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Abstract
Real-world execution traces record performance problems
that are likely perceived at deployment sites. However, those
problems can be rooted subtly and deeply into system lay-
ers or other components far from the place where delays
are initially observed. To tackle challenges of identifying
deeply rooted problems, we propose a new trace-based ap-
proach consisting of two steps: impact analysis and causality
analysis. The impact analysis measures performance impacts
on a component basis, and the causality analysis discovers
patterns of runtime behaviors that are likely to cause the
measured impacts. The discovered patterns can help perfor-
mance analysts quickly identify root causes of perceived per-
formance problems. We instantiate our approach to study the
performance of device drivers on over 19,500 real-world ex-
ecution traces. The impact analysis shows that device drivers
constitute a non-trivial part (≈ 38%) in the overall system
performance, and a big part (≈ 26%) is due to interactions
between drivers. The causality analysis effectively discov-
ers highly suspicious and high-impact behavioral patterns in
device drivers, examined and confirmed by our automated
evaluation, developers, and performance analysts.

Categories and Subject Descriptors D.4.8 [Operating Sys-
tems]: Performance; D.2.5 [Software Engineering]: Testing
and Debugging—Diagnostics, Tracing; D.2.8 [Software
Engineering]: Metrics—Performance measures

Keywords Device Drivers, Execution Traces, Performance
Analysis, Bottlenecks, Contrast Data Mining
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1. Introduction

Real-world execution traces collected by mature infrastruc-
tures, such as the Event Tracing for Windows (ETW) [1] and
DTrace [2] for Unix-like systems, offer tracing events with
timestampes and callstacks for both user-mode applications
and system layers. Such traces can record performance prob-
lems that are likely perceived at deployment sites and usu-
ally triggered by complex runtime environments and real-
world usage scenarios. By analyzing large-scale and diverse
execution traces collected from deployment-site computers,
performance analysts and developers can gain useful knowl-
edge for system design and optimization.

However, finding performance problems from real-world
traces is challenging. The problems can be rooted subtly and
deeply into system layers or other components far from the
place where delays are initially observed. Performance an-
alysts have to spend great efforts to confirm the existence
of subtle problems, and to figure out how they were caused
and spread. Given many real-world execution traces where
bad performance may be amortized over various underly-
ing problems, such performance-analysis activities become
harder or even infeasible.

Based on our observation in real-world traces, we identify
and generalize the concept of cost propagation in systems
consisting of interacting components as an important under-
lying mechanism that introduces the subtleness of perfor-
mance problems. In particular, the term “cost propagation”
refers to a phenomenon that the cost of executing a com-
ponent is propagated and accumulated to the execution of
another component through cross-component interactions.

There are different kinds of interactions causing cost
propagation. Call dependency is a well-known kind, which
accumulates costs from callees to callers. Lock contention
is a subtle kind, which allows a delay to be propagated to
all other components waiting for the same lock. In com-
plex software ecosystems (e.g., Windows systems), different
kinds of interactions can be combined together to create
performance bottlenecks involving multiple victims. For ex-
ample, there can be a very long propagation path or multiple



propagation paths consisting of both call dependencies and
contentions on different locks.

The cost propagation brings challenges to performance
analysis of complex systems. Existing techniques, such as
call-graph profiling [14] and lock-contention analysis [36],
face two major limitations. First, these techniques cover a
single aspect of underlying interactions only, which is ei-
ther call dependency or lock contention. Their combinato-
rial effects are not generally considered or addressed. Sec-
ond, these techniques usually work on a single program
with a limited investigation scope, but cannot explain per-
formance problems with complex cause-and-effect chains
that are transparent to the program, but are grounded in the
underlying system. To better reveal and explain these prob-
lems, a large number of system-level execution traces can be
leveraged from real-world deployment sites. Handling these
traces requires effective abstractions that can capture essen-
tial information, and classify similar and distinct runtime be-
haviors towards providing concise and actionable results.

To address these challenges, we propose a new approach
consisting of two steps: impact analysis and causality anal-
ysis. The impact analysis extracts Wait Graphs [16] (Sec-
tion 3.1) from execution traces, and measures performance
impacts with respect to cost propagation on Wait Graphs.
Performance analysts can narrow down the investigation
scope by choosing highly suspicious components to mea-
sure, and decide whether the causality analysis is needed
based on the significance of performance impacts.

The causality analysis discovers behavioral patterns of
highly suspicious and high-impact components that are
likely to cause perceived performance problems. To cap-
ture the essence of problematic behaviors with respect to
cost propagation, we design the Signature Set Tuple (Sec-
tion 4.1) as a pattern representation that presents abstracted
and generalized behaviors to performance analysts. A Sig-
nature Set Tuple generalizes interacting behaviors among
components in the form of signature sets (a set of function
signatures extracted from callstacks). Such abstraction and
generalization facilitate the comprehension of performance
problems by narrowing down the investigation scope as well
as preserving highly suspicious behaviors that may appear
similarly in different traces.

The causality analysis is grounded in the technique of
contrast data mining [7] to address challenges in discov-
ering problematic behaviors. Such challenges are two-fold:
bad performance can be amortized over multiple problem-
atic behaviors, and there is no easy oracle for identifying
problematic behaviors, especially for the expensive but nec-
essary ones. Our technique exploits the fact that a large num-
ber of execution traces may contain various runtime behav-
iors with both good and bad performance. In particular, our
technique defines two contrast classes over execution traces
as a fast class and a slow class based on thresholds of exe-
cution time (usually specified by developers as the expecta-

tions on performance). The fast class contains expected run-
time behaviors, whereas the slow class contains problems to
be identified. Our technique applies two criteria to identify
contrast patterns: (1) a pattern appears in the slow class but
not in the fast class; (2) a pattern appears in both classes, but
the pattern in the slow class shows a significant amount of
execution time compared with the pattern in the fast class.
The identified contrast patterns can reflect underlying key
factors that discriminate the performance contrasts.

In this paper, we choose device drivers in Windows op-
erating systems as a representative to demonstrate our ap-
proach and study performance problems. Device drivers
constitute a majority part (about 70%) in the Linux code
base [26], as well as in the Windows kernel [21]. Perfor-
mance analysts in Microsoft product teams have noticed that
a non-trivial number of response delays in user-mode appli-
cations were likely caused by device drivers. Therefore, it is
interesting, as well as necessary, to study how device drivers
affect overall system performance.

We notice that two key characteristics in device drivers
can cause cost propagation. First, locks are widely used in
device drivers to synchronize shared resources over the sys-
tem kernel. Second, device drivers are organized in a hi-
erarchical architecture (a.k.a driver stack) in which drivers
can interact with each other via system services, e.g., the
IoCallDriver routine in Windows. The form of hierarchi-
cal dependencies connecting multiple contention points of
different locks can propagate a delay to all affected drivers
and corresponding user-mode applications to create remark-
able performance problems.

Main Contributions. In this paper, we make main contri-
butions from two aspects. On performance analysis, we pro-
pose a practical two-step approach with effective data and
pattern abstractions to measure performance impacts man-
ifested through cost propagation, and discover behavioral
patterns closely related to performance problems via con-
trast data mining. The effectiveness of the pattern discov-
ery is examined and confirmed by our automated evaluation,
driver developers, and performance analysts.

