
�
�

�
�

[1]

Reducing World-wide Web Latency

Venkata Padmanabhan
Aug 16, 1994

�
�

�
�

[2]

Outline

�Motivation

� Sources of Latency

�Mosaic - HTTP interaction

� Performance problems

�Modifications to the protocol

� Results

� Prefetching scheme

� Conclusions

�
�

�
�

[3]

Motivation

� The Web is slow at times

�Main Reason: The HTTP protocol is simple but inefficient

�
�

�
�

[4]

Sources of Latency

� Server: CPU and disk speeds

� Client: same as above

� Network:

– bandwidth

– Round-trip time (RTT)

�
�

�
�

[5]

httpdMosaic
Establish TCP connection

Server process createdUser clicks button

<Status code>,<Object headers>,<Data>

Close TCP connection

<Method>,<URL>,<HTRQ>,<Data>

Server process dies

<Data for Image #1>

<Request for image #1>

Close TCP connection
Server process dies

Establish new TCP connection
New server process created

HTML Parsed

�
�

�
�

[6]

Problems

� Too many connections!

– Processing overhead for each connection

If authentication is done, that’s extra overhead

– 1 RTT each for set-up and tear-down alone

(WRL-CRL RTT � 75 ms for small packets)

– TCP slowstart � few connections reach full-steam

On T1 line from WRL to CRL: sending 20000 bytes achieves a throughput
of only 0.6Mbps

� No pipelining

� each inlined image requires additional roundtrip

�
�

�
�

[7]

Long-lived Connections

� Client tells server to keep connection open

– uses HTRQ (HT Request) headers

– Future implementations can define a hold-connection pragma

� Server process loops waiting for request

� Server can close connections to limit its load

Sounds great, but ...

� How does the client know when to stop reading?

�
�

�
�

[8]

Alternatives

� use a special EOT character

– inefficient due to character stuffing

� have a separate control connection

– unnecessary overhead in the common case

� use the Content-Length information

– works for HTML files, images

– Scripts are a problem

So the server just closes the connection

We chose the last alternative.

�
�

�
�

[9]

Pipelining requests: GETALL

� GET � HTML document �

� Server sends back only the document

We define:

� GETALL � HTML document �

Server sends back document and all inlined images

� can be implemented using HTRQ headers

But there’s a problem:

� The client caches image data

�
�

�
�

[10]

GETLIST

So we define another primitive:

� GETLIST � URL list �

� Server sends back all the requested documents

Overall scheme

The client

� uses GETALL for the first access

� keeps cache of images URLs of recently accessed documents

� uses GETLIST for subsequent accesses to request only images required.

�
�

�
�

[11]

Results: CRL server
Load Time vs. Number of Inlined Images

Old protocol
New protocol

Load Time (sec)

Number of Images0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 5.00 10.00

Image size: 2544 bytes

�
�

�
�

[12]

Results: CRL server
Load Time vs. Number of Inlined Images

Old protocol
New protocol

Load Time (sec)

Number of Images
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 5.00 10.00

Image size: 45566 bytes

�
�

�
�

[13]

Summary: CRL server
Percentage Improvement vs. Number of Inlined Images

2544 bytes
7588 bytes
12188 bytes
25751 bytes
45566 bytes

% reduction in load time

Number of Images

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 5.00 10.00

�
�

�
�

[14]

Summary: WRL server
Percentage Improvement vs. Number of Inlined Images

2544 bytes
7588 bytes
12188 bytes
25751 bytes
45566 bytes

% reduction in load time

Number of Images0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 5.00 10.00

�
�

�
�

[15]

FTP Performance

Present Implementation:

� FTP Control connection re-established each time

Problems:

– increases latency

– increases server load (fork + exec)

– repeated authentication

Modification:

� hold connection open for a while

– reduces latency

Response time for browsing cut down to less than half

– increases number of simultaneous connections for server

But not worse than normal FTP

�
�

�
�

[16]

Prefetching by server

Basic idea: use past information to predict future requests

� Prefetching can mask disk latencies

Issues:

� How to do it?

� Is it much use?

� Is server free enough?

�
�

�
�

[17]

How to do it?

Approach derived from Griffioen & Appleton [Summer USENIX ’94]

Based on constructing a dependency graph

Parameters:

� lookahead window size (w)

� prefetch threshold (p)

Main differences:

� application driven

�maintain distinction between accesses by different clients

�
�

�
�

[18]

Dependency Graph

home.html

img1.gif

img2.gif

popular.html

0.9

0.2

0.2

0.5

�
�

�
�

[19]

How much is to be gained?

USENIX paper:

� studied filesystem accesses

� 30% arcs had estimated chance of 1

� upto 280% improvement in miss-rate

� individual accesses might take longer, but net performance gain

In our case:

� less dependency (only 6.5% arcs have estimated chance of 1)

� smaller improvement

� Is the server free enough?

– not sure; need better traces

� will work better for local server

�
�

�
�

[20]

Simulation Results
Cache Miss-rate vs. Prefetch Threshold

w=2; c=1MB
w=2; c=4MB

Cache Miss-rate (# blocks)

Prefetch Threshold
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.50 1.00

Block size: 8 KB

�
�

�
�

[21]

Simulation Results
Number of Prefetches vs. Prefetch Threshold

Ext: w=2; c=1MB
Ext: w=2; c=4MB
Total: w=2; c=1MB
Total: w=2; c=4MB

Prefetches/Actual Fetches

Prefetch Threshold
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.50 1.00

Block size: 8 KB

�
�

�
�

[22]

Simulation Results
Histogram of Interaccess Intervals

DEC Server2

Frequency x 103

Interaccess Time (sec)
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

0.00 10.00 20.00

�
�

�
�

[23]

Conclusions

�With a slightly modified protocol, there is a substantial reduction in
latency

� Improvement depends on size and number of images

– 15-50% for remote server

– 10-40% for local server

� Full interoperability

� Basic problem of detecting EOT

� Prefetching might be useful

�
�

�
�

[24]

Future Work

� Complete study of server prefetching

� Investigate prefetching across the network

