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ABSTRACT 
Software evolves with continuous source-code changes. These 
code changes usually need to be understood by software engineers 
when performing their daily development and maintenance tasks. 
However, despite its high importance, such change-understanding 
practice has not been systematically studied. Such lack of empiri-
cal knowledge hinders attempts to evaluate this fundamental prac-
tice and improve the corresponding tool support.  

To address this issue, in this paper, we present a large-scale quanti-
tative and qualitative study at Microsoft. The study investigates the 
role of understanding code changes during software-development 
process, explores engineers’ information needs for understanding 
changes and their requirements for the corresponding tool support. 
The study results reinforce our beliefs that understanding code 
changes is an indispensable task performed by engineers in soft-
ware-development process. A number of insufficiencies in the 
current practice also emerge from the study results. For example, it 
is difficult to acquire important information needs such as a 
change’s completeness, consistency, and especially the risk im-
posed by it on other software components. In addition, for under-
standing a composite change, it is valuable to decompose it into 
sub-changes that are aligned with individual development issues; 
however, currently such decomposition lacks tool support.   
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1. INTRODUCTION 

Software undergoes continuous changes, through which new 
features are added, bugs are fixed, and performance is improved. 
These code changes usually need to be understood by software 
engineers when performing their daily development and mainte-
nance tasks. Previous research has suggested that understanding 
code changes is the basis of various advanced development tasks, 
such as troubleshooting unexpected behavior [27] and monitoring 
maintenance of code clones [40]. 

To facilitate tasks of code change understanding, various tools 
and systems have been developed (for simplicity, we refer to “code 
change understanding” as “change understanding” in the rest of 
this paper). For example, the ubiquitous and simple diff utility 
enables engineers to easily inspect code changes. A series of work 
then emerged to extend the simple diff utility by tracking line 
movement [6], distilling fine-grained change entities [13], and 
inferring systematic structural differences [27]. Modern Integrated 
Development Environments (IDEs) and Software Configuration 
Management systems (SCMs) further empower engineers – the 
former allow code exploration and manipulation with a simple 
mouse-click while the latter automatically track and manage code 
changes. 

(Developer’s name masked)    2011-12-06 12:47:47 PST Comment 13

Comment  on  attachment  579395  [details]   [diff]   [review]
the  return  of  the  zombie  killer

Review  of  attachment   579395  [details]   [diff]   [review]:
-----------------------------------------------------------------------------------------
@@  +6193, 4  @@
>
>              if   (hudRef  &&  hud)    {
>                  if   (hudRef.consolePanel)    {
>    +               hudRef.consolePanel.hidePopup() ;

Why  this  change  here?  This  is  the  only  one  that  doesn’t  seem  to  make  sense  for  me.  
The  web  console  won’t  close,  it  will  only  hide  itself…

 
(a) 

(Developer’s name masked)    2010-06-20 21:56:14 PDT Comment 14

Comment  on  attachment  450177  [details]   [diff]   [review]
Part  A,  revision  1  - the  important  bits

>+    struct  CIDEntry
>+    {
>+       const  nsCID*  cid;
>+       bool  service;

What  is  this  used  for,  I  can’t  spot  it  in use  anywhere  and  every  component  and  service  
seems  to  have  it  set  to false.  

(b) 

Figure 1. Mozilla bug #702707 (a) and #568691 (b). Patch reviewers 
had difficulties in understanding the associated code changes. See 
https://bugzilla.mozilla.org/ for details. 
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Although equipped with these advanced tools, engineers some-
times still get stuck when understanding code changes. Figure 1 
shows two motivating examples from developers’ comments on 
two Mozilla bug-fixing changes. Neither developers (as change 
reviewers) fully understood the respective bug-fixing change, and 
they had to ask the patch submitters for explanation on the bug-
fixing changes. In fact, from the comment lists of Mozilla bug 
reports, we discovered a number of concerns from developers 
when they reviewed a proposed bug-fixing change. These concerns 
include the change’s implementation detail1, whether it covers all 
the necessary files2, and the impact and risk of the change3. The 
inability to acquire such information may hinder the work of both 
the change reviewers and the change committers, and slow down 
the entire development process.   

The first step to further assist engineers in understanding code 
changes is to gain good knowledge of engineers’ current practice. 
However, no systematic study has ever been conducted to this end, 
and little empirical knowledge has ever been provided. Without 
such study or empirical knowledge, understanding and improving 
the current change-understanding practice remains difficult and 
untargeted. Moreover, any attempt to improve the corresponding 
tool support might be hindered by this lack of empirical knowledge 
[42].  

To address these issues, we systematically studied software en-
gineers at Microsoft on their change-understanding practice. Our 
study includes a large-scale online survey and a series of follow-up 
email interviews – both are designed to address the following re-
search questions:  

RQ1: What is the role of change understanding during software 
development? Specifically, we intend to investigate under which 
development scenario(s) change understanding is required and how 
often it is required. 

RQ2: What are software engineers’ information needs for under-
standing code changes? In addition, what kind of information is 
difficult to acquire with the existing tool support? 

RQ3: How to improve the effectiveness and efficiency of the prac-
tice in understanding code changes? 

The quantitative data gathered from 180 survey participants re-
veals the indispensable role of change-understanding practice. 
Understanding code changes is frequently required – typically 
several times each day – during major development phases such as 
implementation and verification. To accomplish a change-
understanding task, engineers seek various types of information 
such as the change’s quality (e.g., correctness, completeness, and 
consistency), its risk (e.g., “does this change break any code else-
where?”), and most importantly the rationale of this change.  