By applying the impact analysis on 19,500 real-world
execution traces (339 hours of duration in total, collected
from Windows machines), we show the empirical evidence
of performance impacts posed by device drivers. Our find-
ings show that device drivers constitute 36.4% on waiting
time and 1.6% on running time in overall Windows per-
formance, within which cost propagation causes 26.0% on
waiting time. Moreover, by applying the causality analysis
on some typical application scenarios, we show concrete ex-
amples of performance problems related to device drivers.
These findings suggest that identifying and minimizing po-
tential cost propagation in device drivers should be an im-
portant direction for designing a high-performance system,
especially for the cases involving driver/driver interactions,
which complement the discussion by Kadav et al. [21].



2. Background and Motivating Examples
In this section, we first briefly introduce the basic notions
about execution traces, and then use a real-world perfor-
mance problem to show cost propagation in device drivers,
and how our approach helps analysts find such problem.

2.1 Execution Traces

Execution traces are the data source of our trace-based
performance analysis. To simplify the data representation
while preserving essential information, we use an abstracted
schema called trace stream. The schema is compatible with
existing popular tracing infrastructures, e.g., ETW [1] and
DTrace [2].

Trace Stream. A trace stream TS is a sequence of tracing
events e0e1e2 . . . eL−1. Each event e falls into one of the
following four types: (1) a running event represents CPU
usage sampled in a constant interval, e.g., 1 millisecond in
ETW and DTrace; (2) a wait event occurs when a thread
enters the waiting state due to blocking operations, e.g., a
thread tries to acquire a lock being held by others; (3) an
unwait event occurs when a running thread signals another
thread in the waiting state to continue execution, e.g., a
thread releases a lock or sends a message; (4) a hardware
service event is recorded with a start timestamp and duration
in the period of a hardware operation.

Each event e is also related to a set of fields, which are
callstack (denoted as e.S), timestamp (e.T ), cost as time du-
ration (e.C), the related thread ID (e.T ID), and the ID of the
other thread to be unwaited (e.WTID). These fields are suf-
ficient for capturing and characterizing essential runtime be-
haviors under performance analysis from a cost-propagation
perspective.

Scenario. Performance analysts usually start perfor-
mance analysis with a scenario, e.g., BrowserTabCreate for
creating a browser tab, to explore what run slow in that sce-
nario. During a period of time, a system could have multiple
ongoing scenarios simultaneously, since a user can browse
websites while the system is performing other operations.
Performance analysts have a set of predefined scenarios that
are used to capture scenario-related execution traces.

Scenario Instance. A trace stream can contain events
for multiple scenarios that were being performed by the
system during the tracing period. Among these events, an
event sequence representing the execution of a single sce-
nario is called a scenario instance. A scenario instance typ-
ically starts and ends with the events from a single initiating
thread, which initiates the execution of a particular scenario.
For example, a browser UI thread that reacts to a user’s re-
quest of creating a new browser tab is an initiating thread
for BrowserTabCreate. Formally, a scenario instance I of a
scenario S is a tuple 〈TS, S, TID, t0, t1〉, indicating that the
execution of the scenario S starting from a thread (with the
identifier TID) within the time period between t0 and t1 is
recorded in a trace stream TS.

Some events may overlap across multiple instances in the
same trace stream. Such overlap indicates that other threads
are suspended by the thread that triggers those overlapped
events, so it is a typical manifestation of cost propagation.
Such observation is the key to our approach to be effective in
analyzing performance problems related to cost propagation.

2.2 A Real-World Case

We use a real-world case to show how cost propagation
in device drivers is involved in producing a performance
problem. Due to confidentiality, we anonymize the names
of device drivers and relevant resources in this example.

An execution instance of the scenario BrowserTabCreate
cost over 800 milliseconds to complete. From the user’s
perspective, the web browser fully displayed a new tab in
over 800 milliseconds after the user had clicked “create a
new tab”. Such delay is perceivable on the user interface.

This problem involves three device drivers having lock
contentions and hierarchical dependencies. First, File Virtu-
alization filter driver fv.sys uses locks to synchronize queries
on the entries of an internal File Table that maps some “vir-
tual” files to their physical locations on the file system. Sec-
ond, File System driver fs.sys acquires locks on Meta Data
Units (MDUs) that contain file metadata when there are re-
quests on reading or writing a file. Third, Storage Encryption
driver se.sys performs computation-intensive encryption and
decryption when data are being read and written on storage
media. The three device drivers form a hierarchy in which
the top-most driver fv.sys invokes fs.sys, whereas fs.sys in-
vokes se.sys. To ease the illustration, we omit those less rel-
evant drivers that may exist in the hierarchy on a real ma-
chine.

Figure 1 is a thread-level snapshot restructured from the
trace stream to show the period of delay. The figure presents
each thread by its corresponding callstack that contains on-
going operations. There were six threads executing the three
device drivers during this period. We denote these threads by
the notation TX,Y , which means the thread Y of the process
X . The dotted arrows in the figure represent the directions
of cost propagation among threads.

Lock Contentions on the File Table. When the user
clicked “create a new tab” on the browser, the browser UI
thread TB,UI started to access some “virtual” files. So TB,UI

executed fv.sys to query the File Table. However, two other
worker threads TB,W0 and TB,W1 were performing file op-
erations in the background, and happened to execute fv.sys
at the same time. As a consequence, the three threads were
contending a lock on some entries in the File Table, thereby
forming a region of lock contentions in fv.sys (shown as the
upper dashed box in Figure 1). Among these three threads,
TB,W1 first got the lock, so the other two threads had to wait.

Hierarchical Dependency between fv.sys and fs.sys.
TB,W1 proceeded to execute fs.sys by a function call initi-
ated from fv.sys, thereby creating a hierarchical dependency
between the two device drivers (shown as the arrow (4)
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fv.sys!QueryFileTable

Browser!TabCreate

kernel!OpenFile
...

kernel!AcquireLock

Browser UI thread TB,UI

...

fv.sys!QueryFileTable

Browser!Worker

kernel!CreateFile
...

kernel!AcquireLock

...
Browser!Main

...

fv.sys!QueryFileTable

Browser!Worker

kernel!CreateFile
...

...
fs.sys!AcquireMDU

kernel!RequireResource

...
AV!Worker

kernel!OpenFile
...

fs.sys!AcquireMDU
kernel!RequireResource

...
CM!Worker

kernel!OpenFile
...

fs.sys!AcquireMDU
...

se.sys!ReadDecrypt

Browser worker thread 

TB,W0

(FileTable lock holder)

Browser worker thread 

TB,W1

AntiVirus worker thread 

TA,W0

(MDU lock holder)

Configuration Manager 

worker thread TC,W0

System worker thread TS,W0

...
kernel!Worker

fs.sys!Read

Contention region of 

FileTable lock

(4)

Dependency from fv.sys to

fs.sys via function call

(1)Dependency from fs.sys to

se.sys via system-service call

kernel!WaitForObject(3)

(5)
(6)

(2)

Contention region of 

MDU lock

Disk service time and

Decryption CPU time

(1)se.sys propagates the disk time and its decryption CPU time to fs.sys via system-service call return

(2)TC,W0 propagates its delay and accumulates its CPU time via releasing the MDU lock to TA,W0

(3)TA,W0 propagates its delay and accumulates its CPU time via releasing the MDU lock to TB,W1

(4)fs.sys propagates its delay to fv.sys via function call return

(5)TB,W1 propagates its delay and accumulates its CPU time via releasing the FileTable lock to TB,W0

(6)TB,W0 propagates its delay and accumulates its CPU time via releasing the FileTable lock to TB,UI

Then TB,UI continues its execution until the finish of the browser tab creation

Figure 1. An illustration of cost propagation due to lock contentions and hierarchical dependencies among device drivers

in Figure 1). Thus, the continuation of executing fv.sys de-
pended on the return of fs.sys.

