
A User-Centred Approach to Functions in Excel

30th June 2003

Simon Peyton Jones
Microsoft Research, Cambridge

simonpj@microsoft.com

Alan Blackwell
Cambridge University

alan.blackwell@cl.cam.ac.uk

Margaret Burnett
Oregon State University
burnett@cs.orst.edu

Abstract
We describe extensions to the Excel spreadsheet that integrate user-
defined functions into the spreadsheet grid, rather than treating
them as a “bolt-on”. Our first objective was to bring the benefits of
additional programming language features to a system that is often
not recognised as a programming language. Second, in a project in-
volving the evolution of a well-established language, compatibility
with previous versions is a major issue, and maintaining this com-
patibility was our second objective. Third and most important, the
commercial success of spreadsheets is largely due to the fact that
many people find them more usable than programming languages
for programming-like tasks. Thus, our third objective (with result-
ing constraints) was to maintain this usability advantage.

Simply making Excel more like a conventional programming lan-
guage would not meet these objectives and constraints. We have
therefore taken an approach to our design work that emphasises the
cognitive requirements of the user as a primary design criterion.
The analytic approach that we demonstrate in this project is based
on recent developments in the study of programming usability, in-
cluding the Cognitive Dimensions of Notations and the Attention
Investment model of abstraction use. We believe that this approach
is also applicable to the design and extension of other programming
languages and environments.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language classifications—
Functional languages; D.3.3 [Programming Languages]: Lan-
guage constructs and features—Procedures, functions and subrou-
tines; H.1.2 [Models and principles]: User/machine systems

General Terms
Languages,Design

To appear at the International Conference on Functional Programming
(ICFP’03), Uppsala, 2003

1 Introduction
For many people, the programming language of choice is a spread-
sheet. This is especially true of people who are not employed as
programmers, but write programs for their own use — often defined
as “end-user” programmers [Nar93]. An end-user programmer is a
teacher, an engineer, a physicist, a secretary, an accountant, a man-
ager, in fact almost anything except a trained programmer. These
people use computers to get their job done, but often they are not
interested in programmingper se. End-user programmers outnum-
ber professional programmers, and their numbers are projected to
increase more rapidly; in fact, the number of end-user programmers
in the U.S. alone is expected to reach 55 million by 2005, as com-
pared to only 2.75 million professional programmers [BAB+00].
These facts suggest that the spreadsheet, which is a widely used
and commercially successful end-user programming language, is
also a particularly significant target for the broader application of
programming-language design principles.

It may seem odd to describe a spreadsheet as a programming lan-
guage. Indeed, one of the great merits of spreadsheets is that users
need not think of themselves as doing “programming”, let alone
functional programming — rather, they simply “write formulae” or
“build a model”. However, one can imagine printing the cells of a
spreadsheet in textual form, like this:

A1 = 3
A2 = A1-32
A3 = A2 * 5/9

and then it plainly is a (functional) program. Thought of as a pro-
gramming language, though, a spreadsheet is a very strange one.
In particular,it is completely flat: there are no functions apart from
the built-in ones. Instead, the entire program is a single flat col-
lection of equations of the form “variable = formula”. Amazingly,
end users nevertheless use spreadsheets to build extremely elaborate
models, with many thousands of cells and formulae. Almost all of
these elaborate models are constructed in part by reusing formulae
from some cells in other cells via the clever spreadsheet copy-and-
paste techniques.

From a programming language point of view, then,spreadsheets
lack the most fundamental mechanism that we use to control com-
plexity: the ability to define re-usable abstractions. In effect, they
deny to end-user programmers the most powerful weapon in our
armory. Can you imagine programming in C without procedures,
however clever the editor’s copy-and-paste technology?

In this paper, we describe a possible extension to Excel that sup-
ports user-defined functions (Section 4). It turns out that support for
functions is closely associated with better support for vectors and
matrices as first-class values, and we discuss that too (Section 5).
The basic idea is simple. We propose that functions be defined in

1



terms of the formulae that are contained in a specified part of the
spreadsheet. The function signature is defined by allocating some
subset of the cells as function parameters.

The main contribution of our work is not the user-defined function
ideaper se, but the large amount of detailed design required to inte-
grate this new view of spreadsheet behaviour into anexistingprod-
uct whose continued survival depends on its genuine usefulness to
humans.

Because we focus on end users rather than professional program-
mers, usability is a fundamental concern, so we been consciously
guided by research into human-computer interaction. Beyond its
specific design, our work shows how principles drawn from HCI re-
search can be applied to the design of programming environments,
in a very concrete, practical way. This is important – the ultimate
goal of all programming technology is to make people more pro-
ductive – but other documented examples are hard to find.

We hope that the paper may also serve to remind the functional
programming community of a large but mostly-ignored group of
functional programmers; namely, end users. Highly-expressive pro-
gramming is particularly important for this group, so functional lan-
guages are especially relevant.

We are in active discussion with the Excel developers about the
possibility of including user-defined functions in a future version of
Excel. Our progress in these discussions has been encouraging, but
whether we will ultimately succeed in that endeavour is, of course,
uncertain.

2 A user-centred approach to language design
Despite the deficiencies of spreadsheets when they are considered
as programming languages, it is clear from their commercial suc-
cess that people find them useful and usable. This is not true to the
same extent of any traditional programming language. Why not?
One contributing factor may be that, although programming lan-
guages are a channel of communication between people and com-
puters, most programming-language research is devoted to the com-
puter end of the channel. Comparatively little research considers
the people who do the programming [NC85]. It is our belief that
programming language design projects should adopt a more user-
centered approach, in order to maintain a sharp focus on the people
who are intended to benefit from the new language features or envi-
ronments being created. This is the approach that we have adopted
in our own work on extending spreadsheet capabilities.

The groundwork for this project comes from specialised research
into the psychology of programming and empirical studies of pro-
grammers (e.g. [BG87, CW00, DP95, GPB91, HLMC96]). It is
hard, though, for a programming-language designer to find prac-
tically useful guidance from such research. Individual studies in
these fields are often experimental investigations of relatively con-
strained contexts or points of syntax, so that it can be hard to find
empirical evidence that usefully informs design decisions for new
languages. Furthermore their theoretical generalizations tend to
emphasise cognitive theories of problem solving, which are not
readily applicable by programming language designers.

To address this problem, HCI researchers have developed struc-
tured approaches to considering human issues in programming.
We single out two — Cognitive Dimensions and Attention Invest-
ment — that have been used successfully in other recent program-
ming language and environment design projects (e.g., [LGAH02,
BCACA02, BBC02]). In the following sub-sections we briefly re-
view these two frameworks.

Abstraction
gradient

What are the minimum and maximum levels of
abstraction? Can fragments be encapsulated?

Consistency When some of the language has been learnt,
how much of the rest can be inferred?

Error-proneness Does the design of the notation induce ‘care-
less mistakes’?

Hidden depen-
dencies

Is every dependency overtly indicated in both
directions? Is the indication perceptual or only
symbolic?

Premature com-
mitment

Do programmers have to make decisions be-
fore they have the information they need?

Progressive
evaluation

Can a partially-complete program be executed
to obtain feedback on “How am I doing”?

Role-
expressiveness

Can the reader see how each component of a
program relates to the whole?

Viscosity How much effort is required to perform a sin-
gle change?

Visibility and
juxtaposability

Is every part of the code simultaneously visible
(assuming a large enough display), or is it at
least possible to compare any two parts side-
by-side at will? If the code is dispersed, is it at
least possible to know in what order to read it?

Figure 1. Cognitive Dimensions (excerpted from [GP96])

2.1 Cognitive Dimensions
The Cognitive Dimensions of Notations(CDs) framework dis-
tills knowledge from the psychology of programming into a form
that can help non-psychologists to assess usability at design time
[GP96, BG03]. CDs are not language design rules, but instead
providevocabularythat enumerates concepts important to human
problem solvers who are engaged in programming tasks. Many of
the CDs express concepts that are already very familiar to language
designers, but in an informal way. As a result, they may seem ob-
vious, but informally familiar design concerns are easily forgotten
when attempting to maximize other properties such as conciseness.
The benefit of CDs lies in having an explicit list of design attributes
— summarizing empirical evidence about programming language
or environment attributes important to human problem solving —
which can be checked and referred to throughout a design project.
Our own design was guided by our use of the CDs framework dur-
ing the design process.