We discovered that engineers face non-trivial challenges when 
determining the risk of a change. Their current approaches to as-
sess a change’s risk mainly include testing and code review. How-
ever, the testing approach is considered time-consuming (in rerun-
ning all or even selected existing test cases), and it heavily depends 
on the capability of the existing test cases to cover the change. The 
code-review approach is considered human-intensive and error-
prone. In addition, code reviewers do not fully benefit from the 
code-exploration features provided by common IDEs (e.g., “find 
all references” in Visual Studio) when the code reviewers explore 

                                                                 
1 Mozilla bug #422026, comment 20 
2 Mozilla bug #417545, comment 139 
3 Mozilla bug #365992, comment 14 

the context of the changed code and estimate its risk. The study 
participants thus call for tools that tackle these two insufficiencies.    

We identified an interesting type of check-in practice that 
makes later change understanding significantly difficult. Basically, 
engineers sometimes mix multiple bug-fixing changes or changes 
with other purposes (e.g., new-feature implementation, refactoring) 
in a single check-in (we refer to this kind of change as a composite 
change). Understanding a composite change requires non-trivial 
efforts. Participants call for a tool that can automatically decom-
pose a composite change into separate sub-changes, each of which 
addresses one single development issue (e.g., fixing one bug).  

We further found that the rationale of a change is regarded as 
the most important information for change understanding. Fortu-
nately, it is one of the easiest to acquire if an informative change 
description (also known as check-in message or commit log) is 
provided. 

In summary, this paper makes the following main contributions: 

 A large-scale exploratory study on industrial practice in under-
standing code changes. To the best of our knowledge, our study 
is the first in empirically studying the change-understanding 
practice. 

 An extensive exploration on engineers’ information needs for 
understanding code changes. 

 A valuable guideline for future research and tool design that 
aims at supporting change-understanding tasks. 

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 introduces our study methodology. 
Sections 4, 5, and 6 present the study results on the three research 
questions, respectively, followed by discussion in Section 7. Sec-
tion 8 presents threats to validity, and Section 9 concludes. 

2. RELATED WORK 

Various approaches have been proposed to facilitate the 
change-understanding practice. ChangeDistiller [13] uses Abstract 
Syntax Tree (AST) differencing to extract fine-grained code 
changes. LSDiff [27] infers systematic structural code changes and 
presents changes as logical rules and exceptions. Buse and Weimer 
[4] used symbolic execution to automatically summarize and doc-
ument behavioral differences. Holmes and Notkin [21] leveraged 
static and dynamic dependency graphs to identify inconsistent and 
subtle behavioral changes. Our work complements these previous 
approaches by empirically studying the change-understanding 
practice in industry. 

A number of previous empirical studies have explored develop-
ers’ information needs and work habits. Through interviews, Fritz 
and Murphy [14] identified 78 questions that developers ask in 
their daily development tasks. These information needs are classi-
fied into a number of categories such as people specific, code-
change specific, and work-item progress. LaToza et al. [32] con-
ducted two surveys and several interviews to interpret developers’ 
work habits via their typical tools, activities, practices, and satis-
faction. Ko et al. [31] performed a two-month field study involving 
17 groups of developers to observe their information-seeking activ-
ities. Although closely related to ours, these studies presented a 
general overview on the entire software-development process in-
stead of addressing one particular development task in depth. Other 
related empirical studies investigated developers’ practices from 
various perspectives. For example, Buse and Zimmermann [5] 
discussed engineers’ data and analysis needs for decision making. 
Schröter et al. [48] investigated developers’ communication behav-
ior on the submission of a changeset. Developers’ practices of 



managing change impact [50] and using object-oriented concepts 
[16] were also empirically evaluated through field studies and 
surveys. Our study differs from these previous studies in that we 
empirically studied in-depth a specific development practice – 
understanding code changes. 

Another line of related work focuses on program comprehen-
sion. Cornelissen et al. [9] identified 176 research articles pub-
lished in the past decade for addressing program comprehension 
through dynamic analysis. LaToza and Myers [33] combined a 
field study and user survey to gain the knowledge of how develop-
ers understand large and complex code bases. They found that 
reachability questions are common and often time-consuming to be 
answered. In the study conducted by Ko et al. [30], developers 
were given unfamiliar programs and asked to perform debugging 
and enhancement tasks. By observing their IDE usage, Ko et al. 
proposed a program-comprehension model as a process of search-
ing, relating, and collecting relevant information. The change-
understanding practice studied in our work shares certain charac-
teristics with program comprehension. However, these previous 
studies provide no or little insight on how code changes affect 
developers’ understanding of the source code. 

Tool design and support for software-evolution tasks have been 
evaluated. Sillito et al. [49] analyzed a wide range of industry and 
research tools that support for answering questions asked during 
code-change tasks. They concluded that better support is needed 
for maintaining context and piecing information together. Ko et al. 
[30] observed that navigation tools caused significant overhead 
during software-maintenance tasks. Instead of simply evaluating 
the current tool support, our study explored the potential feature 
enhancement expected by engineers for their change-understanding 
tasks. 

3. METHODOLOGY 

Our exploratory study on change understanding consists of a 
large-scale online survey and a series of follow-up email inter-
views. In this section, we introduce the design of our exploratory 
study in terms of the three research questions presented in Section 
1. We also report the subject-selection process and the distribution 
of study participants. 

3.1 Online Survey 
Our online survey consists of 12 questions that can be divided 

into three parts. The first part of the survey includes simple demo-
graphic questions about participants. We investigate the role of 
change-understanding practice (RQ1) in the second part of the 

survey. We generalize the development process and its phases in a 
waterfall fashion [46], and propose seven scenarios within the 
development phases that frequently involve code manipulation 
(Figure 2). Participants were asked to select their most-often en-
countered scenarios that require understanding code changes. Ad-
ditionally, participants were asked to report their frequency of 
understanding code changes in this second part of the survey. 