Lock Contentions on Meta Data Units (MDUs). During
the period that TB,W1 was running, two threads TA,W0 and
TC,W0 from two other applications (i.e., the AntiVirus and
the Configuration Manager applications in Figure 1) were
contending a lock on MDUs in fs.sys. Coincidentally, TB,W1

joined to contend the same lock. Therefore, TB,W1, TA,W0,
and TC,W0 created another region of lock contentions in
fs.sys, shown as the lower dashed box in Figure 1. TC,W0

first got the lock, and proceeded.
Hierarchical Dependency between fs.sys and se.sys.

TC,W0 established a hierarchical dependency between fs.sys
and se.sys by a system-service call that reads data from disk
(shown as the arrow (1) in Figure 1). The system thread
TS,W0 was scheduled to serve the read request by fetching
data from disk and executing se.sys to decrypt. To accom-
plish the task, TS,W0 cost hundreds of milliseconds.

Summary: Manifestation of Cost Propagation. The
three device drivers together created a bottleneck that con-
sisted of two regions of lock contentions, and two hierar-
chical dependencies over the six threads (i.e., three browser
threads, one AntiVirus thread, one Configuration-Manager
thread, and one system thread). A delay occurring in TS,W0

was propagated and accumulated through the path shown
as the arrows from (1) to (6) in Figure 1 to the UI thread
TB,UI . Consequently, the user perceived an obvious delay
when clicking a button on the browser to create a new tab. In
addition, the other two applications in this case were also af-
fected by such performance impact. Reducing the granular-
ity of locks is a general principle to alleviate such problem.

2.3 How Our Approach Facilitates Performance
Analysis

The preceding example shows the subtleness caused by cost
propagation in real-world performance problems. In prac-

tice, a performance analyst has to start with the browser
UI thread to examine many executed functions in many
traces, since the costs may vary in different executions.
Such work is usually tedious. Even if the analyst finds out
that fv.sys!QueryFileTable could incur high execution cost
in lock contentions among different browser threads under
some circumstances, the analyst still needs to realize the re-
lations across three drivers and many threads that constituted
the whole performance. Realizing such relations is the key
to future performance tuning.

By employing impact analysis, the analyst can first real-
ize to which extent the performance of scenario BrowserTabCre-
ate was affected by cost propagation. The analyst may con-
duct impact analysis on different scopes to realize perfor-
mance impacts of different components. The results serve as
the preliminary evidence pointing to some potentially hid-
den problems. Then the analyst can apply causality analysis
on high-impact components, for instance, device drivers in
this case. The causality analysis can suggest a list of con-
trast patterns sorted by their performance impacts. We pick
the following one to explain in detail. The pattern is in the
form of Signature Set Tuple, which is formally defined in
Section 4.1.

wait signatures : {fv.sys!QueryF ileTable, fs.sys!AcquireMDU}

unwait signatures : {fv.sys!QueryF ileTable, fs.sys!AcquireMDU}

running signatures : {se.sys!ReadDecrypt,DiskService}

This pattern describes that the cost of the running sig-
natures se.sys!ReadDecrypt and Disk Service can be propa-
gated through the two unwait signatures fv.sys!QueryFileTable
and fs.sys!AcquireMDU to the wait signatures, while func-
tions represented by the wait signatures are invoked by the
browser threads. The causality analysis can discover this
pattern because in normal cases either such pattern does not
appear, or it has much lower cost.



The discovered pattern can help an analyst from two as-
pects. First, it guides the analyst to realize the concrete per-
formance incident by investigating a specific trace stream.
The preceding example is actually restructured with the help
of the discovered pattern. Second, the pattern as a general-
ized representation is a clue for similar cases. The analyst
may prioritize the search of the three driver signatures in
other cases to facilitate future analysis.

3. Impact Analysis
The goal of impact analysis is to scope and measure perfor-
mance impacts for some chosen components, such as all de-
vice drivers. The impact analysis takes two inputs: (1) the in-
stances of various scenarios over trace streams; (2) the com-
ponent name(s) that are used to filter tracing events for the
chosen components to be measured.

The impact analysis outputs three metric values: (1) the
running percentage IArun; (2) the wait percentage IAwait;
(3) IAopt, the percentage of waiting time introduced by cost
propagation.

The three metrics suggest three performance aspects of
the chosen components. A large IAwait indicates that the ex-
ecution of the components is frequently blocked by others,
whereas a large IArun reflects a computation-intensive char-
acteristic. IAopt suggests how much extra cost is introduced
by waiting on others. It can also serve as an upper bound for
the optimization potential.

3.1 Data Abstraction

The impact analysis measures the running time and the wait-
ing time for the chosen components, respectively. To serve
this purpose, we use the Wait Graph structure from Stack-
Mine [16] to model scenario instances. A Wait Graph en-
codes wait and unwait events into wait chains, with running
events as well. So it enables an easy way to measure both
running and waiting time for impact analysis; otherwise, we
would need to simultaneously keep track of each wait event
to its corresponding unwait event.

DEFINITION 1. A Wait Graph is a graph WG = 〈V,E〉.
V is a set of nodes V = {e}, where e is a tracing event.
E is a set of directed edges E = {ei → ej}. For each
edge ei → ej , ei must be a wait event, indicating that the
thread triggering ei keeps suspended before ej occurs and
completes, and ej is triggered by another thread during the
wait interval of ei.

The Wait Graph of a scenario instance is basically con-
structed by (1) pairing each wait event with its correspond-
ing unwait event to restore wait chains among threads, (2)
edging events as graph nodes based on the restored wait
chains, and (3) restoring the duration of wait events from the
timestamps on paired wait/unwait events. StackMine [16]
contains an algorithm description for constructing a Wait
Graph. We construct Wait Graphs based on that algorithm

for our impact analysis and causality analysis with charac-
teristics of Windows systems.

3.2 Impact Measurement

Basic Metrics. For every scenario instance, the impact anal-
ysis constructs a corresponding Wait Graph. To evaluate the
values for IArun, IAwait, and IAopt, the impact analysis in-
troduces the following metrics that are calculated from all
constructed Wait Graphs.

The total duration Dscn defines the aggregated execu-
tion time of all scenario instances in the input trace streams.
Given the Wait Graph for each scenario instance, the im-
pact analysis evaluates Dscn by adding up the time periods
of top-level tracing events in the Wait Graph instance by in-
stance.

