


Stronger Consistency for Low-Latency,
Geo-Replicated Storage
Michael J. Freedman
Princeton University 
Joint with Wyatt Lloyd,
David Andersen, Michael Kaminsky



Geo-Replicated Storage

3

is the backend of massive websites

“Halting is 

Undecidable”



4

Geo-Replicated Storage

serves requests quickly



Inside the Datacenter

Web Tier Storage Tier

5

No durable state

Independent

A-F

G-L

M-R

S-Z

Durable

Cooperative



Storage Tier Dimensions

A-F

G-L

M-R

S-Z

Shard Data Across 

Many Nodes

6

“Halting is 

Undecidable”



Storage Tier Dimensions

A-F

G-L

M-R

S-Z

Shard Data Across 

Many Nodes

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Data Geo-Replicated In 

Multiple Datacenters

7



Geo-Replicated Storage Goals

• Serve client requests quickly

• Scale out nodes/datacenter

• Interact with data coherently

8



Geo-Replicated Storage Goals

√ Serve client requests quickly

√ Scale out nodes/datacenter

• Interact with data coherently

– Stronger consistency

– Stronger semantics

9



ALPS Properties

• Availability

• Low Latency

= O(Local RTT)

• Partition Tolerance

• Scalability

“Always On”

10



Consistency

• Restricts order/timing of operations

• Stronger consistency:

– Makes programming easier

– Makes user experience better

11



Strong Consistency

• Linearizability [Herlihy Wing '90]

– Total order of operations

– Order agrees with “real time”

• Intuitively:  West coast reads see east coast writes

12



Consistency with ALPS

Linearizability

Serializability

Sequential 

Causal

“Eventual”

Impossible [ Brewer '00,

Gilbert Lynch '02 ]

Impossible [ Lipton Sandberg '88,

Attiya Welch '94 ]

This Talk!

Amazon Facebook/Apache
Dynamo Cassandra

13



Causality By Example 

Remove boss from

friends group

Post to friends:

“Time for a new job!”

Friend reads post

Causality (         )

Thread-of-Execution

Reads-From

Transitivity

New Job!

14

Friends

Boss



Users Like Causality

Because sites work as expected

15

New Job!

Friends

Boss

Then

Employment 

retained

Then

Purchase

retained

Deletion

retained

Then



Programmers Like Causality

16

Because it simplifies programming

Then

No reasoning about out-of-order operations

Then Then



Concurrent Writes:
Conflicts in Causal

K=2
K=1K=1

K=2
K=1

K=2

17



Conflicts in Causal

K=2K=3

K=2K=3

K=2K=3

Causal + Conflict Handling = Causal+

18



Previous Causal Systems

• Bayou ‘94, TACT ‘00, PRACTI ‘06

– Log-exchange based

• Log is single serialization point

Implicitly captures & enforces causal order

Loses cross-server causality

OR

Limits scalability

19

Local Datacenter
Remote DC

13 24

13 24

√ 

✗



Consistency Challenges

• Strongest forms impossible with ALPS

• Eventual == no consistency

• Log exchange gives causal consistency, but not scalable

• Our work: First scalable causal+

20



Scalability Key Idea

• Capture causality with explicit dependency metadata

• Enforce with distributed verifications

– Delay exposing replicated writes until all dependencies satisfied in DC

21

Local Datacenter Remote DC
1

3

24

13 after

1

3

2
4



Our Architecture

A-F

G-L

M-R

S-Z

22

Client

All Ops Local

=

“Always On” 



Our Architecture

A-F

G-L

M-R

S-Z

23

Client Library



Read

A-F

G-L

M-R

S-Z

24

read

Client Library



Write

A-F

G-L

M-R

S-Z

25

Client Library

write

Replication write
after

write
+

ordering
metadata

write

after 
=



Replicated Write

A-F

G-L

M-R

S-Z

26

write_after(…,deps)

dep

check

(L337)

deps

L 337

A 195

dep_check(A195)

Exposing values after dep_checks

return ensures causalLocator Key

Unique Timestamp



Basic Architecture Summary

• All ops local, replicate in background

– “Always On”

• Shard data across many nodes

– Scalability

• Control replication with dependencies

– Causal consistency

27



Challenge: Many Dependencies

• Dependencies grow with client lifetime

Write

Write

Write

Current Write

Read

Read

28

Thread-of-

Execution

Reads-

From

Transitive 

Closure



Nearest Dependencies

• Transitively capture ordering constraints

29



Nearest Dependencies

• Transitively capture ordering constraints

30

• Need extra server-side state to calculate 



One-Hop Dependencies

• Small superset of nearest dependencies

31

• Simple to track:

– Last write

– Subsequent reads

Thread-of-

Execution

Reads-

From

Transitive 

Closure



Scalable Causal+

A-F

G-L

M-R

S-Z

32

From fully distributed operation



Geo-Replicated Storage Goals

• ALPS

– Serve client requests quickly

– Scale out nodes/datacenter

• Interact with data coherently

– Causal consistency

– Rich data model

– Read-only transactions

– Write-only transactions

33

COPS  [SOSP ’11]

Eiger [NSDI ‘13]