The third part of the survey explores participants’ information 
needs for understanding code changes (RQ2). Instead of directly 
asking participants about their information needs, which might be 
vague and difficult to respond, we presented them a list of potential 
information needs explicitly in the survey question. To prepare 
these potential information needs and ensure their relevance to the 
change-understanding practice, we performed a preliminary litera-
ture survey on the state-of-the-art research related to code-change 
analysis and management. In this literature survey, we browsed 
over 180 articles published in 10 major software-engineering ven-
ues within the past decade (Table 1). From these research articles, 
we extracted 15 information needs for understanding code changes 
(Table 2). Participants were asked to rate the importance of each 
information need and estimate the difficulty of acquiring such 
information in their current change-understanding practice. Partic-
ipants could also write down their additional information needs in 
a free-text form. 

Before distributing our survey, we conducted pilot interviews 
with three experienced engineers at Microsoft. We ran the survey 
with them and made notes of their comments. According to their 
feedback, we refined the survey questions and adjusted the word-
ing to make sure that the questions are relevant and clear4. 

                                                                 
4  The survey questions are available at http://research.microsoft.com/en-

us/projects/softwarechange/. 

Table 1. Venues for our literature survey 

Type Acronym Description Surveyed
Articles

Journal TSE IEEE Transactions on Software Engineering 25

TOSEM ACM Transactions on Software Engineering and Methodology 6

Conference ICSE International Conference on Software Engineering 53

ESEC/FSE European Software Engineering Conference / Symposium on the Foundations of Software Engineering 19

OOPSLA Conference on Object-Oriented Programming Systems, Languages, and Applications 6

ISSTA International Symposium on Software Testing and Analysis 9

ASE International Conference on Automated Software Engineering 27

ECOOP European Conference on Object-Oriented Programming 5

FASE International Conference on Fundamental Approaches to Software Engineering 7

ICSM International Conference on Software Maintenance 26
 

Requirements

Design/Planning

Implementation/Integration

Verification/Stabilization

• Refactoring

• New feature development
• Bug fixing
• Resolving merge conflict

• Reviewing other’s changes
• Reviewing my own changes
• Writing/updating test cases  

Figure 2. Seven development scenarios and their correspond-
ing development phases used in our survey. 



3.2 Participants 
The population that we selected for the online survey included 

Software Design Engineers (SDEs), Software Design Engineers in 
Test (SDETs), and Program Managers (PMs). At Microsoft, SDEs, 
SDETs, and PMs are three core roles who closely collaborate 
throughout the entire software development. According to the fea-
ture specification written by PMs, SDEs implement new features 
and fix bugs; SDETs write test cases and test the software. These 
three roles could offer insightful opinions towards the change-
understanding practice since they have frequent exposure to source 
code and changes.  

The survey was conducted in early December 2011, and its in-
vitation was sent to 1,279 subjects randomly selected from the 
mailing list of Microsoft. Within two weeks, we received 180 re-
sponses – 99 from SDEs, 56 from SDETs, and 25 from PMs. Note 
that we also received 172 out-of-office auto-replies. If we excluded 
these subjects, our survey-response rate is about 16%, comparable 
to the rate of other similar previous studies [2, 32]. On average, the 
respondents have 9.1 (±4.9) years of experience at Microsoft. Of 
all the respondents, 135 were individual contributors (i.e., engi-
neers that are responsible for only tasks completed by themselves), 
9 were architects, 28 were lead, and 8 were managers. This popula-
tion works on various types of products including operating sys-
tems (27%), standalone desktop applications (37%), web applica-
tions (25%), mobile applications (11%), software/web services 
(42%), and others (6%). 

3.3 Follow-up Interviews 
After analyzing the online-survey responses, we performed fol-

low-up email interviews in order for participants to further elabo-
rate on two main findings. One finding is that participants consid-
ered it difficult to satisfy some important information needs for 
understanding code changes. We included one such information 
need, namely, a change’s risk of breaking other code, in follow-up 
interviews. We hope that the participants could explain the insuffi-
ciencies in the current practice and suggest potential improvements 
for the corresponding tool support. The other finding is that partic-
ipants added several other information needs for understanding 
code changes as the free-text-form answer. We included one such 
newly emerged information need –“can this change be broken into 
smaller discreet changes?” – in the interviews and asked for fur-
ther elaboration. Section 6 presents the collected feedback and 
discusses potential improvement for the change-understanding 
practice (RQ3).     

In addition, we investigated some unexpected survey findings 
in the follow-up interviews. For example, while participants gener-
ally considered knowing the rationale of a change as the top priori-
ty in change-understanding tasks, they claimed that the rationale 

information is actually the easiest to acquire in current practice. 
Section 7 discusses the interview feedback on two such findings.  

4. ROLE OF CHANGE UNDERSTANDING 
In this section, we describe common development scenarios 

that require understanding code changes. We also report how fre-
quently participants are involved in each scenario. These two find-
ings are used to characterize the role of change-understanding 
practice in software development process (RQ1). 

4.1 Scenarios 
We characterize the software-development process as a four-

phase waterfall-style model, including requirements, de-
sign/planning, implementation/integration, and verifica-
tion/stabilization as shown in Figure 2. While the first phase fo-
cuses on analyzing user requirements, the subsequent three phases 
generally involve code manipulation and thus may require engi-
neers to understand code changes. Based on common development 
practice, we proposed seven potential development scenarios that 
require understanding code changes and asked participants to 
choose the one(s) that they most often encounter. 

Figure 3 shows the results. “Reviewing other’s code changes (to 
give comments or approval for check-in)” received 121 votes 
(67.2%) and ranked the first. “Reviewing my own code changes (to 
ensure its quality before check-in)” received 73 votes (40.6%) and 
ranked the fourth. In other words, the code-review process requires 
engineers to understand code changes. Thus, a better understanding 
of changes might smooth the code-review process and help re-
viewers spot bugs more effectively.  