An example of a CD isconsistency. Although most language de-
signers know generally that consistency is a “good thing”, the con-
sistency dimension sharpens the concept by expressing it as a ques-
tion: “When some of the language has been learnt, how much of
the rest can be inferred?” [GP96]. Expressed in this way, the con-
sistency dimension makes a point that is particularly relevant to our
project, because it is a key to end users’ likelihood of successfully
usinguser-defined functions in spreadsheets.

Another example isviscosity: the amount of effort required to make
a small change to the information structure. For example, a lan-
guage that lacks procedural or functional abstraction is highly vis-
cous, because code must be repeated. This means that changing the
code later takes work, because all of its repeated locations must be
changed.

Figure 1 summarises the CDs that we use in this paper. We use them
in a formative(before-the-fact) way, to inform our design while it is

2



taking shape, by raising warnings when a design decision is poten-
tially at odds with research from cognitive principles of program-
ming. Of course, Cognitive Dimensions cannot “prove” that no
such problems remain. Eventually, complementary devices aimed
at summative(after-the-fact) evaluation, such as empirical studies,
are also needed.

2.2 Attention Investment
The Attention Investment model of abstraction use analyses the ac-
tions that will be taken by a programmer in terms of investments
of attentional effort [Bla02]. Here is the idea. Programmers have a
finite supply of time to spend concentrating on their work, oratten-
tion, to invest. They will invest their effort in activities for which
their expectedpayoff exceeds thecost, unless therisk is too great.
The costof the investment is the amount of attention by the user
that must be devoted to accomplishing a task. The expectedpayoff
from that investment will be some saving of attentional effort in the
future, such as by achieving a good abstract formulation to reduce
the amount of effort required to cope with similar problems. The
perceivedrisk is the extent to which the user believes the invest-
ment will not produce the payoff, or that it will lead to even more
costs that are not yet apparent.

This simple investment model, when applied at multiple levels of
granularity, can model many of the actions and decisions made dur-
ing programming tasks. The model has been validated in a cog-
nitive simulation of programmer behaviour for fine-grain decisions
[Bla02], and there is evidence that it is effective in practical lan-
guage design [BB02, BBC02].

As with the CDs framework, most language designers have an in-
tuitive understanding of these issues. The model’s value for our
work has been in making these psychological concerns explicit, so
that we can analyse and justify design decisions. As an intellectual
tool for language designers, a strength of the Attention Investment
model is its generality, which allows it to provide insights not pro-
duced by the more specific CD framework. On the other hand, the
concrete enumeration of issues in CDs is more prescriptive of spe-
cific problems to consider, and provides sharper questions for lan-
guage designers. For this reason, we consider the two approaches
to be complementary intellectual tools, and use them both in the
work described here.

3 The user-centred case for functions
Our goal is to extend Excel by making it easier for end users to
define and re-use their own libraries of domain-specific functions.
Is this a good idea in the first place? After all, spreadsheets have
evolved over a good number of years, so maybe the status quo is
near-optimum. In this section we make the case for user-defined
functions, using the language of Attention Investment to consider
potential payoffs and costs from a human productivity standpoint.

3.1 What are the payoffs?
Users will invest effort if they foresee a reasonable payoff. First we
must consider the potentialactualpayoffs. Whether our target au-
dience willperceivethese payoffs will be discussed in the relevant
sections that follow.

For programming language folk it is not too hard to see what the
actual payoffs of user-defined functions might be:

Avoid repetition. Suppose a user repeatedly types a formula such
as IF (A6 = 0, “” ,A6), which blanks out zero values. This
repeated work is tiresome. Even worse, if instead ofA6
the user wants a formula such asSUM(D1:E9) ∗ 2, it would
have to be duplicated in theIF formula. User-defined

functions enable them to identify, name, and re-use code
that they use again and again: thusBLANK ZERO(A6), or
BLANK ZERO(SUM(D1:E9)∗2).

Reduce errors during maintenance.Excel encourages copy-
and-paste of complex formulae; but if a copied formula
must be modified later, all the places it was copied before
must be found and updated, which iserror-prone(see Figure
1). A named function encapsulates the formula, thereby
protecting against that source of risk. It also reduces the
user’s attentional cost by reducingviscosity (resistance to
change), because the encapsulated formula needs to be
changed in only one place. Our interview with an auditor
at a major accounting firm revealed that he considers the
problems of error proneness to be quite severe: “I will remind
you that in 6 years work, checking literally hundreds of
business-critical models, ... my team have never failed to find
errors.”

Real estate management.A function call takes up only one cell
to invoke, even if the function’s definition spans many cells.
This provides a natural way to save real estate on the invoking
sheet. Real estate management is clearly important in prac-
tice: Excel has a great deal of support for it (hiding rows and
columns, collapsing groups, and so on).

Encapsulate and re-use domain-specific expertise.
User-defined functions directly support re-use. Local
domain experts can create libraries of functions, tailored to
their particular application and context, that can be re-used
by their colleagues. Our interview with another customer
revealed the high potential he ascribed to this benefit: “If
we can crack the ability to reuse blocks of code it will
be immensely valuable, both within a spreadsheet to curb
repetition, and between spreadsheets too in the form of
standard libraries.”

Intellectual property protection. While function bodies can be
manifest, they do not have to be. User-defined functions pro-
vide an easy way to encapsulate and distribute intellectual
property.

Performance. Behind the scenes, a function can be represented as
an expression tree, compiled to byte code, JITted to machine
code, or whatever, with substantial performance benefits. In-
terviews have revealed that for certain important user groups
(notably in finance) performance is critical.

More generally, the goal is simply to provide end users with the
same complexity-management tools that we take for granted as pro-
fessional programmers.

3.2 What are the costs?
User-defined functions are, in fact, already available in Excel; all
you need do is define your function in Visual Basic1! The trouble

1Earlier versions of Excel supported user-defined functions via
so-called “XLM macros”, not to be confused with what Excel cur-
rently calls a “macro”. XLM macros looked superficially more fa-
miliar than Visual Basic to a spreadsheet user, because the macro
code was laid out on a grid of cells. The semantics of the grid
was rather different to an ordinary worksheet: it was in fact an
imperative programming language, with sequential evaluation and
a program counter, but with Excel’s formula language as a sub-
language. The attention-investment cost was still high, albeit not
as high as learning Visual Basic. In fact, XLM macros are still
available (right-click on a worksheet tab, select “Insert...” and pick
“Excel 4.0 macro sheet”), but they are not documented or encour-
aged.

3



is that the cost (in terms of attention investment) is very high. The
programming paradigm is different (imperative instead of declar-
ative); the notation is different (block of text instead of a grid of
cells); the programming environment is different and complex (Vi-
sual Studio); the debugging model is different and less accessible
(debugging in Excel means looking at values that are continuously
displayed in intermediate cells, while debugging in Visual Basic
means managing the Visual Studio debugger). These differences
lead to high learning costs.

One of our meetings with Excel users contributed further insights
into additional costs in the real world: “Excel already has the oppor-
tunity to package up oft-repeated calculations as Visual Basic func-
tions. However, what you are proposing is much to be preferred...
One [advantage] is performance; VB functions can be rather slow.
... VB functions break the audit trail; not all of their behaviour is
determined by their parameters, as they can retrieve data from cells
other than through the parameter list. Debugging VB functions re-
quires programming skills; yours requires more standard spread-
sheeting skills.” With costs like these it is hardly surprising that
many users never make the investment.

