h-index is defined as the largest h such that at least h papers by the 
entity received at least h citations (Hirsch, 2005). The g-index is defined is the largest g such that the top 
g papers by the entity received together at least g2 citations (Egghe, 2006). For each paper we aggregate 
the features of the entities (authors, institutions and venue) with which it is associated. For authors’ 
features we take the mean over the paper’s authors and so we do for institutions’ features (we give equal 
weight to all institutions even if more authors are affiliated with one institution over another). 
When assigning the features of entities to papers we calculate two versions for each feature; one is 
calculated over all the years strictly before the year in which the paper was published; and one is 
calculated based on data extracted in the one year preceding the paper’s publication. Note that our 
granularity is of complete years so we will use data available by 1999 (inclusive) if a paper was published 
2000 regardless of the month of publication. 
 A second group of features, based on the References Network (i.e., citations), attempt to 
measure how interdisciplinary the topic of the paper is as well as how interesting it is to the scientific 
community. We calculate the h-index, g -index, log mean citations and the log of the median of their 
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citations. We also measure the six network features described in (Shi et al., 2010) based on the network 
induced by projecting a paper’s citations into the network, extending the network to include papers citing 
and cited by the paper’s citations. The six metrics include graph density, clustering coefficient, 
connectivity, etc. to include the outgoing and incoming links of the references (considering only papers 
published before the paper in hand was published). As before, we consider two temporal versions for 
each feature—one calculated over all the years prior to publication and one using citations originated at 
papers published one year before the paper in hand. 
 The last group— Content Similarity —attempts so measure how hot is the topic of a paper using 
text analysis. We start by calculating two language models (LM) to extract popular terms. The first LM—
denoted LMpublished—is computed using the titles and abstracts of all the papers published in the same 
domain and year as the paper. The second LM—denoted LMreferenced —is computed using the text 
snippets surrounding references made by papers published in the same domain and year as the paper. 
The weight of each term is the log of the number of its occurrences. We consider unigrams and bigrams 
after lowercasing the raw texts removing non-alphanumeric characters. We also ignore terms appearing 
in less than ten documents and stop words. Finally we represent each paper as a bag-of-words using its 
title and abstract and calculate its similarity to the two LMs.  
 
Prediction Task and Model 
 
 For training our prediction model, we compute the training features based on papers published in 
2000 and predict their citation counts as of 2005. For evaluating this learned model, we use papers 
published in 2005 and examine the extent to which our predictions of citations in 2010 correspond to 
actual citations in 2010. We use a support vector regression machine (SVR) model because they are well 
suited for handling large number of features. We use scikit-learn’s implementation of SVR (Pedregosa et 
al., 2011) with the default parameters—RBF kernel of 3rd degree and penalty parameter of C=1. 

Results 

Table 2 
Accuracy of Prediction (R2) for Different Feature Groups 

 
Features Biology  Chemistry Medicine CS  Mathematics Engineering Physics 
Authors 0.19 0.14 0.18 0.14 0.02 <0.01 0.02
Institutions 0.11 0.13 0.12 0.09 0.04 <0.01 <0.01
Venue <0.01 0.05 0.10 0.14 0.09 0.16 0.07
References 0.29 0.27 0.24 0.19 0.18 0.07 0.04
Content 0.03 0.05 0.05 <0.01 <0.01 <0.01 <0.01
All Features 0.35 0.33 0.39 0.30 0.22 0.23 0.17
 
 Table 2 presents the R2 of our predictions with actual citations (five years from the date of 
publication) broken down by groups of features and each domain. All the values were found to be 
statistically significant (p < 0.01) due to the large size of the dataset. The first part of the part of the table 
shows the performance of each features group independently (the best group for each domain is 
highlighted). The bottom line lists the performance of the model combining all the features. 
 The results show several interesting general patterns. First we note a great variability in 
performance across domains – while our models can predict citation count well in some domains (e.g., 
0.39 in Medicine and 0.35 in Biology) they have more limited success in others (e.g., 0.17 in Physics). 
Note that previous studies focused on predicting citation counts for papers from these relatively easy 
domains. Second, we note the set of predictive features differ across domains. Reference features are 
the most valuable at predicting citation counts in most domains (except Physics and Engineering), while 
the Content features rarely provide useful predictive information. This result suggests that the interest of a 
research community may be better captured using graph mining techniques rather than text mining 
techniques, although other text analysis methods that those consider here may achieve better results. 
 The performance of individual features can provide insights to dynamics and social phenomena 
within each domain. We found the recent h-index of the references to be one of the most predictive 
features in CS, Biology, Chemistry, Medicine and Math. One possible interpretation is that this feature is a 
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proxy for the interest of the scientific community in the area the paper studies, therefore papers that score 
high in this metric are likely to be of interest to the community. The recent citation count of venues was 
found to be a prominent feature in CS, Medicine, Engineering and Physics, a result that goes in line with 
the findings of several studies that the prestige of a venue contributes to the paper’s success. Another 
prominent feature in the Biology, Chemistry and Medicine domains was the network constraint of a paper 
calculated on its references-projected graph. However the relation of this feature with citation counts is 
not linear but as described in (Shi et al., 2010)—high impact and low impact papers have low network 
constraint while medium impact papers have high network constraint. As network constraint measures 
how interleaved the interaction of a node is in a single group of interconnected neighbors, a possible 
interpretation of this finding is that papers citing works from different contexts are likely to be ignored yet 
in rare cases such papers bridge between domains or subdomains becoming highly influential. 

Conclusions  

 We found a great variability in the performance across domains – while in CS, Biology, Chemistry 
and Medicine our models perform well in Engineering, Math and Physics we observed a very limited 
success, which could explain the lack of works on this topic applied on these fields. More important, the 
differences in the relative importance of different features provide insight to the differences in dynamics 
across domains. For example the rich-get-richer phenomenon where the works of famous authors attract 
more attention is clearly more pronounced in Biology and Medicine compared with Engineering, Math or 
Physics. The references features we employ capture even more subtle patterns such as the one reflected 
in the network constraint feature of mainstream papers achieving moderate success compared with a few 
papers that bridge across different communities. 
 As each domain encompasses many sub-communities with different dynamics we plan to extend 
this work by looking into these subdomains. We also plan to explore new features that will utilize signals 
not captured by the features used in this study. We suspect the Content features failed to capture any 
meaningful signal because of the coarse representation of content that is of interest to the community. It 
is possible we could improve this by identifying sub-communities and their relative size. Finally we plan to 
investigate whether similar techniques could be used to predict the scholarly impact of higher level 
entities (e.g., researchers and universities). 
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