Another frequent scenario is bug fixing (55.6%), during which 
engineers are often required to understand why a previous change 
introduces a bug and how it can be fixed. Surprisingly, about half 
of the participants (49.4%) need to understand code changes in 
their task of new-feature implementation. According to the partici-
pants’ comments from the subsequent open-ended question, we 
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0% 15% 30% 45% 60% 75%

Reviewing others' changes
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Reviewing my own changes

Writing/updating test cases

Refactoring

Resolving merge conflict

 

Figure 3. Participant distribution across different development 
scenarios that require understanding code changes. (The value 

beside each bar is the absolute number of responses.) 
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Figure 4. Frequency of understanding code changes 



found that one possible reason is for learning purposes. The fol-
lowing excerpts from two participants’ comments indicate that 
engineers want to learn from previous changes and apply the ac-
quired knowledge for their future development needs. 

“…understand how a feature/product/component works” 

“…understand others’ code changes for my sample application 
development needs” 

We found that among the 56 SDET participants, 41 of them 
(73.2%) selected “writing/updating test cases.” This result shows 
that, for testers, writing/updating test cases is their primary scenar-
io that requires understanding code changes. In addition, more than 
15% of participants indicated that they needed to understand code 
changes in the remaining two scenarios – refactoring and resolving 
merge conflict.  

4.2 Frequency 

As shown in Figure 4(a), more than 36% participants need to 
understand code changes several times each day. In addition, a 
high percentage (43.8%) of participants is involved in this practice 
once a day or several times each week. In general, the majority of 
participants need to understand code changes on a daily basis.  

A drill-down with respect to participants’ work role further ex-
plains the extreme cases on both ends of the frequency distribution. 
As shown in Figure 4(b), developers need to understand code 
changes quite frequently; some of them even perform such practice 
several times each hour. PMs, on the other hand, need to under-
stand code changes much less frequently – this observation may 
result from their work responsibilities described in Section 3.2. 
Note that testers’ frequency of understanding code changes is simi-
lar to that of developers. While one might expect that testers’ du-
ties mainly involve writing and updating test cases, we have shown 
that even these tasks require understanding code changes frequent-
ly. 

 

5. INFORMATION NEEDS 

As described in Section 3.1, we extracted 15 potential infor-
mation needs from the state-of-the-art research. Table 2 lists these 
information needs (in the form of questions), their abbreviations, 
and part of their literature source. In this section, we report partici-
pants’ rating of these information needs in terms of their im-
portance for understanding code changes and the difficulty of ac-
quiring the corresponding information in the current practice 
(RQ2). We also summarize additional information needs extracted 
from participants’ free-text answers in Section 5.3. 

5.1 Rating 
Participants were first asked to rate the importance of each in-

formation need on a 4-point scale (3-very important; 2-important; 
1-somewhat important; 0-not important). Figure 5(a) shows the 
information needs ordered by their average importance score. 
I-1~I-4 together with I-9 are considered very important (score > 2) 
for understanding code changes. These information needs are 
about the rationale behind a change (I-1: “what is the rationale 
behind this change?”), assessing the change quality (I-2~I-4: com-
pleteness, correctness, and design issue of the change) and its risk 
(I-9: “does this change break any code elsewhere?”). Information 
concerning a change’s historical metrics (I-14~I-15: change-
proneness and defect-proneness of the changed location) are con-
sidered less important for understanding the change. 

We further explored whether these information needs are ful-
filled in the current practice by asking participants to rate the diffi-
culty of acquiring the corresponding information on a 4-point scale 
(3-difficult; 2-somewhat difficult; 1-relatively easy; 0-
straightforward). Figure 5(b) shows the results. Whether a change 
is consistent or not (I-10: “are there any other places that need 
similar changes”) is considered the most hard-to-acquire infor-
mation. The need to assess a change’s consistency mainly origi-
nates from the existence of homologous code across a software 
system. Homologous code refers to code fragments that are similar 
in textual content (e.g., code clones), share common dependence 
conditions [52], and play similar roles or perform similar interac-
tions with other objects [41]. Previous studies [15, 23, 24] have 
shown that inconsistent modification to these similar code frag-
ments could cause unexpected software behavior and introduce 

Table 2. Potential information needs for understanding code changes. The third column briefly describes where these information 
needs are derived from. 

Information Needs Abbreviation Source
Reasoning and Assessing the Change

I-1: What is the rationale behind this code change?

I-2: Is this change complete? Did it miss any place that should also be changed at the same time?

I-3: Is this change correct? Does it work as expected?

I-4: Does this change introduce poor design, or break the current design? How?

I-5: Does this change introduce code clones? How?

I-6: How does this change alter the program’s dynamic behavior?

Rationale

Completeness

Correctness

Design

Clones

Behavior

The necessity of check-in message [4, 27]

Co-change prediction and change propagation [36, 57, 58]

Bug-introducing change and bad-fix [17, 29, 56]

Modularity violation and code decay [12, 54]

Code clones might be harmful [24, 34]

Behavioral and latent change [8, 21]
Exploring the Context and Impact of the Change

I-7: Who references the changed classes/methods/fields?

I-8: How does the caller method adapt to the change of its callees?

I-9: Does this change break any code elsewhere? How?

I-10: Are there any other places that need similar changes?

I-11: Which test cases should be run to verify this change?

I-12: Is any additional test case needed to cover this change?

I-13: Which part of the change may cause the test case(s) to fail?

References

Caller

Risk

Consistency

Tests

New tests

Failing tests

Change impact analysis [3, 44]

API change adaptation [10, 11, 55]

Risk and impact analysis [20, 37, 48]

Consistent editing [38, 40, 41]

Change impact and regression test [44, 53]

Test augmentation [43, 47]

Failure localization [44, 45, 51]
Evaluating the Change History

I-14: Is this changed location a hotspot for past changes? How many times has this location been changed?