3.3 Costs vs payoffs: our target audience
Our design lowers the total costs, but not to zero. In order to under-
stand the costs of our design, it is first necessary to identify which
of the learning cost elements are zero, i.e., theprerequisiteskill
set expected of the intended audience [YBDZ97]. A prerequisite is
both an asset and a barrier — designers can build design features
on the prerequisites, but people who do not have the prerequisites
should not be expected to succeed at tasks that require those pre-
requisites. For our design, the prerequisites are these: users should
be (1) comfortable with using a variety of built-in functions, not
just the infix operators; (2) comfortable using Excel’s copy/paste or
replicate operations, in which a formula is systematically altered to
suit its new location; and (3) able to use more than one worksheet
in a workbook2. The first and the third items provide the scaffold-
ing upon which our approach rests. The second item is tied with
increasing the attention payoff, because it is in this item where the
long-term maintenance costs of these users’ current procedures can
be reduced.

Some people use Excel for nothing more than managing and print-
ing a list of information. Others know how to use very simple for-
mulae, such as= SUM(A1:A10), but nothing more. Our design has
little to offer these groups, because the payoff (approximately zero)
is lower than the learning costs of the prerequisites.

Our primary target audience is moderate users — those who under-
stand the spreadsheet paradigm fairly thoroughly. Not only have
they already mastered the prerequisites, but they also tackle more
ambitious and long-lived applications than does the first group, so
the payoff is greater.

Advanced users can also benefit. Advanced users are those who
understand Visual Basic and use it to write functions they call from
Excel formulae. Our design will be valuable for them if it enables
them to accomplish, at lower cost or lower risk, some tasks that
previously required Visual Basic.

2In Excel, a file contains aworkbook; a workbook consists of
one or moreworksheets, each of which has up to 256 columns and
an arbitrary number of rows. Using multiple worksheets makes it
easier to avoid logically separate computations “bumping into each
other”.

Figure 2. A function instance sheet (bottom) and its invocation
site (top)

4 User-defined functions in Excel
How, then, should user-defined functions be added to Excel? In this
section, we show how the CDs and the model of attention invest-
ment revealed the answers to a number of language design issues
that arose in attempting to answer this question.

4.1 Applying the consistency CD
Recall from Figure 1, theconsistencyCD is expressed as “When
some of the language has been learnt, how much of the rest can be
inferred?” Since we would like our target audience, whose prereq-
uisite skills we enumerated in Section 3.3, to be able to infer (have
a low-cost way of learning) how to create, view, and modify, a user-
defined function, applying the consistency CD is critical. We ap-
plied it by establishing the following ground rule, which is the key
distinguishing feature of our design, relative to any commercially-
deployed alternatives. (We discuss related work in Section 6.)

The implementation of a function must be defined by
a spreadsheet, because that is the only computational
paradigm understood by our target audience.

In keeping with this ground rule, in our design a function imple-
mentation is given by a worksheet, which we call afunction in-
stance sheet, or sometimes just “function instance” for short. As
the prerequisites list of Section 3.2 has already established, our tar-
get users bring to the table an understanding of the idea of multiple
worksheets, and that worksheets can belinkedby writing a formula
in one worksheet that refers to a cell in another. To be consistent
with these prerequisites, our design makes a function sheet look and
behave much like a linked worksheet.

Figure 2 shows an example. The upper worksheet is an ordinary
worksheet. Cell C3 contains an invocation of a user-defined func-
tion F2C, which converts temperatures in Fahrenheit to Centigrade.
The implementation ofF2C is given by a function instance sheet,
shown below in the same figure3. The input parameter lands in cell
B1 of theF2C function instance; cellB2 contains an intermediate
value, while the final result is computed inB3. The fact that thatB1
contains the input andB3 the result is also specified in theinterface
panelthat appears at the bottom of every function instance, which

3Excel already has facilities to show multiple worksheets one
above the other.

4



defines the external interface to the function. Notice, too, that the
input cellB1 contains the formula= Sheet1!B3, which makes ex-
plicit where the function instance gets its input from, using Excel’s
existing notation for cross-sheet links. CellsA1−A3 contain com-
mentary written by the user.

From the figure it is clear that user-defined functions are like spread-
sheets in appearance. The consistency CD makes clear that they
must evaluate like spreadsheets too. Thus, all values are continu-
ously calculated and displayed. If the user changes the value inB3
of the calling sheet, not only is the new result of the invocation cal-
culated and displayed inC3, but the values in each cell of theF2C
sheet are also updated with their new values. Similarly, any change
to theF2C sheet is immediately reflected by re-calculation.

To maintain consistency with other worksheets, function instance
sheets can also contain formatting, funny column widths, fancy bor-
ders, charts, and whatever, all of which may help someone looking
at the internals of the function. In short, an underlying principle
behind every design choice has been consistency in every way pos-
sible between function instance sheets and other worksheets.

This consistency helps to align the users’perceivedcosts and risks
of functions with theactualcosts and risks. For example, a function
sheet’s immediate recalculation sends a visual message to the user,
that these sheets are like the ordinary worksheets to which the user
is accustomed.

For consistency with built-in functions, a user-defined function has
exactly the same status as a built-in function, once defined. For ex-
ample, Excel’s existing “function-entry wizard” (a littlefx button
to the left of the formula bar) pops up a menu of possible functions,
organised by category; when one is chosen, a second dialogue pops
up with a box for each parameter, each with its name, and an ac-
companying summary of what the function does. In our design,
all of this works the same with user-defined functions as with the
built-ins.

What does the consistency CD imply aboutrecursivefunctions, so
dear to the hearts of functional programmers? While recursion still
makes sense in the spreadsheet paradigm [BAD+01], it is much
less useful than in mainstream functional languages: in the absence
of algebraic data types, the only inductive type is integers — and
one can iterate over integers using arrays, much as in APL (Sec-
tion 5)4. Further, recursion would threaten consistency with the
linked-worksheet model, because the number of linked worksheets
would be data-dependent. Lastly, recursion leads to deeper invoca-
tion stacks, which translates into more function sheets potentially
cluttering up the workspace, each element of which adds very little
new information to the human problem solver.

4Excel also supports another, dangerous form of iteration, via
circular formulae (e.g. A1 = A1 + 1). This sort of “recursion”
utterly breaks Excel’s basic functional paradigm, because each re-
calculation sweep computes a fresh iteration, sothe value of each
cell changes over time. Our proposals do not make this technique
safer, nor do they intefere with it.

In short, recursion threatens consistency and potentially adds
attention-investment costs without adding corresponding payoffs.
For these reasons, in our design we chose not to support recursive
user-defined functions5. This decision was not taken lightly, but is
a conscious prioritisation of usability over generality.

4.2 Visibility issues
Role expressivenessandhidden dependenciesare two CDs whose
influences on our design choices can be seen in Figure 2. Excel al-
ready does a nice job of expressing each cell’s role in a calculation
with its color-coded rectangles; we extend this technique to make
clear the roles of actual/formal parameters and the return value.
Hidden dependencies (“Is every dependency overtly indicated in
both directions?”) are something of an issue in the commercial
version of Excel in the presence of linked worksheets, because the
dataflow arrows work only for references within the same spread-
sheet. In our design, dataflow arrows can connect linked work-
sheets, as shown in the figure. As the figure shows, these two de-
vices make explicit the role of the new function relative to the other
worksheets.

The visibility CD emphasizes the importance of every part of the
program being simultaneously visible (assuming a large enough
display). The side-by-side aspect ofjuxtaposability(discussed in
[GP96]) also brings out the importance to human problem solvers
of being able to display related items side-by-side. Since cells’ val-
ues and their formulae are clearly related, in our design it is possible
to view formulae and values together, side by side, as shown in Fig-
ure 2. Further, following from the visibility aspect of this CD, in
our design we allow display of formulae and values simultaneously
in all visible cells, not just one cell at a time. (Excel currently al-
lows viewing of all cells’ values with only one cell’s formula, or
all cells’ formulae with only one cell’s value, and the formula is
displayed in a separate window pane away from the values.)

4.3 Applying the premature commitment CD
In programming languages for professional programmers, pro-
grammers (1) first realize they want to define a function, (2) then
they define that function, and (3) finally they invoke the function.
Step (1) must occur before step (2), which must occur before step
(3).

