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We present C*ST*RD, a cross-language information delivery system that supports cross-language
information retrieval, information space visualization and navigation, machine translation, and
text summarization of single documents and clusters of documents. C*ST*RD was assembled and
trained within 1 month, in the context of DARPA’s Surprise Language Exercise, that selected as
source a heretofore unstudied language, Hindi. Given the brief time, we could not create deep
Hindi capabilities for all the modules, but instead experimented with combining shallow Hindi
capabilities, or even English-only modules, into one integrated system. Various possible configura-
tions, with different tradeoffs in processing speed and ease of use, enable the rapid deployment of
C*ST*RD to new languages under various conditions.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language
Processing——machine translation; text analysis; language generation; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval
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1. INTRODUCTION

The goal of DARPA’s 2003 TIDES Surprise Language Exercise was to test the
Human Language Technology community’s ability to rapidly create language
tools for previously unresearched languages. We focused our attention on the
task of providing human access to information that is available only in a lan-
guage of which the user has little or no knowledge. During 29 days in June,
members of ISI’s Natural Language Group adapted their Natural Language
Processing tools to Hindi and integrated them into C*ST*RD,1 a single informa-
tion exploration platform that supports cross-language information retrieval,

1Pronounced custard, standing for Clustering, Summarization, Translation, Reformatting and
Display.
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information space visualization and navigation, machine translation, and text
summarization of single documents and clusters of documents.

A core question in such integration is when in the information delivery
pipeline to deploy machine translation (MT): one can translate the full source
collection and then perform English-only retrieval, summarization, and so on,
or one can perform foreign-language operations and translate only the mini-
mum required to show the user for information space navigation. The optimal
system configuration for this tradeoff—the computational expense of MT ver-
sus the programming expense of creating foreign language capabilities for the
other modules—has not yet been determined.

Whatever one decides, MT obviously plays a pivotal role in this endeavor—
the language barrier must be crossed at some point. While it is desirable in any
case to shield the user from nonrelevant information and minimize the amount
of text he or she has to read in order to obtain the information needed, this is
especially true for MT output. For example, in an exercise on rapid development
of MT for Tamil in 2001 [Germann 2001], evaluators were asked to extract
information from approximately 10 pages of the MT output. They experienced
this task as extremely tedious, tiring, and frustrating. Despite encouraging
progress in the MT quality over the past years, MT output is still, for the most
part, ungrammatical and quite hard to read. Limiting the amount of text the
user has to scan to obtain information is therefore crucial. Coupled with the
fact that higher-quality MT tends to be slow and computationally expensive,
one would prefer to perform as little MT as possible, as late as possible.

Our model of the cross-lingual information access task is therefore based on
two assumptions. First, the user is not familiar with the Hindi language and
thus needs the system to translate the text. In Section 2, we describe our MT
technique, present some evaluation results, and show that we have created an
effective system that produces readable, albeit not quite fluent, text.

Second, we want to minimize the amount of translated text the user has to
read to find the relevant information. For this purpose we developed C*ST*RD,
an interactive information access system that integrates various language tech-
nologies, including information retrieval (IR), document space exploration, and
single- and multi-document summarization. Our aim is to provide an integrated
solution where the user begins by typing a query into a search system, receives
back a set of documents, and uses several document organization and visual-
ization tools to locate relevant documents quickly. In Section 3, we describe
Lighthouse, one of two main components of C*ST*RD that handles IR, cluster-
ing, and document space exploration.

Lighthouse operates at the granularity of single documents. This means that,
once Lighthouse has potentially retrieved relevant documents, the user has to
open and read a whole document at a time to locate the interesting informa-
tion. Therefore, we include iNeATS,2 the second main component of C*ST*RD,
which is an interactive multi-document summarization tool that allows the user
to focus on the most interesting parts of the retrieved texts, ignoring nonrele-
vant content. iNeATS can summarize either individual documents or clusters of

2Interactive Next generation Automatic Text Summarization.
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documents. We describe the iNeATS component of C*ST*RD in Section 4. iN-
eATS produces paragraph-sized summaries, that is, texts of approximately
100–400 words long. While adequate for exploring one or more documents,
this length is cumbersome when the system is displaying many clusters of
documents. Therefore, in Section 5, we introduce another summarization tech-
nology, also included in C*ST*RD, that compresses text even further to pro-
duce single- and multi-document headlines. These headlines are sentence-
sized, that is, 10–15 words long, and define the main topics of the retrieved
documents.