The total wait duration Dwait defines the aggregated
wait time cost by the chosen components in waiting for oth-
ers. To determine which components should be counted, the
impact analysis uses the names of the chosen components
to filter the topmost signatures on the callstacks of tracing
events. The impact analysis uses a breadth-first search on
the Wait Graphs, and adds up the time periods of only top-
level wait events of the chosen components to avoid count-
ing child events that constitute the time cost already counted
from their parent events.

The total running duration Drun defines the aggre-
gated running time cost by the chosen components. Simi-
lar to Dwait, the impact analysis evaluates Drun by count-
ing duration of the running events that contain signatures of
the chosen components. Note that (1) some portions of peri-
ods in Drun are overlapped with Dwait because the running
events are mostly the leaf nodes of some wait events; (2)
Drun is an approximate value since ETW samples running
events every millisecond and thus those running costs are at
the millisecond granularity.

The total distinct-wait duration Dwaitdist defines the
aggregated duration of distinct wait events of the chosen
components over all scenario instances. A wait event may
be involved in multiple Wait Graphs for multiple scenario
instances, indicating that (1) the enclosing instances are cap-
tured in a common or close period of time from the same de-
ployment site, and (2) the event has performance impact on
multiple instances. The impact analysis measures Dwaitdist

by excluding the duration of duplicate events across different
Wait Graphs from Dwait.
Output-Metric Derivation. The impact analysis derives
the values of output metrics IArun, IAwait, and IAopt from
the preceding metrics. In particular, IArun = Drun/Dscn

represents the performance impact of running time, and
IAwait = Dwait/Dscn represents the performance impact
of wait time.

For deriving the severity of cost propagation across
different scenario instances, there is IAopt = (Dwait −
Dwaitdist)/Dscn. IAopt comes from the observation that
any performance impact involving the chosen components
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Figure 2. An illustration of an Aggregated Wait Graph for
device drivers

can affect multiple different scenario instances. Namely,
Dwait/Dwaitdist > 1, which describes that the Dwaitdist

of duration actually causes Dwait long wait among multi-
ple scenario instances. The cost propagation is the underly-
ing reason causing such performance impact. For instance,
in the motivating example (Section 2.2), the delay initi-
ated by TS,W0 actually affected not only BrowserTabCre-
ate, but also other scenario instances corresponding to two
other applications along the propagation path. If we sup-
pose the optimal case Dopt

scn as removing cost propagation
between irrelevant scenarios, the extra percentage of cost in-
troduced by cost propagation to the entire system would be
1 − Dopt

scn/Dscn = (Dwait − Dwaitdist)/Dscn. This value
is also an upper bound for the optimization of cost propaga-
tion. However, the actual optimization depends on the root
causes of performance problems and other factors.

4. Causality Analysis
If the results from impact analysis indicate that the chosen
components are of high impact, performance analysts can
use causality analysis to discover runtime behaviors that may
cause the observed performance impacts.

We adapt contrast data mining [7] to achieve causality
analysis. Contrast data mining is the mining of patterns con-
trasting two or more classes for knowledge discovery [7].
In the setting of performance analysis, there are few spec-
ifications that can be used to distinguish between normal
and problematic behaviors affecting performance, but we do
know the difference on performance measurements. Contrast
data mining can thus serve as a link from effect to cause.
Namely, it allows us to discover behaviors that may cause
the observed difference on measurements.

4.1 Data Abstraction and Pattern Representation

To adapt contrast data mining in performance analysis, we
introduce the Signature Set Tuple as the pattern representa-
tion, and derive the Aggregated Wait Graph as the data ab-
straction from Wait Graphs. So the contrast data mining can
discover contrast patterns in the form of Signature Set Tuple

among different Aggregated Wait Graphs that are of distin-
guishable performance measurements.

Aggregated Wait Graph. An Aggregated Wait Graph is
essentially the abstraction and aggregation of runtime behav-
iors in a set of Wait Graphs belonging to the same scenario,
based on the fact that runtime behaviors in the same scenario
represent the similar tasks under investigation. The defini-
tion of an Aggregated Wait Graph is as follows, in which
the term signature specially denotes the topmost signature
related to the chosen components on the callstack e.S of a
tracing event e, if there exists such signature on the callstack.

DEFINITION 2. An Aggregated Wait Graph is a graph AWG
= 〈V,E〉. V is a set of nodes V = {v}, in which each node
represents the aggregated execution of a function signature
in one of the following statuses: running, waiting, or hard-
ware service. E is a set of directed edges E = {vi → vj},
in which each edge must start from a waiting node, indicat-
ing that the pointed node performs its operation within the
waiting cost of the starting node.

In addition, we attach some extra properties to the nodes
in an Aggregated Wait Graph to ease our analysis.

DEFINITION 3. In an Aggregated Wait Graph, each running
node has a signature v.r; each hardware-service node has a
dummy signature v.h; and each waiting node has two signa-
tures: a wait signature v.w and its paired unwait signature
v.u. Each node has a performance metric v.C as its duration
of execution time, and has an occurrence counter v.N indi-
cating the number of the same nodes from the source Wait
Graphs.

Figure 2 shows a partial Aggregated Wait Graph for the
motivating example in Section 2.2. The region highlighted
with a dashed box shows an aggregated path that represents
a group of paths of similar cost propagation from multiple
scenario instances. The aggregated path captures cost propa-
gation from a hardware service via the se.sys driver and then
the fs.sys driver, finally to fv.sys.

Signature Set Tuple. Causality analysis presents mined
patterns in the form of Signature Set Tuple. A Signature Set
Tuple generalizes runtime interactions related to cost prop-
agation into three signature sets: a wait-signature set, an
unwait-signature set, and a running-signature set. The wait-
signature set contains signatures that reside in wait events;
namely, such signatures can cause the caller thread to be sus-
pended. The unwait-signature set contains signatures from
unwait events, which signal suspended threads to continue.
The running-signature set contains signatures recorded in
running events, or a dummy signature representing hard-
ware service events. We extract Signature Set Tuples from
path segments on Aggregated Wait Graphs. The definitions
of the path segment and Signature Set Tuple are as follows.

DEFINITION 4. A path segment S of an Aggregated Wait
Graph AWG is a sequence of nodes S := 〈vi〉 : v0v1 . . . vL−1,



where vi ∈ AWG.V and for 0 ≤ i<L − 1, vi → vi+1 ∈
AWG.E. The performance metric of S is defined as the
metric of its end node, i.e., S.C := vL−1.C, as well as the
occurrence counter S.N := vL−1.N .

DEFINITION 5. A Signature Set Tuple P from a path segment
S is in the form of P (S) := 〈

⋃
v.w,

⋃
v.u,

⋃
v.r〉, where

v ∈ S. The performance metric of P(S) is defined as the
metric of the path segment, i.e., P (S).C := S.C, as well as
the occurrence counter P (S).N := S.N .

We design such Signature Set Tuple based on two key ra-
tionales. First, the three signature sets appropriately gener-
alize the phenomenon that the cost of some time-consuming
operations (represented by the running-signature set) propa-
gates to other parts in the system via interactions in the direc-
tion from functions represented by the unwait-signature set
to those of the wait-signature set, regardless of the particu-
lar kinds of interactions. Second, signature sets can accom-
modate variations of the cost-propagation sequences. Con-
sider a case of device drivers, in which two drivers contend
a resource held by the third driver. Such case creates two
possible execution sequences in reality, depending on which
driver acquires the resource first. A pattern in the Signature
Set Tuple can represent both possibilities.