I-15: Is this changed location a hotspot for past bug-fixes? How many times has this location been fixed?

Change-proneness

Defect-proneness

Frequently modified code might be defect-prone [18]

Frequently fixed code might be defect-prone [26, 28]  

Understanding code changes is an indispensable practice in 
software development, especially for developers and testers. It 
is frequently required in major development phases, in particu-
lar during the code-review process. 



faults. Although engineers are aware of the importance of a 
change’s consistency (the importance score for I-10 is 1.94 as 
shown in Figure 5(a)), they have a difficult time acquiring such 
information. 

The second most hard-to-acquire information is I-9 (“does this 
change break any code elsewhere?”), followed by I-6 (“how does 
this change alter the program’s dynamic behavior?”) and I-2 (“is 
this change complete? Did it miss any place that should also be 
changed at the same time?”). Answering I-6 typically requires 
advanced techniques of program analysis such as semantic [1, 22] 
or behavioral differencing [21] in addition to simple textual differ-
encing. Answering I-2 may require change reviewers to understand 
the logical coupling (determined by program analysis) and the 
evolutionary coupling of the change entities (e.g., entities that are 
often changed together or subsequently [7, 58]) – both types of 
information are not directly available in the current practice. 

5.2 Importance vs. Difficulty 
Figure 6 shows the information-need distribution in terms of 

their importance and difficulty scores. We mainly care about the 
information needs located on the top-right corner, since they are 
considered important but the corresponding information is difficult 
to acquire. I-9 (“does this change break any code elsewhere?”) 
appears to be the most needed information that is hard to acquire. 
It is followed by I-2 that concerns a change’s completeness. Other 
concerned information includes I-4 (design), I-10 (consistency), 
and I-3 (correctness). While all of this information deserves atten-
tion, we explicitly investigated the current practice in answering I-
9 in the follow-up email interviews since I-9 is the only infor-
mation whose importance and difficulty scores both exceed 2. The 
interview result is presented in Section 6.1.  

On the other hand, information about historical change metrics 
(I-14 and I-15) is considered less important and easier to acquire. 

We discuss possible explanations in Section 7. Note that I-1 (“what 
is the rationale behind this code change?”), the most important 
information need, turns out to be the most straightforward question 
for engineers to answer. This finding is contrary to our intuition as 
well as those suggested by the literature [14, 32, 35, 49]. Based on 
the follow-up interviews, we found that the difficulty of answering 
I-1 heavily relies on the availability and quality of the change de-
scription. We discuss this finding in Section 7. 

5.3 Other Information Needs 
The information needs investigated so far are proposed based 

on our literature survey on the state-of-the-art research (as dis-
cussed in Section 3.1). Although we expect this literature survey to 
be comprehensive, it is still possible that engineers’ certain infor-
mation needs for understanding code change are not covered in this 
survey. We mitigated this issue by providing an open-ended ques-
tion right after the rating questions and allowing participants to 
describe their additional information needs in a free-text form. 

We received 33 answers to this open-ended question. We read 
through these answers and summarized them into two categories. 
Answers in the first category contain information needs different 
from our proposed ones. We grouped answers in this category if 
they implied similar information needs. For example, “what is the 
ideal solution to the problem?” and “what were the other potential 
solutions to the issue?” both imply similar information need. In 
this case, we grouped them together and generalized them as one 
information need: “does this change provide the ideal/optimal 
solution?” Answers in the second category do not exactly provide 
new information needs – they are more like elaborations on our 
listed ones. For example, some participants responded that they 
want to know “why the code change is needed?” and “are there 
non-obvious assumptions made by the change?” We treated these 
questions as elaborations on the already listed information need 
“what is the rationale of the change?” 

In total, 24 new information needs were identified. We present 
some of them in Table 3. While most of the newly emerged infor-
mation needs are self-explanatory, there exist a few whose inten-
tion is not clear. We selected one such information need – “can 
this change be broken into smaller discreet changes” – for further 
investigation. The participant who raised this question did not pro-
vide further explanation, and it was not straightforward for us to 
infer his/her reason for asking such question during a change-
understanding task. Therefore, we included this information need, 
which we referred to as change decomposition, in the follow-up 
interviews. The responses from the follow-up interviews are dis-
cussed in Section 6.2. 
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Figure 5. The average importance score (a) and difficulty 
score (b) for each information need 
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Figure 6. Difficulty vs. importance for 15 information needs 



 

6. IMPROVING CURRENT PRACTICE 

The online survey revealed important information needs for un-
derstanding code changes. We included two information needs – 
determining a change’s risk and decomposing a change – in the 
follow-up email interviews for further investigation. Based on 
participants’ feedback, we suggest how to improve the effective-
ness and efficiency of the change-understanding practice (RQ3). 

6.1 Determining a Change’s Risk 

The quantitative data collected from the online survey reveals 
that I-9 (“does this change break any code elsewhere?”) is an im-
portant concern (importance score > 2) during a change-
understanding task, but this information is difficult to acquire (dif-
ficulty score > 2) in the current practice. We included this finding 
in the follow-up interviews and asked participants whether they 
agree with this finding or not. Additionally, we asked them to 
briefly describe their current practice (e.g., approaches and tool 
usage) in determining the risk of a change. 

Among 23 participants who proceeded to the follow-up inter-
views, 15 totally agreed with our finding; 3 agreed that I-9 is im-
portant, but they pointed out that acquiring such information could 
be easy in some circumstances; 4 participants only described their 
current approaches to handle I-9, and their opinions towards our 
finding were not clear; 1 participant did not input anything on this 
particular finding. In general, the majority of participants con-
firmed that I-9 is important but difficult to answer in the current 
practice. 