But our target audience does not necessarily possess the knowledge
that tells them they should define a user-defined function — re-
call there is nothing in their prerequisites list about prior experience
with user-defined functions. Any design that required the above se-
quence would be ignoring thepremature commitmentCD, which
warns about requiring an audience to make a decision before they
have the information to do so. As this CD makes clear, since the
above sequence is unlikely to be followed by our target audience,
our design must instead support a sequence that does not require
such premature commitment. Therefore, the sequence we support
is this: (1) the user has already written some code (formulae) that
works well, (2) the user decides the code needs to be reused or
repeated, (3) the user discovers a low-cost low-risk way to reuse
the existing code through user-defined functions, and (4) the user
acts upon the discovery by converting their existing code to a user-
defined function, which is automatically invoked, when sensible,
where the existing code used to be.

5Can the user create a recursive function by accident? As in all
other formula edits, if the user attempts to enter a recursive, or even
mutually recursive formula, the system must attempt to compute
the answer. In the process of doing so, if the system re-invokes the
same function name, it can stop computing and reject the newly
entered formula.

5



To support this sequence, we allow the user to start with the code
they have written in these two ways:
• Start from a formula in a single cell, or

• Start from an existing ordinary worksheet range of cells.
Note that neither case requires the user to know in advance that she
is going to create a function; rather we provide ways for her to take
her work so far and encapsulate it.

To create a function from a formula in a single cell, the user brings
up the cell’s property menu (with a right-click) and selects “Make
a function using this formula”. This action creates a new function
sheet, displayed in a second window. Thus, the user’s actual cost is
low: a right-click to pop up the property menu and select the option.
(Users will encounter this option when they have other reasons to
pop up the cell’s property menu.) Their risk of losing their invested
effort in creating the previous formula is also low, since the answer
in the cell remains the same. The wording of this menu option
has been deliberately chosen to be non-destructive in an attempt to
communicate this low risk, and the fact that there are no ellipses or
sub-menus attempts to communicate the low cost.

In creating the new function, the system automatically guesses the
number and order of parameters based on the formula, and replaces
the original formula by an invocation of the new function, whose
name is provisionally just “UNTITLED”. The number and order of
parameters is necessarily a guess; for example, in the formula(A6−
32) ∗9/5 are there four parameters (A6, 32, 9, and 5), three, two,
or just one (A6)? Or perhaps there is just one parameter(A6−32).
The system can make a reasonable guess, but there is no way to be
sure. In any case, the user can readily fix up the guess by editing
the interface (Section 4.6).

The other way to create a function is from a larger portion of an
existing worksheet. To do so, the user selects arangeof cells, right-
clicks, and selects “Make a copy into a function”. The original
range is left unchanged, but is also copied into a new function sheet.
Again, the system guesses inputs and outputs, this time based on
dependencies in the range, and the user edits the result. Initially,
there is no invocation of the new function.

The consistency CD arises again here, this time in opposition to
concepts from Attention Investment. Clearly it is not consistent that
our design for generating a function from a range of cells makes a
copy, leaves the original unchanged, and does not invoke the new
function – whereas generating a function from a single cell actu-
ally replaces the original formula with a call to the new function.
However, the user’s perception of cost and of risk could both be
adversely affected if an entire range of cells’ formulae were to dis-
appear and be replaced with a single call to another sheet. Fur-
ther, the likelihood of correctness of the system’s guesses of inputs
and outputs is lower, which means the user would have to patch up
cell relationships without having the original version with which to
compare. (While an “undo” button could rescue the user from such
functions that seem wrong, it cannot make theuseof functions seem
less costly — instead, it simply makes it easy for the user to decide
not to go forward with functions.) In essence, the cost of consis-
tency is too high in this case, in terms of both the user’s attention
cost and their possible perception of the risk involved in using func-
tions.

4.4 Applying the abstraction gradient CD
In programming languages we are accustomed to distinguishing be-
tween a functiondefinition(which we see in our editor) and a func-
tion invocation(which we only see in our debugger, as the transient
contents of a stack frame). A function definition is abstract, in the
sense that it does not include any actual data from a specific instance

of invocation. This means that, when writing a function, program-
mers have to model (in their heads or on paper) the actual data that
will be present when the function is invoked. This modeling process
is an additional attention cost [Bla02], and causes problems for end
users working with functions in other languages. These cognitive
challenges are described by the CD ofabstraction gradient.

In contrast, Figure 2 involves no definition/invocation distinction.
There, theF2C function is shown not as an abstract definition, but
as an actual instance of the function being invoked. This function
instance is populated with “live” data originating from a specific in-
vocation site — the cell where the function is called (the name of the
actual invoking cell is in the interface panel). If there are many in-
vocations toF2C then, conceptually at least, there are many copies
of theF2C worksheet, each with the same layout and formulae, but
populated with different data. There is no such thing as the “defini-
tion sheet” for a function; every function instance is populated with
data from somewhere.

This means that the user can immediately see the effect of any
change on some set of concrete data. This feature is analogous
to the object-oriented prototype/instance model, in which the func-
tional equivalent of a class is defined via a prototype object, from
which additional copies (instances) can be made. Perhaps the best
known language following this model is Self [US87]. The pro-
totype/instance paradigm, like our function instances, reduces the
user’s attention cost by reducing the abstraction gradient.

The user’s experience of these function instances is very similar
to that of linked worksheets, bringing the benefits of a low learn-
ing cost from this consistency, but it raises some interesting design
questions:
• If there are thousands of invocations of a function, how can we

avoid overwhelming the user with thousands of worksheets
(Section 4.5)?

• If only function instances are displayed, how can one edit the
function definition (Section 4.6)?

• What are the implications for debugging functions (Sec-
tion 4.7)?

4.5 Managing visibility costs
Our design greatly increases the amount and kind of logic visible in
worksheets, and with that increased visibility comes the increased
attention cost of managing the display. For example, when each
function instance is displayed as a worksheet, there may be a great
many worksheets active at once. How can the user see just the ones
she wants?

Excel can display multiplewindows simultaneously, inside the
overall Excel frame. In each window, Excel displays onework-
sheetat a time. The user can select which worksheet is displayed
in a window by clicking on that sheet’snamed tab. For example,
Figure 2 shows a 2-window display, in each of which a different
sheet has been selected.

The obvious model is to have a named tab for each function instance
(since they are meant to be like worksheets), but that leads to two
immediate problems. First, there are just too many of them; with
a bit of copy-and-paste, it is easy to create thousands of function
invocations. Second, and more subtly, it is hard tonamethe func-
tion instances — in concrete terms, what should we display on the
function instance’s tab to identify it? Clearly the name of the func-
tion alone is not unique; nor is the name together with the call site,
because the call site’s sheet will have the same naming problem if
it too is a function instance.

We must provide low-cost ways for the user to navigate this sea

6



Figure 3. A function that calls another function

of function instances. We do so by providing, for every function
instance, (a) a direct “link” from a cell to the function instance(s)
invoked by the formula in that cell, (b) a direct link from a function
instance to the formula that invoked it, and (c) a direct connection
between instances of the same function. More specifically, given
an invocation tree(or call tree) of function instances, the user can
navigate in the following ways.

Navigating down the tree.Suppose that a cell (on any sheet – either
an ordinary sheet or a function instance) has a formula contain-
ing an invocation of a functionFoo. The user selects the cell and
requests6 the function instance sheet for a call in that cell; in re-
sponse, the sheet appears below the invoking sheet. For example, if
only the top sheet of Figure 2 had been visible, and the user then in-
teracted in this way with cellC3, the screen would appear as shown
in the figure.