4.2 Pattern Discovery

Given a set of instances of a particular scenario, and two per-
formance thresholds Tfast and Tslow as inputs, the causal-
ity analysis adapts contrast data mining, and works in three
steps: (1) classifying contrast classes, (2) constructing data
abstractions, and (3) mining contrast patterns.

4.2.1 Classifying Contrast Classes

The causality analysis first classifies these instances into
two contrast classes {I}fast and {I}slow by comparing
their recorded execution time against performance thresh-
olds Tfast and Tslow. In practice, developers need to ex-
plicitly specify the two thresholds for each application sce-
nario as a part of performance specification. Specifically,
Tfast is the upper bound reflecting normal performance, and
Tslow is the lower bound of performance degradation. For
example, the BrowserTabCreate scenario of a web browser
should be completed within 300ms, and should not exceed
500ms, which typically makes users feel slow. In this case,
Tfast = 300ms and Tslow = 500ms, so the two classes
would be less-than-300ms as the fast class and more-than-
500ms as the slow class. The contrasts between the two
classes are highly suspicious to be the constitution of per-
formance problems. Typically we have Tslow − Tfast � 0,
enabling little confusion between the two contrast classes.

4.2.2 Constructing Data Abstractions

Given two contrast classes of instances {I}fast and {I}slow,
causality analysis constructs two Aggregated Wait Graphs
AWGfast and AWGslow for the two classes. The corre-

Algorithm 1: The algorithm to aggregate Wait Graphs
Input: a set of Wait Graphs {WG}, a set of component names {C}
Output: an Aggregated Wait Graph AWG

1 InitializeAWG(AWG);
2 foreach WG in {WG} do
3 repeat
4 rootNodes← GetRootNodes(WG);
5 foreach e in rootNodes do
6 if e.S does not contain signature from {C} then
7 RemoveNode(WG, e);
8 until ∀e ∈ rootNodes, e.S contains signature from {C};
9 foreach e in WG do

10 if e.Type is u then
11 e′ ← GetSourceNode(WG, e);
12 MergeWaitUnwaitPair(WG, e, e′);
13 foreach path 〈e0, e1, ..., en〉 from roots to sinks in WG do
14 MergeWithCommonSigPrefix(AWG, 〈e0, e1, ..., en〉);
15 ReduceAWG(AWG);
16 return AWG;

sponding Wait Graphs for the scenario instances to be ag-
gregated come from the previous impact analysis. The ag-
gregation uses the algorithm presented in Algorithm 1.

Algorithm 1 works in four steps. For each Wait Graph, it
first eliminates nodes that are irrelevant to the components
to be analyzed from Wait Graphs (Lines 3 to 8). Then it
merges paired wait/unwait nodes (Lines 9 to 12). After that it
aggregates the processed Wait Graph to the Aggregated Wait
Graph (Lines 13 to 14). Finally, we introduce a heuristic to
reduce the size of the graph in Line 15. We describe the key
points for each step as follows.

Eliminating Component-Irrelevant Nodes. A node
is component-irrelevant if none of the signatures on the
callstack belongs to the specified components {C}. From
roots of the graph, the algorithm removes each component-
irrelevant node, and promotes its child nodes as new roots.
The algorithm repeats until all root nodes are component-
relevant. The processed Wait Graph contains only behaviors
initiated by the components in {C}.

Merging Wait/Unwait Nodes. The algorithm merges
wait events with corresponding unwait events as well as their
edges to create waiting nodes (MergeWaitUnwaitPair in
Line 12). The result structure represents that the child nodes
perform operations within the cost of the parent node. In fact,
the Aggregated Wait Graph is essentially a forest in which all
inner nodes must represent wait/unwait event pairs, whereas
all leaf nodes must be of running events or hardware service
events.

Aggregating Wait Graphs. The algorithm aggregates
the processed Wait Graphs based on common prefixes of
paths (MergeWithCommonSigPrefix in Line 14). Paths
having common prefix indicate that they have the identi-
cal sequence of signatures on nodes along their prefixes.
Common prefixes indicate that there are common behaviors
starting at the beginning of executions, and subsequent be-
haviors may be diverse due to external or internal reasons,



such as various inputs from higher-level applications, or lock
contentions and different dependencies.

Non-Opimtizable Portions. To help subsequent mining
and eliminate data noises, the algorithm performs a reduc-
tion on Aggregated Wait Graphs (ReduceAWG in Line 15).
Specifically, it prunes all structures in the pattern of a wait-
ing node as a root pointing to a single hardware-service leaf.
This pattern implies that the performance impact of hard-
ware services is not propagated to other components. De-
velopers usually do not have any chances to optimize such
cases.

4.2.3 Mining Contrast Patterns

The algorithm to discover contrast patterns between the two
Aggregated Wait Graphs works in the following three steps.
To address challenges from both data complexity and com-
putational complexity, we particularly introduce a step of
meta-pattern enumeration.

Enumerating Meta-Patterns. Given the two Aggregated
Wait Graphs for the two contrast classes, the causality anal-
ysis first enumerates meta-patterns in the form of Signature
Set Tuples from path segments in the two graphs. Specif-
ically, we introduce a constant k to bound the maximum
length of path segments in order to improve efficiency. Given
a certain value of k, the causality analysis iteratively enu-
merates all path segments that have the lengths from 1 to k,
and collects meta-patterns from these segments. Given two
path segments having a common meta-pattern P , the causal-
ity analysis aggregates their P.C and P.N values. After this
step, we have two groups of meta-patterns for the fast and
slow contrast classes.

We have three considerations of enumerating meta-patterns
from a bounded number of path segments rather than from
all possible path segments or full paths in the two Aggre-
gated Wait Graphs. First, contrast mining on simple data
abstractions such as sets is of high complexity [37]. For a
complex data structure such as an Aggregated Wait Graph
with a potentially large amount of data in it, the computation
is challenging. Second, in fact meta-patterns collected from
a bounded number of path segments are adequate without
loss of patterns, compared with expensive all-segment enu-
meration. The causality analysis enumerates path segments
from the smallest length; thereby, all other patterns could be
the combinations of the smaller ones. Third, using patterns
collected from complete paths is too specific for causality
analysis. If a pattern of a complete path from one contrast
class does not appear in another contrast class, we cannot
claim that this path is a contrast, because its meta-patterns
may appear frequently in both classes. So by conducting the
segment enumeration, we can have these meta-patterns to
exclude non-contrast paths.