According to the participants’ description, two approaches are 
typically used to check whether a change breaks anything (I-9). 
The primary approach is unit/regression testing, as one participant 
explicitly stated “…does this change break anything else’ is the 
driving force behind practices like unit tests and other regression 
tests.” Typically, “most check-ins have some sort of test to verify 
the code”, and “running all appropriate unit tests for the code 
change could test the immediate impact of the change.” However, 
the testing approach is limited as its ability to answer I-9 heavily 
depends on the adequacy of the test suite; in addition, testing itself 
is time consuming: 

“…it’s not a full solution in and of itself as it’s heavily depend-
ent on how thorough the unit tests are…” 

“…the difficulty lies in determining all inputs to the changed 
location…” 

“…assuming a well-designed test suite with good code cover-
age. However, this is still limited as functional and integration 
tests are too time consuming to set up and run…” 

Another commonly used approach to answer I-9 is manual code 
review/inspection. During this process, reviewers might have to 
check all the dependencies of the changed parts; such checking 
typically requires significant manual efforts as well as the support 
of compiler, debugger, and static-analysis tools: 

“I usually would need to manually find portions of the code 
which are using changed portion and figure out how this 
change affects callers. Sometimes it’s not obvious from the 
code itself, I have to actually step through the code with de-
bugger to understand it.” 

“…rebuilding the change and all its dependencies. This allows 
the compiler, linker and static analysis tools to evaluate any 
gross errors.” 

Participants who partially agreed with our findings mentioned 
that static-analysis features (e.g., finding references) come in 
handy for code exploration, which is typically involved when de-
termining the risk of a change. However, sometimes the large vol-
ume of returned references (e.g., method callers) might overwhelm 
the reviewers and reduce their efficiency in completing the task 
(“…this is an error-prone process if left to code inspection as it 
would require evaluating all possible code paths through all call-
ing functions…”). It is even harder for reviewers to decide a 
change’s risk this way if the affected component is beyond the 
reviewers’ control or knowledge: 

“In particular when dealing with cross-component or cross-
binary changes, finding the associations in the code, which al-
low you to make these determinations, is difficult without com-
ponent or binary specific knowledge.” 

“It is hard to evaluate impacts on other components, unless 
there is clear interface between this component and others. 
Very frequently, other components have some assumptions on 
this component, while these assumptions are not documented.” 

In general, testing and code review/inspection are two major 
approaches to determine the risk of a change, and there exist a 
number of tools (e.g., static analysis) to assist with this task. How-
ever, as one participant stated, “none of those are really very satis-
fying, though, as my confidence level in the change is not as high 
as I would like.” From participants’ feedback, we identified two 
potential tool improvements with respect to these two approaches 
(Table 4). First, participants call for a feature that detects code 
portions impacted by the change and the affected test cases. This 
feature is also expected to automatically identify the corresponding 
test owner(s) and inform them of the retesting task. In fact, there 
are a number of previous studies [44, 53] that offer similar solu-
tions. However, they focus on the fault-localization context and 
have not been applied to the change-understanding context. Se-
cond, participants call for a feature that performs IDE static-
analysis functionalities (e.g., go to definition, find references) spe-
cifically on the changed code under the diff view. The participants 
claimed that although the diff tool works fine for visualizing code 
changes, it “misses a level of understanding object relationships” 
(see the full quote in Table 4). The static-analysis features, on the 
other hand, allow engineers to view object dependencies easily but 
operate only on the complete code base. As participants suggested, 

Table 3. Examples of newly emerged information needs 

No. Newly emerged information need

1 Can this change be broken into smaller discreet changes?

2 Is this change a (major) design/architectural change?

3 How does this change affect the code base’s stability and maintainability?

4 How does this change affect the program’s performance?

5 How does this change affect end user experience?

6 Is this change safe given the current phase in product lifecycle?

7 Does this change introduce security bugs by over/under encoding?

8 Which documentation is linked to this code change?

Information regarding a change’s quality (e.g., its complete-
ness and consistency) and risk (e.g., whether it breaks any 
code elsewhere) is important for understanding the change, 
but such information is difficult to acquire in the current prac-
tice. 



an integration of the diff utility and the static-analysis features can 
improve engineers’ efficiency in determining the risk of a change. 

6.2 Decomposing a Change  

One survey participant added another information need – “can 
this change be broken into smaller discreet changes?” – without 
explaining why he/she raised this question during a change-
understanding task. We included this question in the follow-up 
email interviews and asked the participants for elaboration. Ac-
cording to their description, the need of change decomposition 
stems from the existence of changes that share certain characteris-
tics. These changes usually involve a large number of files (“any-
one that checks in 50 files (outside of a simple name change done 
via an automated tool and that's the ONLY change) …”), spans a 
lot of features (“…code changes spanning too many features…”) 
or address multiple issues (e.g., multiple bug fixes). We refer to 
such change as a composite change. 

A typical example of a composite change is a single change that 
involves multiple bug fixes. Such changes are sometimes pointed 
out by the committers, who explicitly mention that “this change is 
for bug #1, #2, and #3…” in the check-in message. A less direct 
way to identify such a change is through issue-tracking systems, in 
which a single commit is linked to more than one bug5. Another 
example of a composite change is floss refactoring, during which a 
developer intersperses other kinds of code changes (e.g., adding a 
feature, fixing a bug) with refactorings [25, 39]. Murphy-Hill et al. 
[39] provide evidence that floss refactoring happens frequently in 
the evolution of Eclipse and Mylyn. 

A composite change, which is commonly observed across soft-
ware evolution history, appears to be difficult to understand. In 
particular, figuring out the part of a change that relates to each 
individual constituent issue (e.g., each bug fix) is considered diffi-
cult and error-prone: 

“…sorting out which changes goes with which bug is difficult 
and error-prone.” 