Navigating up the tree.Given a function instance sheet, how does
the user find where in the invocation tree that sheet is? That ques-
tion is answered by looking at the function instance’s summary in-
terface panel, which is always displayed at the bottom of the sheet.
It says explicitly where the function is invoked from; for example
“Called fromA3 of Sheet1”, or “Called fromB7 of functionFoo”.
In the latter case, a popup-menu triangle appears next to “Called
from”, which brings up the entire stack of “Called from” specifica-
tions, all the way up to an ordinary function sheet. Selecting any
member of this stack causes it to be displayed in a new window,
now above the current one, thereby navigating up the invocation
tree. Again following the local tree navigation metaphor, the im-
mediate invoker can be displayed by a single click on the “Called

6Via a button or right clicking and select “show sheet forFoo”.

from...” link. Figure 3 gives an example of nested function invo-
cation, showing the popup menu popped up in theCircAreasheet.
This menu also allows the user to locate a particular function in-
stance in the invocation tree, alleviating the “lost in hyperspace”
problem.

Excel’s usual behaviour when one clicks on a tab is for the specified
worksheet toreplacethe one currently displayed. When navigating
the call tree, however, it is very desirable to show the user bothboth
the function’s definitionand its context of use at the same time —
the CD ofvisibility/juxtaposability again. In our design, therefore,
when navigating down the tree, the current worksheet slides up the
display, and the specified function instance is shown in a second
window below it. Dually, when navigating up the tree, the current
worksheet slides down, and the invoking sheet is displayed above
it.

Function instances still have a tab, like other worksheets, but the
tab displays only the name of the function. Clicking on the tab
brings the most recently-viewed instance of that function to the
front (without any window-shifting; this is just the normal click-
on-tab behaviour). So, in effect, all the instances of a particular
function share a single tab.

Jumping across the tree.What if the user wants to explore more
than one part of the invocation tree at once? If those parts involve
different functions, he can just click the tab of the appropriate func-
tion. If he wants to see them side-by-side, he can use Excel’s fine
existing support for juxtaposability by adding new windows.

If the two parts involve different instances of thesamefunction,
matters are not so clear, because there is only one tab for that func-
tion. We deal with this case by adding a drop-down menu to the
function tab, which gives access to recently visited instances of the
function, identified (albeit perhaps ambiguously7) by their immedi-
ate call site.

4.6 Applying the hidden dependencies CD
The hidden dependenciesCD rises to particular importance when
we consider the issue of change. This CD calls attention to the dan-
ger of unintended consequences when users make changes without
full awareness of the dependencies involved. The hidden depen-
dencies CD suggests that a way to head off such problems is to
make dependencies explicit. In this section, we show how our de-
sign acts upon this suggestion in two change situations: changing a
function’s implementation and changing a function’s interface.

First, consider changes to a function’simplementation. Obviously,
the way the user edits the function’s implementation is simply to
change the cells on one of the function’s instances, but when hap-
pens to the other instances? (Recall, there is no “master copy” of
the function; every worksheet is simply an instance, of equal stature
as all the other instances.)

When one makes a recurrent appointment in an electronic diary, and
then tries to modify it, a pop-up dialogue box shows up saying “Do
you want to alter just this appointment, or the whole series?” In our
design, function editing works in the same way. If the user tries to
modify a function instance, a pop-up box asks whether she wants
to modify all the invocations to the function in the same way (the
default), or whether she wants to create a special-purpose copy of
the function for this particular invocation. (If there is only one invo-
cation of the function, a common case when developing a function,
the “modify this one or all?” question is not asked at all.) Asking

7The potential ambiguity is like the “Alt-Tab” display through
which the Windows operating system offers rapid, but ambiguous,
navigation to running applications.

7



the user explicitly whether she intends to make a global change,
draws her attention to — and gives her control over — the depen-
dencies impacted by the change.

If the user asks to modify all invocations of the function, the func-
tion instance becomes open especially for multiple-instance editing
(with visual feedback to that effect) so that the same question is not
asked repeatedly, which would greatly raise attention costs. If the
user asks to modify just the current invocation, the function is au-
tomatically renamed, because it is now a genuinely new function,
distinct from the original.

Second, consider changes to a function’sinterface— for example,
to add a parameter, or to change the name of the function. The
user’s mechanics are straightforward: theEdit button on the in-
terface panel allows the interface to be edited, by bringing up a
dialogue box that shows the complete interface (which includes the
function’s name, information about each parameter, devices to add
or remove parameters, documentation and help text, etc.) However,
how the system should respond if the function has existing invoca-
tions is not always so straightforward.

If the user has changed the function’s name, or the order of its pa-
rameters, the system’s response is simply to make the same change
at each invocation site. Deleting a parameter can work the same
way. Adding a parameter is more problematic because heuristics
would be needed, and any wrong guesses could “invisibly” intro-
duce bugs without the user realizing the extent of changes being
made at multiple locations, including locations not visible on the
screen. Even one such occurrence could greatly increase the user’s
costs and perception of risk. To avoid this problem, in the case of
adding parameters, the invocation sites are flagged as “broken” (e.g.
Foo(A2, 7) becomesFoo(A2,??,7)). For this approach to be
useful, broken instances must be easy for the user to find. Excel has
a way to select8, and then visit, cells with certain properties (hold-
ing an error value, holding a boolean formula, etc). In our design,
the same technique is used to find cells with broken invocations,
and also cells that invoke a particular function. Any of these invo-
cations that do not get fixed — that invoke non-existent functions or
have the wrong number of parameters — will result in error values,
which are Excel’s equivalent of raising exceptions. Such exceptions
explicitly inform the user of dependencies requiring attention due
to the interface changes.

4.7 Applying the progressive evaluation CD
In other programming languages, a particular function invocation
may exist only fleetingly during the execution of the program. Con-
siderable planning (and its corresponding attention cost) may be
required to halt the program in a state that exhibits the fault; and
even that often reveals merely that a different (often earlier) pro-
gram state must be captured.

The CD known asprogressive evaluationpoints the way to a solu-
tion that avoids these costs, namely to automatically reflect incre-
mentally the specific values in each visible function instance result-
ing from every formula edit. The progressive evaluation CD de-
scribes this incrementality, and research shows that it is of critical
importance to novice users [GP96]. Thus, in our design, debugging
functions is, like any other kind of debugging in spreadsheets, an
activity that can begin as soon as the code-building process begins,
while the program is still incomplete. Even half-complete functions
contain live data that is continuously kept up to date.

Obviously, this is quite unlike conventional debuggers: there is no
notion of “stepping forward” or “setting breakpoints”; the program-
ming model is simply a static tree of linked worksheets, all simulta-

8This facility is not well known: Edit/GoTo.../Special..

neously active and up-to-date. For example, if the user should won-
der why the invocationF2C(50) gives the result 10, he can look
at the intermediate values that are always displayed in theF2C in-
stance for that call, as in Figure 2.

As this example illustrates, in our design, the live data in a function
instance ispersistent9. Indeed, the entire invocation tree is persis-
tent, so that the user can view any number of function instances in
the tree simultaneously. (That is why we generally use the term
“invocation” rather than “call”; it avoids the here-today-and-gone-
tomorrow implications of the latter term.) For example, Figure 3
shows a three-window view, showing the entire invocation tree for
a small program. The absence of recursion facilitates navigation
of the invocation tree: (a) its structure does not depend on the input
data, and (b) repetition is expressed through matrix operations (Sec-
tion 5) which do not clutter the invocation tree, rather than through
recursion, which would.

Debugging functional programs has received quite a bit of atten-
tion from the programming-language community, both for strict
languages [Lie84, FFF+97, TA90] and lazy ones [HO85, Nil98,
SR97]. Some of these proceed by working backwards from an er-
roneous result (algorithmic debugging); others work forward by
allowing the user to “step into” redexes that she identifies. All
make strenuous efforts to present program fragments in their origi-
nal source form. Our debugging model has a very different flavour
to any of these, because there is no mode change between writing or
modifying a program, and debugging it. Changes to the source are
immediately reflected in changes of the execution. Every interme-
diate value is readily accessible, surrounded with any comments, re-
lated values, or other context, that the programmer originally wrote.
Overall, the integration of debugging with programming is so com-
plete that users may not even regard it as a separate activity. This
integration helps to align the perceived costs of working with user-
defined functions with the actual costs.

