Reducing World-wide Web Latency

Venkata Padmanabhan
Aug 16, 1994

[1]




Outline

e Motivation

e Sources of Latency

e Mosaic - HTTP interaction
e Performance problems

e Modifications to the protocol
e Results

e Prefetching scheme

e Conclusions

[2]




Motivation

e The Web is slow at times

e Main Reason: The HTTP protocol is simple but inefficient

[3]



Sources of Latency

e Server: CPU and disk speeds
e Client: same as above
e Network:

— bandwidth
— Round-trip time (RTT)

[4]




Mosaic httpd

Establish TCP connection >
User clicks button Server process created

<Method> ,<URL> <HTRQ> < Dat@

<§atus code>,< Object headers> ,<Data>

Close TCP connection

Server process dies

HTML Parsed Establish new TCP connection

New server process created

<Request for image #1>

<Data for Image #1>

Close TCP connection

Server process dies

[3]



Problems

e Too many connections!

— Processing overhead for each connection
If authentication is done, that’s extra overhead

— 1 RTT each for set-up and tear-down alone
(WRL-CRL RTT ~ 75 ms for small packets)

— TCP slowstart = few connections reach full-steam

OnT1 line from WRL to CRL: sending 20000 bytes achieves a throughput
of only 0.6Mbps

e No pipelining
= each inlined image requires additional roundtrip

[6]



Long-lived Connections

e Client tells server to keep connection open

—uses HTRQ (HT Request) headers

— Future implementations can define a hold-connection pragma
e Server process loops waiting for request

e Server can close connections to limit its load

Sounds great, but ...

e How does the client know when to stop reading?

[7]



Alternatives

e use a special EOT character

— inefficient due to character stuffing
e have a separate control connection

— unnecessary overhead in the common case
e use the Content-Length information

—works for HTML files, images

— Scripts are a problem
So the server just closes the connection

We chose the last alternative.

[8]



Pipelining requests: GETALL

e GET < HIT'M L _document >
= Server sends back only the document

We define:

e GETALL < HIT'M L _document >
Server sends back document and all inlined images

e can be implemented using HTRQ headers

But there’s a problem:

e The client caches image data

[9]



GETLIST

So we define another primitive:

e GETLIST < URL_list >
= Server sends back all the requested documents

Overall scheme

The client

e uses GETALL for the first access
e keeps cache of images URLSs of recently accessed documents

e uses GETLIST for subsequent accesses to request only images required.

o

/

[10]



Results: CRL server

Load Time (sec)

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Load Timevs. Number of Inlined | mages

] Old protocol

New protocol

| L — Number of Images

0.00

5.00 10.00

Image size: 2544 bytes

[11]




Results: CRL server

Load Timevs. Number of Inlined | mages

Load Time (sec)

30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

| Ol d protocol

— New protocol

| | | Number of lmages
0.00 5.00 10.00

Image size: 45566 bytes

[12]




Summary:. CRL server

Per centage | mprovement vs. Number of Inlined | mages
%06 reduction in load time

50.00 — >544 bytes
7588 bytes
45.00 — — 12188 bytes
25751 bytes
40.00 o 45566 bytes
35.00 —
30.00 - _
25.00 | \\/;';/,'/ \\\ /// \\\ /// B
“\ \\// \\\ //
20.00 — | STt -~
\
\ ;- P ~ o _ - R
15.00 |- \\ ;T T TN 7 hIRe ~ _
\ //
10.00 - _
| | | Number of Images
0.00 5.00 10.00

[13]



Summary: WRL server

Percentage | mprovement vs. Number of Inlined | mages
%06 reduction in load time

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

5.00 10.00

45566 bytes

2544 bytes

Number of Images

[14]




FTP Performance

Present Implementation:

e FTP Control connection re-established each time
Problems:

— increases latency
— increases server load (fork + exec)

— repeated authentication
Modification:

¢ hold connection open for a while

— reduces latency
Response time for browsing cut down to less than half

— Increases number of simultaneous connections for server

\ But not worse than normal FTP

[15]



Prefetching by server

Basic idea: use past information to predict future requests

= Prefetching can mask disk latencies

Issues:

e How to do it?
e IS it much use?

e Is server free enough?

[16]



How to do 1t?

Approach derived from Griffioen & Appleton [Summer USENIX '94]

Based on constructing a dependency graph

Parameters:

e lookahead window size (w)

e prefetch threshold (p)

Main differences:

e application driven

e maintain distinction between accesses by different clients

o

[17]



home.html

Dependency Graph
Imgl.gif
0.5
0.2 >[ img2.gif
0.2
popular.html

0
-

[18]




How much is to be gained?

USENIX paper:

e studied filesystem accesses
e 30% arcs had estimated chance of 1
e Upto 280% improvement in miss-rate

e individual accesses might take longer, but net performance gain
In our case:

e less dependency (only 6.5% arcs have estimated chance of 1)
= smaller improvement

e Is the server free enough?

— not sure; need better traces

_® will work better for local server

[19]



Simulation Results

Cache Miss-rate vs. Prefetch T hreshold

Cache Miss-rate (# blocks)

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

! ! w=2; c=1MB

| ‘ | Prefetch Threshold

Block size: 8 KB

[20]




Simulation Results

Number of Prefetches vs. Prefetch T hreshold
# Prefetches/ A ctual Fetches

1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

\ Ext: w=2; c=1MB

Total: w=2; c=4aMB

‘ ‘ Prefetch Threshold

Block size: 8 KB

[21]




Simulation Results

Histogram of | nter access | ntervals
Frequency X 103

28.00 || —| DEC Server?2
26.00 — —
24.00 — —
22.00 —
20.00 — —
18.00 — —
16.00 — —
14.00 — —
12.00 — —
10.00 — —

8.00 — —

6.00 —

4.00 —

|H| )
0.00 ||||II|||-..._
|

|
0.00 10.00 20.00

INnteraccess Time (sec)

[22]



Conclusions

e With a slightly modified protocol, there is a substantial reduction in
latency

e Improvement depends on size and number of images

— 15-50% for remote server

— 10-40% for local server
e Full interoperability
e Basic problem of detecting EOT
e Prefetching might be useful

[23]



Future Work

e Complete study of server prefetching

e Investigate prefetching across the network

[24]




