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Geo-Replicated Storage
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is the backend of massive websites

“Halting is 

Undecidable”
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Geo-Replicated Storage

serves requests quickly



Inside the Datacenter

Web Tier Storage Tier
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No durable state

Independent
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Storage Tier Dimensions
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Shard Data Across 

Many Nodes
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“Halting is 

Undecidable”



Storage Tier Dimensions
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Geo-Replicated Storage Goals

• Serve client requests quickly

• Scale out nodes/datacenter

• Interact with data coherently
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Geo-Replicated Storage Goals

√ Serve client requests quickly

√ Scale out nodes/datacenter

• Interact with data coherently

– Stronger consistency

– Stronger semantics
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ALPS Properties

• Availability

• Low Latency

= O(Local RTT)

• Partition Tolerance

• Scalability

“Always On”
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Consistency

• Restricts order/timing of operations

• Stronger consistency:

– Makes programming easier

– Makes user experience better

11



Strong Consistency

• Linearizability [Herlihy Wing '90]

– Total order of operations

– Order agrees with “real time”

• Intuitively:  West coast reads see east coast writes
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Consistency with ALPS

Linearizability

Serializability

Sequential 

Causal

“Eventual”

Impossible [ Brewer '00,

Gilbert Lynch '02 ]

Impossible [ Lipton Sandberg '88,

Attiya Welch '94 ]

This Talk!

Amazon Facebook/Apache
Dynamo Cassandra
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Causality By Example 

Remove boss from

friends group

Post to friends:

“Time for a new job!”

Friend reads post

Causality (         )

Thread-of-Execution

Reads-From

Transitivity

New Job!
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Friends

Boss



Users Like Causality

Because sites work as expected
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New Job!

Friends

Boss

Then

Employment 

retained

Then

Purchase

retained

Deletion

retained

Then



Programmers Like Causality
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Because it simplifies programming

Then

No reasoning about out-of-order operations

Then Then



Concurrent Writes:
Conflicts in Causal

K=2
K=1K=1

K=2
K=1

K=2
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Conflicts in Causal

K=2K=3

K=2K=3

K=2K=3

Causal + Conflict Handling = Causal+
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Previous Causal Systems

• Bayou ‘94, TACT ‘00, PRACTI ‘06

– Log-exchange based

• Log is single serialization point

Implicitly captures & enforces causal order

Loses cross-server causality

OR

Limits scalability
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Local Datacenter
Remote DC

13 24

13 24

√ 

✗



Consistency Challenges

• Strongest forms impossible with ALPS

• Eventual == no consistency

• Log exchange gives causal consistency, but not scalable

• Our work: First scalable causal+
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Scalability Key Idea

• Capture causality with explicit dependency metadata

• Enforce with distributed verifications

– Delay exposing replicated writes until all dependencies satisfied in DC
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Local Datacenter Remote DC
1

3

24

13 after

1

3

2
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Our Architecture

A-F

G-L

M-R

S-Z
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Client

All Ops Local

=

“Always On” 



Our Architecture

A-F

G-L

M-R

S-Z
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Client Library



Read

A-F

G-L

M-R

S-Z
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read

Client Library



Write

A-F

G-L

M-R

S-Z
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Client Library

write

Replication write
after

write
+

ordering
metadata

write

after 
=



Replicated Write

A-F

G-L

M-R

S-Z
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write_after(…,deps)

dep

check

(L337)

deps

L 337

A 195

dep_check(A195)

Exposing values after dep_checks

return ensures causalLocator Key

Unique Timestamp



Basic Architecture Summary

• All ops local, replicate in background

– “Always On”

• Shard data across many nodes

– Scalability

• Control replication with dependencies

– Causal consistency
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Challenge: Many Dependencies

• Dependencies grow with client lifetime

Write

Write

Write

Current Write

Read

Read

28

Thread-of-

Execution

Reads-

From

Transitive 

Closure



Nearest Dependencies

• Transitively capture ordering constraints
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Nearest Dependencies

• Transitively capture ordering constraints
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• Need extra server-side state to calculate 



One-Hop Dependencies

• Small superset of nearest dependencies
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• Simple to track:

– Last write

– Subsequent reads

Thread-of-

Execution

Reads-

From

Transitive 

Closure



Scalable Causal+

A-F

G-L

M-R

S-Z
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From fully distributed operation



Geo-Replicated Storage Goals

• ALPS

– Serve client requests quickly

– Scale out nodes/datacenter

• Interact with data coherently

– Causal consistency

– Rich data model

– Read-only transactions

– Write-only transactions
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COPS  [SOSP ’11]

Eiger [NSDI ‘13]



Column-Family Data Model
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Widely-used hierarchical structure
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Column-Family Data Model
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Widely-used hierarchical structure
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Column-Family Data Model
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Now with causal consistency
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Eiger Provides

√ ALPS properties

√ Rich data model

√ Causal consistency

• Read-only transactions

• Write-only transactions
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Reads Aren’t Enough
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A-F

G-L

M-R

S-Z

Boss

I <3 Job

Web Srv

Asynchronous requests + distributed data = ??

Progress

Progress

Progress

Turing’s

Operations

New Job!

BossBoss

I <3 Job

Boss

Boss New Job!

New Job!

1

from 1 4from 4

2

3



Read-Only Transactions

• Consistent up-to-date view of data across many servers
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Logical Time

Alan…Friends
1 11

Alan…Status
2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends
1 11

Alan Alan



Read-Only Transactions

• Round 1: Optimistic parallel reads

– Results include validity time metadata

• Calculate effective time

– Ensures progress

• Round 2: Parallel read_at_times

– Only needed for concurrently updated data
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Eiger Provides

√ ALPS properties

√ Rich data model

√ Causal consistency

√ Read-only transactions

√ Write-only transactions

But what does all this cost?
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Implementation

• COPS [SOSP '11]

– Built on FAWN-KV (8.5K LOC)

– 4.5K Lines of C++

• Eiger [NSDI '13]

– Built on Cassandra (75K LOC)

– 5K Lines of Java
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A-F

G-L

M-R

S-Z
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Experimental Setup
Local Datacenter (Stanford)

Remote DC 
(UW)

8 8

8



Facebook Workload Results
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6.6% Overhead

TAO: Eventually-consistent, non-transactional, geo-replicated, 

production storage at Facebook



Eiger Scales
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Facebook Workload

384 Machines!

Scales out



• ALPS:  Availability, Low latency, Partition tolerance, Scalability

• Causal+ consistency
– Explicit dependencies, distributed checks

– Exploit transitivity to reduce overhead

• Stronger semantics
– Rich data model

– Read-only transactions

– Write-only transactions

• Competitive with eventually-consistent baseline
– Scales to many nodes

Geo-Replicated Storage
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http://sns.cs.princeton.edu/

https://github.com/wlloyd/eiger



Microsoft Privacy Policy statement applies to all information collected. Read at research.microsoft.com  

Save the planet and return 
your name badge before you 

leave (on Tuesday) 
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Read-Only Transactions

• Consistent up-to-date view of data

– Across many servers

• Challenges

– Scalability:  Decentralized algorithm

– Guaranteed low latency

• At most 2 parallel rounds of local reads

• No locks, no blocking

– High performance:  Normal case - 1 round of reads
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Eiger Provides

√ ALPS properties

√ Rich data model

√ Causal consistency

√ Read-only transactions

• Write-only transactions
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Write-Only Transactions

• Update data atomically across servers
– Atomic in each datacenter (not globally)

– Use 2PC variant

• Challenges
– Scalability

• Decentralized algorithm

– Low latency
• 3 local RTTs

• No locks or blocking

• Read-only transactions not blocked, indirected
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Logical Time
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Evaluation

• Cost of stronger consistency & semantics   

– Vs. eventually-consistent Cassandra

– Overhead for real (Facebook) workload

– Overhead for state-space of workloads

• Scalability
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Exploring Possible Workloads

• Dynamic workload generator

– Explore all possible workload types

• Vary workload parameters:

– Value size

– Structure of data (4 variables)

– Write fraction

– Write transaction fraction
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Dynamic Workload Results
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Structure of Data Variable 1 (Columns/Read)

Overhead

Medium

Low

Minimal