The use of progressive evaluation does not mean that spreadsheets
are any more correct than other programs! Much research (surveyed
in [Pan98]), has shown that spreadsheets are typically riddled with
errors, and users wildly over-estimate the reliability of their spread-
sheet models. Approaches have been proposed to help address these
problems [RLDB98, IMCZ98, Dav96], and these approaches are
directly applicable in the context of Excel-with-functions.

5 Matrix values in spreadsheets
It may not seem obvious that there is any need for a matrix type in a
spreadsheet. The spreadsheet itself is very clearly a visual represen-
tation of a matrix, and the conventional way of using spreadsheets
is to divide the plane into individual patches, each holding a one- or
two-dimensional collection of data values.

Functions change the picture, though, as theconsistencyCD makes
clear. The issue is consistency of user-defined functions with built-
ins. Consider the built-inSUM function. It takes a vector or ma-
trix as its argument; thusSUM(A1:A10) or SUM(A1:D10). Since
built-in functions in Excel already take matrices as arguments, user-
defined ones ought to do so too.

The next question is how. Consider a user-defined function to com-
pute the sum of the squares of the elements of a vector. Where on
the function instance sheet should the input vector reside? It could
take up the first row, perhaps, but (a) we do not want to specify in
the function’s definition the size of the vector, (because the built-ins

9Persistent in the user model, that is. The implementation can,
of course, cache or recompute function instance data on demand
using any caching strategy.

8



accept matrices of arbitrary size), and (b) we might like a function
to work on matrices and there is only room for one unbounded ma-
trix on a worksheet!

The obvious solution is to allow an input vector (or matrix) to live
in a single cell. Values in Excel carry dynamic type information –
for example, strings, numbers and error values are distinguishable.
All that is required is to add an extra run-time type, namelyma-
trix. We deliberately use terminology that is semantically oriented
(“vector”, “matrix”) rather than implementation-oriented (“array”).
Excel already supports matrix values in so-called “array formulae”,
but that support relies upon explicit size information in every refer-
ence to and propagation of the array of values, which we have al-
ready pointed out violates consistency with built-in functions. Our
design extends Excel by making matrices truly first-class citizens
that support consistency.

The idea of matrices as first-class values, together with a rich library
of functions that operate over such values, was first popularised by
APL, but has been widely used since in languages as diverse as
High-Performance Fortran and Haskell, among many others. The
trick, of course, is how to incorporate them smoothly into Excel in a
way that will be actually used by our target audience of “moderate”
users (Section 3.3).

5.1 The ground rules
The two cognitive dimensions of consistency and error proneness,
along with the Attention Investment notions of cost and risk, led to
our basic design choices:
• Consistency: Any formula can have a matrix as its value.

• Consistency: Matrices are two-dimensional, in keeping with
Excel’s two-dimensional paradigm. (However, a matrix ele-
ment can be of any type, including a matrix, and this offers
much of the power of N-dimensional matrices.)

• Consistency: A vector is just a special case of a matrix (1xN
or Nx1). This means that horizontal vectors are not the same
as vertical vectors, which is consistent with users’ experience
of working with rows and columns in spreadsheets.

• Error proneness, cost, risk: Because of Excel’s default of
treating empty cells as zero-valued cells for some functions,
there are likely to be subtle differences between doing some
kinds of matrix operations with a 1x1 matrix as versus with a
constant. To avoid the risk of subtle, hard-to-find errors that
could arise, we do not define a 1x1 matrix to be the same as a
scalar. However, we also do not want to impose upon the user
the seemingly arbitrary cost of turning scalars into 1x1 matri-
ces. Thus, a scalar is implicitly promoted to be a 1x1 matrix
in any context where a matrix is required. For example, con-
sider a functionBESIDEwhich combines two matrices side-
by-side into a bigger matrix. The formulaBESIDE(1,B1:B2)
works fine, even though 1 is not a matrix; it is simply pro-
moted to a 1x1 matrix.

5.2 Reducing perceived costs and risks in working
with matrices

The user is not required to have the time and inclination to go ex-
ploring for matrix features in order to eventually discover matrices.
(Recall that interest in exploring new features was not one of the
prerequisites we included in defining our target audience.) Rather,
a key to our design is that matrix values are likely to be automati-
cally created when the user starts creating his or her own functions.
For example, if a cell contains the formula= SUM(A1:A5)/4, and
the user uses the “Make a function from this formula” technique
described in Section 4.3, then the newly-created function will auto-

Figure 4. A worksheet that manipulates vectors.

matically have a vector input parameter (A1:A5) landing in its input
cell. This provides a low-cost entry point into the use of matrix
values.

Once this event has occurred, we would like the user’s perception to
be that the risks involved are low. Figure 4 will serve as an example
to discuss the steps we have taken toward this goal.

Figure 4 shows a functionMyAvgthat might form part of a teacher’s
grading application. It takes a vector of marks (input cellA1) and a
vector of weights (input cellA2), and computes the weighted sum of
the marks (result cellA6). CellA3 also contains a vector, the result
of multiplying the marks by the weights element-wise. The formula
= SUM(A3) in cell A4 adds up the elements of the vector argument
to SUM, namely the vector inA3. The invocation onSheet1 (not
shown) would look like= MyAvg(A1 : A5,{1,2,2,1,2}), as can be
seen from the formulae in the input cells ofMyAvg. (The notation
{1,2,2,1,2} is Excel’s existing notation for a literal vector value.)

A key to reducing perceived risk is to help the user understand the
meaning of the current state. (Dropping the users into a state they do
not understand is likely to increase their perception of risk, which
could send them directly to the ‘undo’ button.) Thus, following
the CD ofrole expressiveness, the roles of the matrix values in the
function are explained to the user in two ways. First, the panel
at the bottom shows the overall role of the matrix values in this
function. Second, any cell that contains a matrix value, such as
cells A1,A2,A3, gives a visual cue to its contents. Figure 4 gives
an example of one possible cue, in which the cell contents shows
the first few values, together with an arrowhead suggesting more
values. Hovering the mouse over the cell brings up a scrollable
floating panel, much like that for a comment, that allows the user
to examine (but not modify) the value of the matrix. This, too, is
shown in Figure 4.

5.3 A potential risk: trapped in a matrix
From a risk perspective, we do not want the gathering of a group
of values into a matrix to mean that the propagations and results of
these values can never again be spread out over a range of cells. For
example, in Figure 4, the values of range= Sheet1!A1:A5 have been
gathered into a single cell= MyAvg!A1. If the range had been quite
large (e.g.,= Sheet1!A1:A100), most values would not be visible,
except by scrolling the floating panel. If it were not possible to
translate the matrix value back to a range of cells, users would be
restricted as to how they could view not only that matrix, but also
all future matrix values propagated from the original. Since the uses
of all future propagations cannot be predicted, this would be a clear

9



case of the CDpremature commitment, requiring people to make
decisions before they have all the necessary information.

To avoid this potential risk, we allow matrix values to be spread
over a range of cells. More precisely, a range of cells may be given
a single, matrix-valued formula, whose value is then spread across
the range. For exampleA1:A10 contains a horizontal vector value.
To spread out a value over a range of cells, our syntax is this: se-
lect a range of cells, such asA1:A10, and type a formula, such as
= B1:B12. (This is the equivalent of the strictly textual syntax of
A1:A10= B1:B12.) The value denoted by this formula (= B1:B12)
is then spread out over the selected cells (A1:A10). If the value is too
small, the unused cells are blank; if it is too big, the excess values
are not shown (and indeed are not accessible).

When hovering the mouse over a range of cells that share a single
formula in this way, the range highlights. If the range is too small
to fit the matrix value, the appropriate border(s) of the highlighted
range are given a ragged edge to indicate the non-visible values.
One can then drag a handle in the corner to resize the range, thereby
showing more or fewer elements of the matrix.