In Section 6, we discuss the implications of different architectural decisions
regarding performing MT early or late, and of performing IR and summariza-
tion on the source Hindi or translated English.

2. MACHINE TRANSLATION

MT is central to the system’s cross-lingual capabilities. The Surprise Language
experiment was, among other things, also a test of the promise of statistical
MT to allow the rapid development of robust MT systems for new languages.

Statistical MT systems use statistical models of translation relations to as-
sess the likelihood of a, say, English string being the translation of some foreign
input. Three factors determine the quality of a statistical MT system: (1) the
quality of the model; (2) the accuracy of parameter estimation (training); and
(3) the quality of the search.

Our statistical translation model is based on the alignment template ap-
proach [Och et al. 1999] embedded in a log-linear translation model [Och and
Ney 2002] that uses discriminative training with the BLEU score [Papineni et al.
2001] as an objective function [Och 2003]. In the alignment template transla-
tion model, a sentence is translated by segmenting the input sentence into
phrases, translating these phrases, and reordering the translations in the tar-
get language. A major difference of this approach from the often used single-
word-based translation models of Brown et al. [1993] is that local word context
is explicitly taken into account in the translation model.

The main training data used to train the system comes from a large set of
different web sources that were assembled by a variety of participating sites
throughout the course of the surprise language experiment. The final sentence-
aligned training data included about 4.2 million English and 4.7 million Hindi
words. In order to obtain reference translations for discriminative training
and for evaluation to monitor development progress, we commissioned human
translations of about 1,000 sentences (20,000 words of Hindi) from Hindi news
agency reports into English. The hope is that by using news-related ‘tuning’ cor-
pora, the training procedure adapts the system to the domain we are actually
interested.

We use a dynamic programming beam-search algorithm to explore a subset of
all possible translations [Och et al. 1999], and extract n-best candidate transla-
tions using A* search [Ueffing et al. 2002]. These n-best candidate translations
are the basis for discriminative training of the model parameters with respect
to translation quality.
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More details on this system can be found in Oard and Och [2003], where
the adaptation of the same core alignment template MT system to Cebunao is
described.

During translation, word-reordering operations are the most time-
consuming. At the same time, their payoff is often low [Germann 2003]. It
is possible to forgo this step, producing slightly lower quality output in return
for significant speedup in translation time. Since we needed to translate entire
document collections for subsequent processing, we performed these transla-
tions with monotone decoding, that is, while word reorderings were possible
locally within the scope of the alignment templates, entire templates were not
reordered. This decision was based on two considerations:

(1) Word order is not important for IR.
(2) A more thorough search was impractical given the computing resources

required for high-quality, high-volume translations.

The outcome of MT, even within a single month, was acceptable. In the Hindi
MT evaluation organized by NIST at the end of the Surprise Language Exercise,
our system obtained better results than all competing systems. It obtained a
NIST score of 7.43 (on input retaining upper and lower case) and 7.80 (uncased)
on the 452 sentence test corpus with four reference translations. The following
text is an example output from this test data:

Indonesian City of Bali in October last year in the bomb blast in
the case of imam accused India of the sea on Monday began to be
averted. The attack on getting and its plan to make the charges and
decide if it were found guilty, he death sentence of May. Indonesia
of the police said that the imam sea bomb blasts in his hand claim
to be accepted. A night Club and time in the bomb blast in more
than 200 people were killed and several injured were in which most
foreign nationals.

A preliminary error analysis shows that major error sources are unknown
words (due to incomplete lexicon coverage of the training corpus) and wrong
word order in the English output produced.

