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Motivation

e The Web is slow at times

e Main Reason: The HTTP protocol is simple but inefficient
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Sources of Latency

e Server: CPU and disk speeds
e Client: same as above
e Network:

— bandwidth
— Round-trip time (RTT)
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Mosaic httpd

Establish TCP connection >
User clicks button Server process created

<Method> ,<URL> <HTRQ> < Dat@

<§atus code>,< Object headers> ,<Data>

Close TCP connection

Server process dies

HTML Parsed Establish new TCP connection

New server process created

<Request for image #1>

<Data for Image #1>

Close TCP connection

Server process dies
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Problems

e Too many connections!

— Processing overhead for each connection
If authentication is done, that’s extra overhead

— 1 RTT each for set-up and tear-down alone
(WRL-CRL RTT ~ 75 ms for small packets)

— TCP slowstart = few connections reach full-steam

OnT1 line from WRL to CRL: sending 20000 bytes achieves a throughput
of only 0.6Mbps

e No pipelining
= each inlined image requires additional roundtrip
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Long-lived Connections

e Client tells server to keep connection open

—uses HTRQ (HT Request) headers

— Future implementations can define a hold-connection pragma
e Server process loops waiting for request

e Server can close connections to limit its load

Sounds great, but ...

e How does the client know when to stop reading?
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Alternatives

e use a special EOT character

— inefficient due to character stuffing
e have a separate control connection

— unnecessary overhead in the common case
e use the Content-Length information

—works for HTML files, images

— Scripts are a problem
So the server just closes the connection

We chose the last alternative.
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Pipelining requests: GETALL

e GET < HIT'M L _document >
= Server sends back only the document

We define:

e GETALL < HIT'M L _document >
Server sends back document and all inlined images

e can be implemented using HTRQ headers

But there’s a problem:

e The client caches image data
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GETLIST

So we define another primitive:

e GETLIST < URL_list >
= Server sends back all the requested documents

Overall scheme

The client

e uses GETALL for the first access
e keeps cache of images URLSs of recently accessed documents

e uses GETLIST for subsequent accesses to request only images required.

o

/
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Results: CRL server
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Results: CRL server
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Summary:. CRL server
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Summary: WRL server
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FTP Performance

Present Implementation:

e FTP Control connection re-established each time
Problems:

— increases latency
— increases server load (fork + exec)

— repeated authentication
Modification:

¢ hold connection open for a while

— reduces latency
Response time for browsing cut down to less than half

— Increases number of simultaneous connections for server

\ But not worse than normal FTP
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Prefetching by server

Basic idea: use past information to predict future requests

= Prefetching can mask disk latencies

Issues:

e How to do it?
e IS it much use?

e Is server free enough?
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How to do 1t?

Approach derived from Griffioen & Appleton [Summer USENIX '94]

Based on constructing a dependency graph

Parameters:

e lookahead window size (w)

e prefetch threshold (p)

Main differences:

e application driven

e maintain distinction between accesses by different clients

o
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How much is to be gained?

USENIX paper:

e studied filesystem accesses
e 30% arcs had estimated chance of 1
e Upto 280% improvement in miss-rate

e individual accesses might take longer, but net performance gain
In our case:

e less dependency (only 6.5% arcs have estimated chance of 1)
= smaller improvement

e Is the server free enough?

— not sure; need better traces

_® will work better for local server
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Simulation Results

Cache Miss-rate vs. Prefetch T hreshold
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Simulation Results

Number of Prefetches vs. Prefetch T hreshold
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Simulation Results
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Conclusions

e With a slightly modified protocol, there is a substantial reduction in
latency

e Improvement depends on size and number of images

— 15-50% for remote server

— 10-40% for local server
e Full interoperability
e Basic problem of detecting EOT
e Prefetching might be useful
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Future Work

e Complete study of server prefetching

e Investigate prefetching across the network
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