6 Related work
6.1 Other approaches to functions in spreadsheets
Excel today provides user-defined functions by allowing the user to
write a function in Visual Basic. We will refer to this a “trapdoor”
approach, because it is simply an exit from the usual language to a
pre-existing one from the world of traditional programmers.

Several research systems have supported functions in spreadsheets.
Except for the Forms family (discussed next), they are all either
imperative or trapdoors. Examples of trapdoors that are also im-
perative include Penguims [Hud94], Action Graphics [HM90], SIV
[CRB+98], Spreadsheet for Images [Lev94]. Prograph [SCB96] is
similar except that the trapdoor goes the other way: one takes a
trapdoor out of Prograph into a spreadsheet (with imperatives in it).
C32 [Mye91] uses a semi-declarative approach via a trapdoor into
Lisp. (By semi-declarative, we mean that it is declarative to the
same extent that Lisp itself is.)

The notion of declarative functions as multiple sheets was first in-
troduced by Forms [Amb87]. Although Forms itself was a short-
lived language, its concept of functions as multiple sheets survived
in the later members of this family of languages. The concept of
how to support functions as multiple sheets was extensively devel-
oped in Forms/3 [BA94, BAD+01], and this language influenced
our Excel extension.

However, research systems have the luxury of not having to support
existing communities or real-world needs. In light of the realities
introduced by these factors, the Excel extensions described here
differ from previous research in a number of significant ways. First,
previous systems did not address creating a function from a pre-
existing formula or spreadsheet. Rather, the notion was that a user
would explicitly define a function by building a spreadsheet from
scratch. Defining functions from pre-existing formulae or sheets
is critical for creating a gentle migration path, because it allows
legacy Excel workbooks to be gradually transformed, one function
at a time, as repeated code is discovered.

Second, previous research did not deal with some of the important
scalability issues that related to usability, such as how to locate one
of many functions and instances of the same functions. Scalability
is often the critical point that determines whether solutions that look
fine on toy academic problems can be truly useful. Because of its
practical importance, this has been an important issue in the design
of the Excel extension.

Finally, there is support in the Forms/3 approach to functions for
some features that are specifically not included in the Excel ex-
tension. Two of the most noticeable such features are automatic
generalization of function calls and support for recursion. Neither
of these features is expected to be of importance to our target audi-
ence, and we have elected not to include them.

6.2 Other usability techniques
Empirical evaluation(or a “usability study”) is a reasonably com-
mon approach to the evaluation of new user interface designs. Many
research evaluations in HCI rely on controlled experiments, where
user performance on an experimental task can be compared for al-
ternative interfaces. The problem for programming language de-
sign is how to select suitably representative tasks, reflecting both
the scale and variety of potential programs that might be created.
Empirical studies that address such broad questions are generally
too expensive to inform a design like ours during its evolution, al-
though they have value in a summative (after-the-fact) role. We do
intend to follow standard Microsoft practice in conducting usabil-
ity studies of our design before it is brought to market. We consider
that this is an important reality check for any innovation.

Empirically based design.A few researchers have followed an ap-
proach in which empirical studies were conducted before the main
design, testing specific experimental hypotheses rather than gen-
eral measures of utility. Examples of this approach include the
Hands language [PMM02] and SWYN [Bla01]. The similarity to
our work is philosophical — in their work and ours, the emphasis is
on the human from the very outset of the design process. However,
these projects do not involve existing languages intended for pro-
duction use, and the experiments isolate factors of interest rather
than evaluating their contribution to a larger system. This means
that the research process can be rather simpler than the constraints
we face. Nevertheless, as most such research is published, we have
been able to take advantage of findings from experimental studies
testing aspects of Attention Investment, Cognitive Dimensions, and
novel spreadsheet systems.

Language design heuristics.A popular alternative to expensive em-
pirical studies is Heuristic Evaluation [NM90]. Summaries of good
practice and of results from previous research are systematically
compared to a new design, in order to apply the lessons from things
that worked well, or badly, in the past. Heuristic evaluation is not
normally applied to programming languages, but an exception is the
reference manual compiled by Pane and Myers collecting usability
factors in programming language design [PM96]. They concen-
trated on factors that are relevant to novice programmers, mainly
because this population is seen as suffering more severely when
programming languages are hard to use.

The techniques briefly surveyed in this section concentrate on eval-
uating and improving specific features of a language or program-
ming environment. In our case, we wanted to approach the problem
from first principles, with usability concerns driving our whole ap-
proach to the design, rather than the more common approach, which
is to create a first-cut design based only on generic consideration of
user concerns, that is then used as a target for more specific usabil-
ity refinements based on empirical or heuristic methods. For that
reason, we chose techniques that focused on the cognitive needs
of programmers, rather than focusing on aspects of languages or
interfaces. Attention Investment does this at a very abstract level,
addressing the cognitive demands of the programming task itself.
Cognitive Dimensions applies those demands in specific ways in
order to anticipate usability problems. We have found the com-
bination to be an effective approach for taking human issues into
account in the design of programming languages.

10



7 Status of implementation and empirical
work

We have implemented several “demonstration of concept” proto-
types that concentrate mostly on the front end of the features we
have described, i.e., the aspects the user sees. The prototypes
are: (1) a set of Excel macros (written in Excel’s Visual Basic
for Applications) that implements many of the features of user-
defined functions and matrices but for a limited example; (2) a
PowerPoint mock-up that demonstrates functionality through Pow-
erPoint’s event-oriented animation features; and (3) a prototype in
Macromedia Director that implements a smaller subset of the fea-
tures than the Excel macro implementation but for a larger range of
examples.

None of these prototypes is adequate for use in a real application
or for experimental evaluation, because so much user interaction
with Excel relies on seamless recalculation in response to any ex-
ploratory user action. The behind-the-scenes aspects — that is, the
proper evaluation semantics of sheet instantiation and recalcula-
tion — can use many of the methods that have been fully imple-
mented in Forms/3, which can thus be regarded as a standalone
prototype for those aspects. The Forms/3 implementation has been
the setting for numerous empirical studies with human subjects (c.f.
[BAD+01, BCACA02], but Forms/3’s front-end aspects differ from
those presented here, so the Forms/3 empirical work is only a pre-
cursor of empirical studies that would evaluate the approach de-
scribed in this paper.

8 Conclusion
We have presented a design process in which we started from a
popular, but limited, end-user programming paradigm (the spread-
sheet), and extended it to provide some of the capabilities of general
purpose programming languages (user defined functions and ma-
trices). We have not approached our work as a generic language
design exercise. For example, we have explicitly chosen not to
support some standard aspects of the functional paradigm, such as
recursion. Instead, we have made design tradeoffs that give first
priority to the cognitive requirements of the spreadsheet users.

The analytic approach that we have taken in this design process is
based on recent developments in the study of programming usabil-
ity, including the cognitive dimensions of notations framework, and
the attention investment model of abstraction use. Both provide a
systematic description of design criteria that are intuitively famil-
iar, but usually applied only in an ad-hoc way by programming lan-
guage designers. We have used these criteria to establish and review
priorities in our design choices. We believe that this approach is
applicable not only to ”end-user” programmers (who are generally
likely to have more difficulty learning and using new programming
languages), but also to the design and extension of programming
languages and environments for professional programmers.

This project is unusual as a programming language research project:
not only because of the extent to which it highlights user concerns,
but also in that it applies programming language insights to a prod-
uct not normally considered as a programming language. The exer-
cise is also distinctive with regard to other research in programming
language usability, because we are working toevolvethe design of a
well-establishedlanguage in practical use, rather than starting from
scratch with the design of a new language for research purposes.

We believe putting human concerns at the forefront of language
design will become increasingly important. The ability to inte-
grate programming language principles with human problem solv-
ing principles when evolving established programming systems

may in the future be the factor that differentiates successful applied
programming language design research and practice.

9 References
[Amb87] A Ambler. Forms: Expanding the visualness of

sheet languages. InWorkshop on Visual Languages,
Linkoping, Sweden, August 1987.

[BA94] M Burnett and A Ambler. Interactive visual data
abstraction in a declarative visual programming lan-
guage.Journal of Visual Languages and Computing,
5:29–60, March 1994.