“…in cases where many sources are checked-in, it can be dif-
ficult to tell since many bug fixes are checked-in together.” 

                                                                 
5See revision 990792 for Apache Commons Math. This single revision 
addresses three issues (MATH-394, MATH-397, and MATH-404), one of 
which is a bug fix and the other two are minor improvements. 
http://svn.apache.org/viewvc?view=revision&revision=990792 

“…some changes are combined with other changes (e.g. mul-
tiple bug fixes), so it is hard to figure out whether a specific 
change was related to one bug or another.” 

Although this understanding obstacle directly results from en-
gineers’ check-in practice, e.g., whether they check in each bug fix 
individually or wait until a bunch of bugs are fixed and then check 
in them all together, participants do not really question the practice 
itself. One participant mentioned that “people mix multiple bug 
fixes in one check-in for better productivity.” Murphy-Hill et al. 
[39] also suggest that floss refactoring is typically performed to 
keep the code healthy. Instead, participants call for a feature that 
could automatically decompose a composite change into separate 
sub-changes, each of which addresses a single development issue 
individually (e.g., fixing one bug): 

“… some change lists for review may contain multiple fixes 
spread across overlapping sets of files. It would be useful to be 
able to analyze groups of functional changes (i.e., each bug 
fix) instead of having to go file by file and context switch be-
tween changes.” 

“(I want) a feature that allows me to follow on particular vari-
able or other change through the changelist. If the dev has 
grouped a bunch of fixes, I want to be able to see all the 
changes that related to one bug, or possibly one variable with-
in the change list.” 

Independently from us, Herzig and Zeller [19] also pointed out 
this composite-change problem (they refer to it as “tangled 
change”) and investigated the distribution of such changes in five 
open source projects. They proposed an approach to untangle such 
changes to reduce noise and bias when mining software reposito-
ries. Our work differs from theirs in that we investigate the effect 
of composite changes in the context of change understanding. 
Based on industrial practitioners’ feedback, we provide evidence 
that understanding such changes requires non-trivial efforts, and a 
tool feature for change decomposition is desired. To the best of our 
knowledge, no previous study has ever addressed this problem. We 
expect that the discussion here could shed lights on inspiring future 
work towards this end. 

 

Table 4. Desired tool support for determining a change’s risk 

Desired feature Quote

A feature that detects the code portion
impacted by the change and the
affected test cases. The feature should
also be able to automatically notify the
test owner of the retesting task.

“A feature that tells me that based on the changed code, which code must be retested as it is dependent upon the
change, who owns testing that dependency, notifies the contact that the dependency must be retested, and tells
the contact which tests must be run.”

“A feature that flags any existing test cases that are related to the code change based on coverage data. An
"Intelli-sense" for updating these tests would be nice as well.”

A feature that performs IDE static-
analysis functionalities (e.g., go to
definition, find reference, caller/callee
tree, etc.) on the changed code portion
under the diff view.

“I think from mostly looking at diff tools and seeing code changes, the current tool set is missing a level of
understanding object relationships. VS has tools that let you view object references and dependencies. It would
be nice to be able to select a function with a code change and easily ask where that function is being used. I can
do that using a search index and a diff tool, but they are not currently integrated as far as I know.”

“Most needed is the ability to use Visual Studio code analysis tools (go to definition, find all references,
caller/callee tree, find in files, object browser) on the code change.”

“A feature which allows for navigation in the diff, e.g. "go to definition" or "find caller".”

To accomplish a change-understanding task, engineers need 
better support for determining the risk of a change and de-
composing a composite change. 



7. DISCUSSION 

As described in Section 5.2, two findings on engineers’ infor-
mation needs for change understanding are inconsistent with our 
intuition and the existing research. In this section, we discuss these 
two findings based on the feedback collected from the follow-up 
email interviews. 

Why is understanding the rationale of a change fairly easy? 

The rationale of a change (I-1) is considered the most important 
information need for understanding the change (Figure 5(a)). Intui-
tively, acquiring such information takes non-trivial efforts, and a 
number of previous studies [14, 32, 35, 49] also suggest the same. 
Nevertheless, our quantitative data shows that understanding a 
change’s rationale is in fact easy (I-1’s difficulty score ≈ 1 as 
shown in Figure 5(b)) in the current practice. We asked partici-
pants for their opinions on this finding: 19 participants basically 
agreed that change-rationale information is easy to acquire if (1) an 
informative change description (also known as check-in message 
or commit log) is available (17 participants) and (2) the code is 
well-written for readability (2 participants): 

“Yes, it is generally easy, when given a bug description or a 
checkin description.” 

“Good comments are usually the best way for indicating intent 
in code, particularly if the changes are for reasons that cannot 
be inferred in the local code context.” 

“In well written code this task is relatively easy. This relates to 
code readability issue.” 

Three other participants held different opinions: they thought 
that figuring out the rationale of a change could be quite difficult. 
But their concerns were also about the availability and quality of 
the change description. One participant stated that a change’s ra-
tionale can be inferred from “collateral metadata such as bugs, 
changelist descriptions, review comments, etc.”, but these data 
“tends not to accompany the code itself over time as it goes into 
maintenance by other owners”. Another participant described his 
experience on reviewing a change with comment “refactor code”, 
but this change was in fact much more than just refactoring. In 
such case, he was really confused about the rationale behind the 
change, wondering “was the refactor to improve CPU cache lo-
cality, load time, build time, political divisions within the product 
team, code readability, prep for new feature development, or simp-
ly idle hands?” 

In general, a well-written change description is the key to un-
derstand a change (“we rely on check-in comments to accomplish a 
lot of the above (information seeking)”). However, change descrip-
tions are not always informative; sometimes they are not even 
available. This problem is also pointed out by a number of previ-
ous studies [4, 39]. Buse and Weimer [4] reported that, for five 
large open source projects, only 67% of changes on average are 
accompanied by a commit message that accurately describes what 
happened in the change. Murphy-Hill et al. [39] observed that 
check-in messages for a change do not reliably indicate the pres-
ence of refactoring in the change. 