ISI’s approach to MT is generally language-independent. Language-specific
components come into play only during pre and postprocessing and are not
tightly integrated into the core MT technology. This allows us to set up MT
engines rather quickly. In fact, the first MT system was available via the web
within 24 h after the surprise language had been announced, albeit of very
limited utility—it was based on a Hindi encoding that is used exclusively for
the Bible, and trained only on a parallel English–Hindi Bible.

In addition to our web interface, we also provided bulk translations on de-
mand and via a TCP/IP translation socket. This allowed at least two other sites
(New York University and Alias-I) to integrate ISI MT technology into their
systems. By-products of our training, such as word alignments and probabilis-
tic lexicons, were made available to other sites via our resource page whenever
they became available. The bottom line of our experience with MT is that within
3 weeks we were able to provide the community with MT services good enough
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to serve certain purposes, such as cross-lingual IR (with search on the English
side) and gisting.

Even though we did not implement it, we could use the TCP/IP translation
socket to provide high(er)-quality translations of selected documents or sections
of documents on demand to other modules within the C*ST*RD. We discuss this
in Section 6.

3. LIGHTHOUSE

Given the very short period of the Surprise Language Exercise, we could not
develop adequate training data for the IR and summarization modules. As men-
tioned above, we therefore decided to abbreviate the MT process and place MT
early in the information delivery pipeline. (Once the raw material of the exercise
had become available, however, we also could translate it fully, and deploy the
remaining modules in English-only mode. Therefore, we can, in principle, con-
figure C*ST*RD in various ways, deploying MT earlier or later; for a discussion
of the possibilities see Section 6.)

For IR, display, and information space navigation, we embedded Lighthouse
into C*ST*RD. Lighthouse supports full-text search and presents retrieved
documents to the user in a way that facilitates effective browsing and explo-
ration of the information. In contrast to traditional search engines (e.g., such
as Google, AltaVista, etc.) that arrange the retrieved documents in a linear list
by their similarity to the query, Lighthouse uses interdocument similarity in
three ways to organize the retrieved document set: clustering, spatial visual-
ization, and user-directed categorization. These tools jointly present a visual
summary of the document set content to help the user locate interesting infor-
mation, significantly decreasing the amount of nonrelevant material the user
has to examine. In this section, we briefly describe the main components of the
system and discuss how it has been adapted to take into account the cross-
lingual nature of the Surprise Language experiments. A full description of
Lighthouse and its features can be found in Leuski [2001b] and Leuski and
Allan [2003].

3.1 Cross-Language Retrieval

The version of Lighthouse used in the Surprise Language Experiment is built
on top of the Lucene search engine [Lucene 2003]. Lucene is an open source
search engine written in Java. It supports full text indexing and searching using
techniques similar to the best research retrieval systems. It has a powerful
query language and it is easily expandable.

The default distribution of Lucene handles only European languages. We
adapted the search engine to Hindi by implementing a word tokenizer for
the language that breaks the input stream of text into individual terms or
tokens. The tokenizer uses the standard Java 1.4 international text break-
ing subroutines developed at IBM [Gillam 1999]. We also implemented a stop-
word removal filter that consults the word list provided by the University of
California, Berkeley. The list contains 543 Hindi stopwords. No stemming was
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Fig. 1. The Lighthouse interface with open document windows.

done because no Java-based Hindi stemmer was available to us during the Sur-
prise Language Exercise, and there was no time to implement one ourselves.

Our test corpus was a small (16 MB) collection of 3,000 BBC news stories
collected and preprocessed to remove extra HMTL formatting by the Surprise
Language team at the University of Maryland at College Park (UMD). The
news stories covered world events from June 2001 to May 2003. We indexed
the Hindi collection using Lucene’s indexing functions.

