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Motivation

� The Web is slow at times

�Main Reason: The HTTP protocol is simple but inefficient
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Sources of Latency

� Server: CPU and disk speeds

� Client: same as above

� Network:

– bandwidth

– Round-trip time (RTT)
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httpdMosaic
Establish TCP connection

Server process createdUser clicks button

<Status code>,<Object headers>,<Data>

Close TCP connection

<Method>,<URL>,<HTRQ>,<Data>

Server process dies

<Data for Image #1>

<Request for image #1>

Close TCP  connection
Server process dies

Establish new TCP connection
New server process created

HTML Parsed
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Problems

� Too many connections!

– Processing overhead for each connection

If authentication is done, that’s extra overhead

– 1 RTT each for set-up and tear-down alone

(WRL-CRL RTT � 75 ms for small packets)

– TCP slowstart � few connections reach full-steam

On T1 line from WRL to CRL: sending 20000 bytes achieves a throughput
of only 0.6Mbps

� No pipelining

� each inlined image requires additional roundtrip
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Long-lived Connections

� Client tells server to keep connection open

– uses HTRQ (HT Request) headers

– Future implementations can define a hold-connection pragma

� Server process loops waiting for request

� Server can close connections to limit its load

Sounds great, but ...

� How does the client know when to stop reading?
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Alternatives

� use a special EOT character

– inefficient due to character stuffing

� have a separate control connection

– unnecessary overhead in the common case

� use the Content-Length information

– works for HTML files, images

– Scripts are a problem

So the server just closes the connection

We chose the last alternative.
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Pipelining requests: GETALL

� GET � HTML document �

� Server sends back only the document

We define:

� GETALL � HTML document �

Server sends back document and all inlined images

� can be implemented using HTRQ headers

But there’s a problem:

� The client caches image data
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GETLIST

So we define another primitive:

� GETLIST � URL list �

� Server sends back all the requested documents

Overall scheme

The client

� uses GETALL for the first access

� keeps cache of images URLs of recently accessed documents

� uses GETLIST for subsequent accesses to request only images required.
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Results: CRL server
Load Time vs. Number of Inlined Images

Old protocol
New protocol
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Results: CRL server
Load Time vs. Number of Inlined Images

Old protocol
New protocol
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Summary: CRL server
Percentage Improvement vs. Number of Inlined Images
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Summary: WRL server
Percentage Improvement vs. Number of Inlined Images
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FTP Performance

Present Implementation:

� FTP Control connection re-established each time

Problems:

– increases latency

– increases server load (fork + exec)

– repeated authentication

Modification:

� hold connection open for a while

– reduces latency

Response time for browsing cut down to less than half

– increases number of simultaneous connections for server

But not worse than normal FTP
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Prefetching by server

Basic idea: use past information to predict future requests

� Prefetching can mask disk latencies

Issues:

� How to do it?

� Is it much use?

� Is server free enough?
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How to do it?

Approach derived from Griffioen & Appleton [Summer USENIX ’94]

Based on constructing a dependency graph

Parameters:

� lookahead window size (w)

� prefetch threshold (p)

Main differences:

� application driven

�maintain distinction between accesses by different clients
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Dependency Graph
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How much is to be gained?

USENIX paper:

� studied filesystem accesses

� 30% arcs had estimated chance of 1

� upto 280% improvement in miss-rate

� individual accesses might take longer, but net performance gain

In our case:

� less dependency (only 6.5% arcs have estimated chance of 1)

� smaller improvement

� Is the server free enough?

– not sure; need better traces

� will work better for local server
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Simulation Results
Cache Miss-rate vs. Prefetch Threshold

w=2; c=1MB
w=2; c=4MB
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Simulation Results
Number of Prefetches vs. Prefetch Threshold

Ext: w=2; c=1MB
Ext: w=2; c=4MB
Total: w=2; c=1MB
Total: w=2; c=4MB
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Simulation Results
Histogram of Interaccess Intervals

DEC Server2
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Conclusions

�With a slightly modified protocol, there is a substantial reduction in
latency

� Improvement depends on size and number of images

– 15-50% for remote server

– 10-40% for local server

� Full interoperability

� Basic problem of detecting EOT

� Prefetching might be useful
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Future Work

� Complete study of server prefetching

� Investigate prefetching across the network