Tools could provide partial support to alleviate this issue. For 
example, DeltaDoc [4] uses symbolic execution and code summa-
rization to automatically generate succinct human-readable docu-
mentation for arbitrary code changes. Zimmermann et al. [59] 
proposed the CUEZILLA tool, which is applied to an analogous 
scenario – when users encounter a bug and file a bug report. This 
tool is trained to measure the quality of a new bug report and rec-

ommend elements to be added to improve its quality. However, 
these tools cannot entirely replace human in the documentation-
generation process. DeltaDoc can summarize only what is changed 
(e.g., the conditions under which program behavior changes and 
what the new behavior is) instead of explaining why the change is 
made and why the change is made this way (i.e., the rationale of 
the change) [4].  For bug-report generation, manual work is still 
required especially in the presence of rarely occurring or non-
crashing bugs [59]. Hence, instead of purely relying on tools, engi-
neers should try to provide informative change description in the 
first place. They should be better aware of the change description’s 
importance, and the fact that its quality significantly impacts the 
later change-understanding efforts. After all, as one participant 
stated, “it’s entirely up to the dev making the change as to how 
hard or easy it is for someone else to figure out why the change 
was made.” 

Why are historical metrics not considered as good sources of 
information? 

Previous studies used historical metrics such as change-
proneness or defect-proneness to assess code quality [18, 26, 28] or 
characterize code changes [29]. However, we found that such met-
rics (I-14 and I-15) are not that important in the context of under-
standing code changes (see Figure 5(a)). The follow-up partici-
pants generally agreed with this finding. They stated that engi-
neers, especially developers, typically care about the specific task 
at hand rather than past issues: 

“As a dev, I agree that change history isn’t very important for 
me mainly because the most important thing is the status of the 
current codes. It’s useful only when re-designing, re-factoring 
or optimizing the codes, we will consider how to avoid 
hotspots.” 

“I-14, 15 are very interesting for people who either have to 
deal with the risky code (test), or those who need to plan future 
work in specific areas (PM).  Devs seem to be most often con-
cerned with the here and now, and interested mostly in the 
short-term issues around a check-in.” 

In addition, developers mostly rely on their own knowledge to 
understand a code change. On the other hand, testers or program 
managers are not that entrenched in the code, so they might resort 
to historical metrics for understanding changes: 

“While historical frequency of changes can inform test/pm as 
to the relative bugginess/complexity of code area, I think most 
devs get a sense of that much more directly already since they 
are reading the code and do not rely on metrics for the same 
purpose.” 

“Identifying hotspots are interesting to flag areas of problems 
and raise some concerns to why this area is changed so often, 
but that I can live without as a developer. Because even the 
fact that I do multiple code reviews in one area (over time) is 
going to tell me that is potentially a problem area (from a de-
sign (i.e. poor design) or bug (i.e. poor implementation) per-
spective.” 

Previous work leverages historical metrics to detect or predict 
fault location [18, 26, 28]. According to the interview feedback, 
such heuristics for prediction does not really reflect the type of 
information that developers actually used for assessing code 
quality and locating problematic areas. Our interview suggests 
that compared to developers, testers and program managers 
might be more proper target users of the historical metrics. 



8. THREATS TO VALIDITY 

From an internal-validity point of view, the generality of the 
survey questions may be affected by researcher bias stemming 
from personal assumptions. We believe that this threat is mitigated 
by the pilot interview, the open-ended survey questions, and the 
follow-up email interviews. The pilot interview, which was con-
ducted with one lead SDE, one SDET, and one research SDE, 
helped us refine the survey questions and ensure their relevance. 
An open-ended question was provided after the scenario and in-
formation-need questions, enabling participants to add or elaborate 
their own opinions. Furthermore, we confirmed some of our survey 
findings in the follow-up email interviews. 

From an external-validity point of view, this study was con-
ducted exclusively with software engineers (developers, testers, 
and program managers) at Microsoft. This threat is mitigated by 
the fact that the survey received 180 responses from engineers 
from various product teams including operating systems, desktop 
applications, mobile and web services. We also mitigate the survey 
bias by randomly sampling the survey participants and keeping the 
survey anonymous. 

9. CONCLUSIONS 

Software evolves with a series of source code changes. These 
changes need to be understood, assessed, and verified with signifi-
cant development effort. To cope with such significant efforts, 
there is a strong need to understand and improve the change-
understanding practice. Empirical knowledge of the current 
change-understanding practice can provide valuable insights for 
software-engineering practitioners and researchers to contribute to 
the improvement of this practice, e.g., by inspiring them to design 
better tool support for the change-understanding task. 

Our exploratory study conducted at Microsoft serves as a first 
attempt to this end. The quantitative data from the online survey 
confirms that understanding code changes is a fundamental prac-
tice that happens frequently in major development phases. The 
qualitative data from open-ended questions and follow-up inter-
views further reveals a number of non-neglectable gaps between 
the current practice and the actual needs from developers. First, 
determining a change’s risk is very important when understanding 
the change, but it is difficult even when existing tools provide a 
certain degree of support. Second, the crucial need to assess a 
change’s quality (e.g., its completeness and consistency) also lacks 
tool support. Another commonly demanded but unavailable sup-
port is change decomposition. Engineers often address multiple 
issues within a single composite change, and such composite 
change would be easier to understand if it is decomposed into sub-
changes that are aligned with each individual constituent develop-
ment issue. We further found that the quality of the change de-
scription significantly affects the efforts of later change under-
standing. Engineers should be aware of the change description’s 
importance and be responsible for providing informative descrip-
tions upon check-in.  
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