Column-Family Data Model

34

Widely-used hierarchical structure

Ada

Alan

Friends Count Status

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

Job

-

1/1/37

-

Halting

-

Profile

Age Town

197 London

100 Princeton

110 Princeton

Ada

Alan

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

-

-

1/1/37

-

Halting

-

Friends Count StatusProfile

Age Town

197 London

100 Princeton

110 Princeton



Column-Family Data Model

35

Widely-used hierarchical structure

Ada

Alan

Friends Count Status

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

Job

-

1/1/37

-

Halting

-

Profile

Age Town

197 London

100 Princeton

110 Princeton

Ada

Alan

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

-

-

1/1/37

-

Halting

-

Friends Count StatusProfile

Age Town

197 London

100 Princeton

110 Princeton



Column-Family Data Model

36

Now with causal consistency

Ada

Alan

Friends Count Status

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

Job

-

1/1/37

-

Halting

-

Profile

Age Town

197 London

100 Princeton

110 Princeton

Ada

Alan

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

-

-

1/1/37

-

Halting

-

Friends Count StatusProfile

Age Town

197 London

100 Princeton

110 Princeton

Job

Then



37

Ada

Alan

Friends Count Status

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

Job

-

1/1/37

-

Halting

-

Profile

Age Town

197 London

100 Princeton

110 Princeton

Ada

Alan

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

-

-

1/1/37

-

Halting

-

Friends Count StatusProfile

Age Town

197 London

100 Princeton

110 Princeton

Consistent view across many keys/servers

Read-only transaction



38

Ada

Alan

Friends Count Status

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

Job

-

1/1/37

-

Halting

-

Profile

Age Town

197 London

100 Princeton

110 Princeton

Ada

Alan

Alonzo

Ada Alan Alonzo

- 1/1/54 -

1/1/54 - 9/1/36

- 9/1/36 -

Friends

631

457

323

6/6/38

-

-

-

1/1/37

-

Halting

-

Friends Count StatusProfile

Age Town

197 London

100 Princeton

110 Princeton

Write-only transaction
Atomic update across many keys/servers

7/15/14

7/15/14



Eiger Provides

√ ALPS properties

√ Rich data model

√ Causal consistency

• Read-only transactions

• Write-only transactions

39



Reads Aren’t Enough

40

A-F

G-L

M-R

S-Z

Boss

I <3 Job

Web Srv

Asynchronous requests + distributed data = ??

Progress

Progress

Progress

Turing’s

Operations

New Job!

BossBoss

I <3 Job

Boss

Boss New Job!

New Job!

1

from 1 4from 4

2

3



Read-Only Transactions

• Consistent up-to-date view of data across many servers

41

Logical Time

Alan…Friends
1 11

Alan…Status
2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends
1 11

Alan Alan



Read-Only Transactions

• Round 1: Optimistic parallel reads

– Results include validity time metadata

• Calculate effective time

– Ensures progress

• Round 2: Parallel read_at_times

– Only needed for concurrently updated data

42



Eiger Provides

√ ALPS properties

√ Rich data model

√ Causal consistency

√ Read-only transactions

√ Write-only transactions

But what does all this cost?

43



Implementation

• COPS [SOSP '11]

– Built on FAWN-KV (8.5K LOC)

– 4.5K Lines of C++

• Eiger [NSDI '13]

– Built on Cassandra (75K LOC)

– 5K Lines of Java

44



A-F

G-L

M-R

S-Z

45

Experimental Setup
Local Datacenter (Stanford)

Remote DC 
(UW)

8 8

8



Facebook Workload Results

46

6.6% Overhead

TAO: Eventually-consistent, non-transactional, geo-replicated, 

production storage at Facebook



Eiger Scales

47

Facebook Workload

384 Machines!

Scales out



• ALPS:  Availability, Low latency, Partition tolerance, Scalability

• Causal+ consistency
– Explicit dependencies, distributed checks

– Exploit transitivity to reduce overhead

• Stronger semantics
– Rich data model

– Read-only transactions

– Write-only transactions

• Competitive with eventually-consistent baseline
– Scales to many nodes

Geo-Replicated Storage

48



49

http://sns.cs.princeton.edu/

https://github.com/wlloyd/eiger



Microsoft Privacy Policy statement applies to all information collected. Read at research.microsoft.com  

Save the planet and return 
your name badge before you 

leave (on Tuesday) 





52



Read-Only Transactions

• Consistent up-to-date view of data

– Across many servers

• Challenges

– Scalability:  Decentralized algorithm

– Guaranteed low latency

• At most 2 parallel rounds of local reads

• No locks, no blocking

– High performance:  Normal case - 1 round of reads

53



Eiger Provides

√ ALPS properties

√ Rich data model

√ Causal consistency

√ Read-only transactions

• Write-only transactions

54



Write-Only Transactions

• Update data atomically across servers
– Atomic in each datacenter (not globally)

– Use 2PC variant

• Challenges
– Scalability

• Decentralized algorithm

– Low latency
• 3 local RTTs

• No locks or blocking

• Read-only transactions not blocked, indirected

55

Logical Time

Alan…Friends
1 11

Boss Boss

Alonzo…Friends
1 11

Alan Alan



Evaluation

• Cost of stronger consistency & semantics   

– Vs. eventually-consistent Cassandra

– Overhead for real (Facebook) workload

– Overhead for state-space of workloads

• Scalability

56



Exploring Possible Workloads

• Dynamic workload generator

– Explore all possible workload types

• Vary workload parameters:

– Value size

– Structure of data (4 variables)

– Write fraction

– Write transaction fraction

57



N
o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Dynamic Workload Results

58
Structure of Data Variable 1 (Columns/Read)

Overhead

Medium

Low

Minimal