Discovering Meta-Pattern Contrasts. The contrasts
among meta-patterns in the two groups infer the behav-
iors having potential impacts to performance. There are two
criteria to discover such contrasts. First, a meta-pattern ap-

pearing only in the slow class indicates that runtime behav-
iors represented by it may harm the whole performance to
some extent, since such behaviors never happen in the cases
of normal performance. The causality analysis selects such
meta-pattern as a contrast. Second, a meta-pattern that is
common in the two classes, but whose attached performance
metrics are significantly higher in the slow class, also im-
plies highly suspicious and high-impact runtime behaviors
to the performance. In particular, for the common meta-
pattern Ps in the slow class, and Pf in the fast class, when-
ever Ps.C

Ps.N
/
Pf .C
Pf .N

> Tslow

Tfast
, the causality analysis selects the

meta-pattern as a contrast.
Discovering Contrast Patterns. Finally, the causality

analysis discovers contrast patterns based on the contrast
meta-patterns in two steps. First, the causality analysis uses
contrast meta-patterns as clues to select contrast paths. It
computes a pattern in the Signature Set Tuple for each full
path in the Aggregated Wait Graph of the slow class. If the
extracted pattern contains any contrast meta-patterns, the
causality analysis selects it as a contrast pattern. Second,
the causality analysis merges identical contrast patterns with
their P.C and P.N counters. Recall that multiple paths rep-
resenting the same kind of problem could share the same
pattern, even when their cost-propagation sequences might
be different.

These contrast patterns are the output of causality anal-
ysis. To further facilitate manual efforts on inspection, we
rank these patterns by their performance impacts, with the
highest impacts ranked the first. We define the impact of a
contrast pattern by its average execution cost in performing
its task, i.e., P.C/P.N .

5. Empirical Results and Evaluation on
Device Drivers

We apply our approach to study the performance of device
drivers in Windows. We first perform impact analysis on de-
vice drivers, and then present an evaluation of using causal-
ity analysis to reveal patterns of performance problems.

Our data set contains about 19,500 trace streams, consist-
ing of about 505,500 scenario instances that fall into 1,364
usage scenarios of Windows and various applications. The
total recorded execution time is approximately 339 hours.
These trace streams are collected by the ETW infrastructure.

Our study and evaluation offer developers and perfor-
mance analysts two main benefits. First, the study and eval-
uation uncover the impact and problems of device drivers
in the real world. Second, the study and evaluation show that
our approach can facilitate performance analysis by reducing
manual efforts on the inspection of performance problems.

5.1 Results of Impact Analysis on Device Drivers

We set the impact analysis to analyze device drivers exclu-
sively over all scenario instances in the data set, namely, by
setting the names of components to include all device drivers



(matching the wildcard pattern “*.sys” in all function signa-
tures).

The impact analysis shows that the wait percentage
IAwait ≈ 36.4%, and running percentage IArun ≈ 1.6%,
which are compelling metrics to inform the performance im-
pact. IAwait directly explains what percentage device drivers
block application executions. We can consider it as the aver-
age percentage of performance impact introduced by device
drivers in each instance. IArun indicates what percentage
device drivers consume CPU time. The small percentage of
IArun indicates that the running time of device drivers is not
a dominating part in overall system performance.

The impact analysis also shows that the percentage of ex-
tra waiting time IAopt ≈ 26%, indicating the severity of
cost propagation in device drivers, and the fact that the to-
tal execution time Dscn could be reducible by optimizing
device drivers and/or relevant components. In addition, the
ratio of the total wait duration to the total distinct-wait dura-
tion Dwait/Dwaitdist ≈ 3.5 shows that any cost involving
device drivers in one scenario instance is propagated to the
other 2.5 instances on average, indicating the severity of cost
propagation from a high-level of view.

In summary, the results indicate that device drivers are
worth being further investigated. In particular, the results
disclose three aspects. First, device drivers constitute a non-
trivial part (≈ 36.4%) in OS and application performance.
Second, the percentage of time likely wasted due to cost
propagation would be 26%, which is also an upper bound
for the optimization of cost propagation. Third, CPU con-
sumption of device drivers has limited impact (≈ 1.6%). It is
consistent with the expectation that drivers do little compu-
tation [27], and thus their computation cost is not our focus
of analysis.

5.2 Evaluation of Causality Analysis

Performance analysts can manually inspect output patterns
to determine whether these patterns represent high-impact
performance problems and need further actions towards op-
timization. To show the effectiveness of causality analysis,
and how causality analysis can improve the efficiency of
manual inspection, we address the following three research
questions.
RQ1: To what extent would the discovered patterns explain
the bad performance in device drivers?
RQ2: How does the ranking strategy applied on discovered
patterns help improve efficiency of inspecting performance
problems?
RQ3: What insights can the discovered patterns offer to
performance analysts in identifying real performance prob-
lems?

5.2.1 Evaluation Setup

We apply the causality analysis on 8 selected out of all 1,364
scenarios. There are 17,612 instances in the selected scenar-
ios. Table 1 shows these scenarios. We choose these scenar-

Scenario #Instances in {I}fast in {I}slow
AppAccessControl 1547 598 772
AppNonResponsive 631 164 392
BrowserFrameCreate 1304 437 707
BrowserTabClose 989 134 678
BrowserTabCreate 2491 597 1601
BrowserTabSwitch 2182 1122 914
MenuDisplay 743 171 499
WebPageNavigation 7725 4203 1175
Total 17612 7426 6738

Table 1. Selected Scenarios

ios for two reasons: (1) the selected scenarios represent a set
of typical applications (e.g., web browsers) that need to in-
teract with multiple device drivers, and (2) the number of in-
stances in the selected scenarios are relatively large to avoid
data noises and biases affecting contrast data mining. There
are 2,201 instances for each selected scenario on average,
compared with the overall average of 370 instances per sce-
nario in our data set.

Table 1 shows the selected scenarios, the number of sce-
nario instances, and the numbers of instances in the two
contrast classes. For confidentiality, we anonymize the real
names of the selected scenarios, and use Tfast and Tslow

to denote the two thresholds. These two thresholds are de-
termined by application vendors, and may vary in different
scenarios. We set the component names {C} to be all device
drivers, and the maximum length of segment enumeration to
be 5 in all experiments to focus on the propagation of per-
formance impact up to that length.

To address RQ1, we first use an automated rule to deter-
mine whether the discovered patterns represent high-impact
driver behaviors. In particular, we determine that a contrast
pattern is of high impact if at least one of its executions in
trace streams exceeds Tslow. Such high-impact pattern in-
dicates that the involved drivers must be able to constitute
the bad performance as a significant factor. Otherwise, the
pattern’s impact to the bad performance is relatively low.
After classifying the discovered patterns by the automated
rule, we show two execution-time coverages for the classi-
fied patterns over the total time cost of device drivers in the
slow class. In particular, the impactful-time coverage (ITC)
is the sum of the time cost P.C for the high-impact patterns
over the total time cost of device drivers, and the total-time
coverage (TTC) is the sum of the time cost P.C for all pat-
terns over the total time cost of device drivers. The ITC sug-
gests the scope where there must be high-impact driver be-
haviors causing the bad performance, and the TTC suggests
the scope where there may be such behaviors. The ITC and
TTC can show the effectiveness of causality analysis, be-
cause high coverages indicate that the discovered patterns
can interpret the bad performance to a great extent, which
offers a higher chance for performance analysts to find high-
impact performance problems.