[BAB+00] B Boehm, A Abts, S Brown, B Chulani, E Clark,
R Horowitz, D Madachy, Reifer, and B Steece.Soft-
ware Cost Esimation with COCOMO II. Prentice
Hall PTR, Upper Saddle River, NJ, 2000.

[BAD+01] Margaret Burnett, John Atwood, Rebecca Walpole
Djang, Herkimer Gottfried, James Reichwein, and
Sherry Yang. Forms/3: A first-order visual lan-
guage to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming,
11:155–206, March 2001.

[BB02] AF Blackwell and M Burnett. Applying attention
investment to end-user programming. In HCC’02
[HCC02], pages 28–30.

[BBC02] L Beckwith, M Burnett, and C Cook. Reason-
ing about many-to-many requirement relationships in
spreadsheets. In HCC’02 [HCC02], pages 149–157.

[BCACA02] M Burnett, N Cao, M Arredondo-Castro, and J At-
wood. End-user programming of time as an ‘ordi-
nary’ dimension in grid-oriented visual programming
languages.Journal of Visual Languages and Comput-
ing, 13(4):421–447, August 2002.

[BG87] P. Brown and J. Gould. Experimental study of people
creating spreadsheets.ACM Transactions on Office
Information Systems, 5:258–272, 1987.

[BG03] AF Blackwell and TRG Green. Notational systems
– the cognitive dimensions of notations framework.
In JM Carroll, editor,HCI Models, Theories, and
Frameworks: Toward an Interdisciplinary Science.
Morgan Kaufmann, 2003.

[Bla01] A Blackwell. See what you need: helping end users
to build abstractions.Journal of Visual Languages
and Computing, 5:475–499, October 2001.

[Bla02] AF Blackwell. First steps in programming: A ra-
tionale for attention investment models. In HCC’02
[HCC02], pages 2–10.

[CRB+98] E Chi, J Riedl, P Barry, P Konstan, and J Konstan.
Principles for information visualization spreadsheets.
IEEE Computer Graphics and Applications, pages
30–38, July 1998.

[CW00] C. Corritore and S. Wiedenbeck. Direction and
scope of comprehension-related activities by proce-
dural and object-oriented programmers: An empir-
ical study. InInternational Workshop on Program
Comprehension, pages 139–148, Limerick, Ireland,
June 2000.

[Dav96] JS Davis. Tools for spreadsheet auditing.Interna-
tional Journal of Human-Computer Studies, 45:429–
442, 1996.

[DP95] Joseph Dumas and Paige Parsons. Discovering the

11



way programmers think about new programming en-
vironments.Communications of the ACM, 38:45–56,
June 1995.

[FFF+97] R Findler, C Flanagan, M Flatt, S Krishnamurthi, and
M Felleisen. DrScheme: A Pedagogic Programming
Environment for Scheme. In PLILP’97 [PLI97],
pages 369–388.

[GP96] TRG Green and M Petre. Usability analysis of vi-
sual programming environments: a “cognitive di-
mensions” framework.Journal of Visual Languages
and Computing, 7:131–174, 1996.

[GPB91] T. Green, M. Petre, and R. Bellamy. Comprehensi-
bility of visual and textual programs: A test of su-
perlativism against the ’match-mismatch’ conjecture.
In Empirical Studies of Programmers: Fourth Work-
shop, New Brunswick, New Jersey, pages 121–146.
Ablex, December 1991.

[HCC02] IEEE Conference on Human-Centric Computing
Languages and Environments, Arlington. IEEE Com-
puter Society, September 2002.

[HLMC96] Christopher M. Hoadley, Marcia C. Linn, Lydia M.
Mann, and Michael J. Clancy. When, why and how
do novice programmers reuse code? InEmpiri-
cal Studies of Programmers: Sixth Workshop. Ablex,
1996.

[HM90] C Hughes and J Moshell. Action Graphics: A
spreadsheet-based language for animated simulation.
In T Ichikawa, E Jungert, and R Korfhage, editors,
Visual Languages and Applications, pages 203–235.
Plenum Publishing, 1990.

[HO85] CV Hall and JT O’Donnell. Debugging in a side-
effect-free programming environment. InProc ACM
Symposium on Language Issues and Programming
Environments. ACM, Seattle, January 1985.

[Hud94] S Hudson. User interface specification using an en-
hanced spreadsheet model.ACM Transactions on
Graphics, 13:209–239, July 1994.

[IMCZ98] Takeo Igarashi, Jock Mackinlay, Bay-Wei Chang,
and Polle Zellweger. Fluid visualization of spread-
sheet structures. InIEEE Symposium on Visual Lan-
guages, Halifax, Nova Scotia, pages 118–125. IEEE,
September 1998.

[Lev94] M Levoy. Spreadsheet for images.Computer Graph-
ics, 28:139–146, 1994.

[LGAH02] Y. Li, J. Grundy, R. Amor, and J. Hosking. A data
mapping specification environment using a concrete
business form-based metaphor. In HCC’02 [HCC02],
pages 158–166.

[Lie84] H Lieberman. Steps toward better debugging
tools for LISP. InACM Symposium on Lisp and
Functional Programming (LFP’84), pages 247–255.
ACM, 1984.

[Mye91] B Myers. Graphical techniques in a spreadsheet for
specifying user interfaces. InACM Conference on
Human Factors in Computing Systems, New Orleans,
pages 243–249, April 1991.

[Nar93] B. Nardi.A Small Matter of Programming: Perspec-
tives on End User Computing. The MIT Press, Cam-
bridge, MA, 1993.

[NC85] A Newell and SK Card. The prospects for psycholog-
ical science in human-computer interaction.Human-
Computer Interaction, 1:209–242, 1985.

[Nil98] Henrik Nilsson. Declarative Debugging for Lazy
Functional Languages. PhD thesis, Department of
Computer and Information Science, Linköpings uni-
versitet, S-581 83, Link̈oping, Sweden, May 1998.

[NM90] J Nielsen and R Molich. Heuristic evaluation of user
interfaces. InProceedings of ACM CHI’90 Confer-
ence, Seattle, pages 249–256, April 1990.

[Pan98] RR Panko. What we know about spreadsheet errors.
Journal of End User Computing, 10:15–21, 1998.

[PLI97] International Symposium on Programming Lan-
guages Implementations, Logics, and Programs
(PLILP’97), volume 1292 ofLecture Notes in Com-
puter Science. Springer Verlag, September 1997.

[PM96] JF Pane and BA Myers. Usability issues in the de-
sign of novice programming systems. Technical Re-
port CMU-CS-96-132, Carnegie Mellon University,
School of Computer Science, August 1996.

[PMM02] J Pane, B Myers, and L Miller. Using HCI tech-
niques to design a more usable programming system.
In HCC’02 [HCC02], pages 198–206.

[RLDB98] G Rothermel, L Li, C DuPuis, and M Burnett. What
you see is what you test. InInternational Confer-
ence on Software Engineering, Kyoto, pages 198–
207, April 1998.

[SCB96] T Smedley, P Cox, and S Byrne. Expanding the util-
ity of spreadsheets through the integration of visual
programming and user interface objects. InAdvanced
Visual Interfaces ’96, Gubbio, Italy, pages 148–155,
May 1996.

[SR97] J Sparud and C Runciman. Tracing lazy func-
tional computations using redex trails. In PLILP’97
[PLI97].

[TA90] AP Tolmach and AW Appel. Debugging Standard
ML without reverse engineering. InProc ACM Con-
ference on Lisp and Functional Programming, Nice.
ACM, June 1990.

[US87] D. Ungar and R. Smith. Self: The power of simplic-
ity. ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA), pages 227–242, October 1987.

[YBDZ97] S. Yang, M. Burnett, E. DeKoven, and M. Zloof.
Representation design benchmarks: a design-time aid
for VPL navigable static representations.Journal of
Visual Languages and Computing, 8(5/6):563–599,
Oct/Dec 1997.

12