For RQ2, we show an execution-time coverage of top n%
patterns based on the ranking strategy. In practice, a perfor-



Scenario (Tslow) Driver Cost ITC TTC
AppAccessControl 66.4% 18.9% 35.5%
AppNonResponsive 64.6% 41.0% 48.7%
BrowserFrameCreate 76.5% 24.1% 35.4%
BrowserTabClose 21.9% 27.1% 38.0%
BrowserTabCreate 51.3% 23.1% 35.3%
BrowserTabSwitch 41.0% 7.8% 17.5%
MenuDisplay 77.0% 39.2% 49.2%
WebPageNavigation 34.7% 18.4% 28.5%
Average 54.2% 24.9% 36.0%

Table 2. Impactful-Time and Total-Time Coverages

mance analyst needs to manually investigate the discovered
patterns in trace streams to confirm the root causes, and pri-
oritize the investigation efforts for high-impact patterns. So
a relatively small n% with high coverage indicates that the
ranking strategy prioritizes high-impact patterns properly,
and can substantially improve the inspection efficiency.

For RQ3, we first present what kinds of drivers are in-
volved in the top-10 patterns from each selected scenario
(80 patterns in total). Then we describe three major observa-
tions that we can make from the relations between scenarios
and drivers. We also use some representative cases to illus-
trate how causality analysis can help performance analysts
identify real-world problems. Note that the analysis in this
paper was conducted independently by the authors, but all
cases described in detail have been reviewed and confirmed
by performance analysts and developers at Microsoft. We are
continuing the confirmation process for other cases.

5.2.2 RQ1: Effectiveness

We show the effectiveness of causality analysis by present-
ing the impactful-time and total-time coverages for the dis-
covered patterns. Table 2 shows the results of the two cov-
erages. The column “Driver Cost” presents total execution
time of device drivers in each scenario. The columns “ITC”
and “TTC” present the impactful-time and the total-time
coverages on the total driver time.

Overall, the total driver cost in the slow class can be char-
acterized by three portions. The first portion is represented
by the driver behaviors that may account for the bad per-
formance. The second one is represented by the driver be-
haviors that are likely of normal performance. The two por-
tions do not have an easily distinguishable boundary. The
causality analysis can help performance analysts identify the
boundary. In particular, the contrast patterns that are counted
in the ITC must fall into the first portion, whereas the rest of
the contrast patterns may cross the boundary of the two por-
tions, but still likely cause the bad performance. Let us take
the AppNonResponsive scenario as an example. The total
driver cost covers 64.6% of the total execution time. The ITC
is 41.0%, and the difference between the ITC and the TTC is
7.7%. The contrast patterns counted in the ITC should be the
first priority for performance analysts to inspect, and the rest
of the patterns falling between the ITC and the TTC reflect

Scenario (Tslow) #Patterns 10% 20% 30%
AppAccessControl 4875 55.3% 91.1% 98.3%
AppNonResponsive 1158 29.6% 39.2% 95.1%
BrowserFrameCreate 1933 51.6% 92.0% 96.8%
BrowserTabClose 1075 55.1% 90.0% 93.5%
BrowserTabCreate 5045 49.0% 87.5% 97.0%
BrowserTabSwitch 1514 42.3% 64.9% 98.0%
MenuDisplay 1855 64.5% 86.5% 91.9%
WebPageNavigation 5122 35.6% 89.3% 96.5%
Average 2822 47.9% 80.1% 95.9%

Table 3. Coverages by Ranking

a non-negligible amount of execution time that performance
analysts should inspect to confirm potential problems.

On the other hand, the third portion is represented by the
driver behaviors that directly interact with hardware with-
out cost propagation. These behaviors are usually of high
impact, but non-optimizable, since the real cost depends on
external hardware. During the construction of an Aggre-
gated Wait Graph, the reduction of non-optimizable portions
would remove such behaviors, even though some of them
could account for long-time executions. Since device drivers
frequently interact with slow hardware, the non-optimizable
portions are very common. For example, in the BrowserTab-
Switch scenario, 66.6% of the total driver cost is manifested
in direct hardware services without cost propagation, thus
being removed from the Aggregated Driver Graph. The re-
sulting graph represents the remaining 33.4%, and more than
half of the remaining portions (17.5%) are represented by
contrast patterns, and classified into the total-time coverage.

5.2.3 RQ2: Efficiency

We calculate another execution-time coverage to show the
efficiency improvement brought by the causality analysis
on manually confirming potential performance problems.
Based on the ranking strategy used in the pattern discovery,
we select the top 10%, 20%, and 30% contrast patterns, and
measure their execution-time coverages over all discovered
patterns. Table 3 shows the results, in which the column
“#Patterns” presents the number of contrast patterns in each
scenario, and the last three columns show the coverage for
the top 10%, 20%, and 30% contrast patterns.

The numbers of the output patterns range from 1,075 to
5,122 across different scenarios. The thousand magnitude of
patterns came from the scale of input traces and the high
complexity of the OS ecosystem, especially the complex-
ity of interactions and dependencies in device drivers. As
shown in Table 3, the inspection of the top 10% patterns
would involve 107 to 512 patterns and achieve 30% to 65%
execution-time coverage. According to the evaluations pro-
vided for StackMine [16], a performance analyst could in-
spect the top 400 stack-trace patterns of an analysis within
8 hours to achieve 60% execution-time coverage in all ana-
lyzed regions of scenario instances, with over 90% inspec-
tion effort saved as an estimation. Such comparable experi-



ences indicate the affordability and efficiency regarding in-
spection efforts required by the causality analysis as well.

5.2.4 RQ3: Real Cases

Table 4 shows that in each scenario what kinds of drivers are
involved in top-10 patterns. Each cell shows the number of
patterns containing the corresponding type of drivers. From
Table 4, we have three major observations regarding the rela-
tions between scenarios and drivers. These observations can
suggest proper starting points for the performance analysis
on similar cases.

First, most patterns contain both file-system drivers and
filter drivers, especially in the AppAccessControl scenario.
In fact, most of those filter drivers belong to security soft-
ware. Security software uses system-wide filter drivers to in-
tercept various application requests, but usually uses a single
process and database for security inspection. Such architec-
ture makes the performance of security inspection very crit-
ical. Once the workload of the system increases, it is easy
to form bottlenecks starting from those filter drivers. If the
system also enables storage encryption, the situation could
become worse, as the encryption drivers could induce extra
overheads. The example described in Section 2.2 is a typical
case of how filter drivers combined with encryption drivers
slow down the system. Developers should estimate the gran-
ularity and potential contentions of locks in filter drivers to
alleviate overheads.

Second, some scenarios are especially vulnerable to par-
ticular types of drivers. In addition to the AppAccessCon-
trol scenario, which suffers from file-system drivers and fil-
ter drivers, we can observe that network drivers take a big
part in the scenario of MenuDisplay (7 out of 10). It is un-
derstandable that network drivers can be delayed by unstable
bandwidth. So if a menu needs to display items from remote
servers, developers should take into account such instability,
and use an asynchronous mechanism or prefetched cache to
prevent network delays from being propagated to user inter-
faces.

Third, hard faults can establish more subtler interactions
between drivers, and cause severe performance degradation.
In the AppNonResponsive scenario, an interesting pattern
shows that a graphics driver graphics.sys appears with a file
system driver fs.sys and a storage encryption driver se.sys.
From driver signatures we can infer that graphics.sys should
not have interactions with the other two in normal cases,
because it does not need to access files on disk. Based on
our knowledge, it is highly suspicious that this pattern hints
a hard fault occurring in graphics.sys.

From trace streams, we find a corresponding instance that
costs about 4.73 seconds to finish the execution. To simply
describe this case, we next describe only three threads that
are most relevant. The initiating one was a UI thread TU,UI .
TU,UI was executing graphics.sys, and the driver tried to ac-
quire resources of a Graphics Processing Unit (GPU). At the
same time, there was a system worker thread TS,W0 in which

graphics.sys was executing a routine in response to a sys-
tem event. Since TS,W0 had acquired GPU resources, TU,UI

had to wait. At this point, a hard fault occurred in TS,W0

when graphics.sys initialized an internal structure. To solve
the hard fault, the system scheduled another worker thread
TS,W1 to perform a page read. TS,W1 was actually executing
se.sys because the system was storage-encrypted. Finally, the
system spent about 4.7 seconds to complete the page read.
This significant performance degradation was then spread to
TU,UI , and made the user interface unresponsive.

The preceding case indicates that solving hard faults
could be very time-consuming, so device drivers should be
developed to minimize the usage of paged memory in order
to avoid expensive disk I/O and the consequence of potential
cost propagation.

5.2.5 Validity and False Positives in Analysis Results

To validate the analysis supported by our approach, we sent
the case described in Section 2.2, a representative case of
security software, and the hard fault in graphics.sys as high-
impact problems to relevant performance analysts and de-
velopers at Microsoft, and received their confirmations. The
high impact was partially confirmed after their frequent ob-
servation of such problems, reflecting the limitations of the
conventional performance analysis. One developer from a
Windows product team for driver quality provided his enthu-
siastically positive feedback: “...It is very impressive to see
how performance issues of device drivers can be root caused
in such a detail... yes, this is the technique we are interested
in w.r.t. driver qualities...”.

Except those high-impact real cases, we can observe
some false positives. In some special circumstances, our ap-
proach fails to distinguish between by-design behaviors and
problematic behaviors. For instance, in Table 4 there is a
type of drivers called “Disk Protection”, which can halt hard
drives to prevent damages when a computer is in motion.
Drivers of this type are designed to block all disk reads and
writes when necessary, and meanwhile performance can be
compromised. The appearance of such driver patterns sug-
gests that we need to incorporate such knowledge to filter
out some known and exceptional cases.

6. Related Work
Performance Analysis. The high-level goal of our work is
to help with the performance analysis of software ecosys-
tems, particularly the evaluation of impacts and identifica-
tion of root causes for performance degradation, by acquir-
ing the knowledge from a large number of execution traces.
We organize the discussion of related work by three major
aspects, specifically, (1) handling cross-component interac-
tions, (2) leveraging multiple executions, and (3) oracles for
finding root causes.

Cross-component interactions may work concurrently
and cause the effect of cost propagation. The potential
transparency of these interactions to individual components



Scenario
FileSystem,

General Storage
FileSystem

Filter Network
Storage

Encryption
Disk

Protection Graphics
Storage
Backup

IO
Cache Mouse ACPI

AppAccessControl 9 9 – – – – – 1 – –
AppNonResponsive 6 2 1 2 1 1 – – – 1
BrowserFrameCreate 7 4 2 – 1 – – – – –
BrowserTabClose 5 6 – 2 – – 2 – – –
BrowserTabCreate 5 6 3 2 – 1 – – 1 –
BrowserTabSwitch 6 5 3 1 – – – – – –
MenuDisplay 2 3 7 – 2 – – – – –
WebPageNavigation 7 3 3 1 1 – – – – –

Table 4. Top-10 Patterns Categorized by Driver Types

makes the diagnosis of performance to be even harder. Some
existing work [4, 35] identified the idleness as a performance
characteristic of multithreaded and multi-component pro-
grams. Tallent et al. [35, 36] analyzed lock-based interac-
tions as the source of such idleness. However, their work is
limited to isolate the effect of a single lock only. In contrast,
our work reveals the combinatorial effect of multiple locks
connected by hierarchical dependencies, which commonly
exist in large and complex systems.

Multiple executions of a system can provide diverse per-
formance information. StackMine [16] and Magpie [10] also
work on multiple ETW traces. Our previous StackMine work
discovers callstack patterns via costly-pattern mining, re-
sulting in patterns capturing within-thread behaviors. Our
current work complements it with the mining of contrast
patterns characterizing cross-thread behaviors. Magpie cor-
relates workloads with events synthesized from traces to
build performance models that support performance pre-
diction and debugging. Our work can further help Magpie
diagnose root causes by using workload-based scenarios.
Jovic et al. [19] targeted at finding and prioritizing perfor-
mance bugs in GUI applications from multiple profiles in the
wild. However, this work relies on the manual selection of
landmark methods to measure latency, and has the limitation
of not being able to handle concurrency.

Using proper oracles is helpful to find performance prob-
lems and root causes effectively. Rule-based problem identi-
fication [4, 5, 18, 38] is limited due to finding only problems
defined by existing rules. Some work performs threshold-
ing and filtering on performance measurements [32] com-
bined with frequencies of observed system behaviors [3].
However, in complex systems, no clear-cut criteria can be
used to attribute bad performance to behaviors that may be
expensive in nature and vary in different usage scenarios.
Our work leverages information from the labeled normal
executions as the criteria addressing such variations. Some
work [6, 15, 30] proposed similar ideas exploiting contrasts
between different executions to identify performance prob-
lems. Compared to such previous work, our work does not
require concrete inputs of systems. These inputs are not al-
ways available especially when performance data are col-
lected from client sites. Furthermore, our work provides use-
ful data abstractions that group similar behaviors in a large

volume of data, and provides a pattern representation to rep-
resent actionable patterns to further narrow down the scope
of the root-cause localization.

Quality Assurance for Device Drivers. Quality of de-
vice drivers includes mainly reliability, security, and perfor-
mance. Most existing research work is to improve driver reli-
ability [8, 9, 12, 13, 20, 22, 24, 26–29, 31, 33, 34]. While cer-
tain kinds of reliability issues are handled, e.g., memory cor-
ruption, the security is also improved. In addition, isolation-
based approaches [11, 31] were also introduced to improve
driver security. In contrast, little work has been proposed on
driver performance. In fact, there is a trade-off between reli-
ability (together with security) and performance. Leslie et al.
[23] and Ganapathy et al. [13] demonstrated that it is pos-
sible to build user-level drivers to improve reliability with-
out significant performance overheads. Menon et al. [25]
explored the opportunity to balance reliability, security, and
performance with a framework allowing to create safe and
efficient hypervisor drivers. Huang and Chen [17] developed
an approach to find performance bottlenecks of TCP/IP pro-
tocol and the corresponding drivers. Such work usually ad-
dresses driver performance by a specific analysis or from a
specific perspective, but not from a general perspective of
real-world production ecosystems.

7. Conclusion
We have proposed a performance-analysis approach on real-
world execution traces to address the challenges posed by
cost propagation in complex systems. We have applied im-
pact analysis to study the performance of device drivers on
19,500 execution traces. The results show that device drivers
constitute approximately 38% of the overall system perfor-
mance, and a big part (≈ 26%) is introduced by cost propa-
gation. To understand how device drivers affect system per-
formance, we have conducted causality analysis to discover
patterns of problematic behaviors. The discovered patterns
can help identify high-impact performance problems.
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