The user can search the collection by entering a query in either Hindi or
English (specified using a pop-up menu next to the query field, see Figure 1,
where the user-selected corpus and language with “BBC Hindi (EN query)”).
The search mechanism is the same for both options, except that Lighthouse
translates an English query into Hindi first, using a query translation algo-
rithm based on an English–Hindi dictionary provided by UMD. The algorithm
performs a greedy search on the English part of the lexicon using the query
string and returns the corresponding Hindi parts, which are then joined into
the resulting query string. Matching long phrases in the query is preferred over
matching individual words. If no match is found in the first pass, the search
is repeated using stemmed query words. We used the Porter stemmer [Porter
1980] to stem both the query and the lexicon. If an English term had multiple
Hindi translations, we used all translation variants. Each translation vari-
ant can be weighted in proportion to its translation “likeliness,” assuming the
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Fig. 2. The Lighthouse interface.

likeliness information is present in the dictionary [Pirkola 1998]; since, how-
ever, the UMD dictionary does not contain such information, all translations
were treated as equivalent . English words not found in the lexicon were copied
to the result unchanged.

An alternative to dictionary-based query translation is to use the abovemen-
tioned statistical MT module. However, several factors lead us to adopt the
former approach: (1) it proved easier to integrate dictionary-based translation
into Lighthouse, (2) the access latency for the local dictionary-based translation
is smaller than for the TCP-socket-based service the MT system provides, and
(3) the statistical MT engine was designed to translate whole sentences and not
queries, which are generally disfluent.

Lighthouse displays the translated Hindi query to the user (e.g., in
Figure 1, the user’s query “bomb” is shown, with its translation variants below,
centered).

3.2 Ranked List

Lighthouse presents to the user the top portion of the retrieved document set.
The size of the retrieved set is defined by the user. In Figure 2, the limit is set
to 30.

The retrieved documents are shown as the ranked list of document headlines
and a set of spheres arranged in either 2- or 3-dimensional space. Each sphere
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corresponds to a document in the retrieved set, and the spheres are positioned
in proportion to the interdocument similarity: a pair of similar document will
be represented by two spheres that are close to each other. We describe the
details of the latter presentation based on the spring-embedding visualization
algorithm in Section 3.4.

The ranked list is broken into two columns of equal length, flanking the
configuration of spheres left and right. The columns flow starting from top left
down and again from the top right. The pages are ranked by the search engine in
the order they are presumed to be relevant to the query. A rank number precedes
each document in the list. For each document we show both the original Hindi
headline and the English headline produced by MT, as described in Section 2.
The documents in the list can be ordered by their rank or alphabetically by
either version of the headline.

A click on the document title (or sphere) with the right mouse button brings
up a pop-up menu that allows the user select either the original Hindi doc-
ument text or the translated English text to be opened in the web browser
(see Figure 1). While developing the C*ST*RD system we pretranslated all
documents in the collection so the translated headlines and document texts
were available locally. An alternative approach would be to support on-the-
fly document translation. Lighthouse implements document text-viewing re-
quests as HTTP requests. We did not implement this option due to time
limitations.

3.3 Unsupervised Clustering

The clustering subsystem of Lighthouse partitions the retrieved documents in
a set of nonoverlapping clusters and groups the corresponding headlines in
the list. The main assumption behind using this technique is the Cluster Hy-
pothesis of IR: “closely associated documents tend to be relevant to the same
requests” [van Rijsbergen 1979, p. 45]. Using this hypothesis, the clustering
will place them together in the same cluster. Once the user finds one relevant
document, he or she is likely to find more relevant documents by examining
the rest of the cluster. The Cluster Hypothesis has been studied in the context
of improving search and browsing performance by preclustering the entire col-
lection [Willett 1988; Cutting et al. 1992; Cutting et al. 1993]. Croft [1978] and
more recently Hearst and Pedersen [1996] showed that the Cluster Hypothesis
holds in a retrieved set of documents.

Figure 2 shows the 30 retrieved documents partitioned into seven clusters.
Each cluster is represented by a rectangular bracket or “handle” that runs
parallel to the cluster. We order the documents in the clusters using their rank
and sort the clusters using the rank of the highest-ranked document in each
cluster. Scanning the document headlines we can tell that, for example, the
second cluster talks about an explosion in the Indonesian city of Bali and the
fourth cluster contains documents that deal with an explosion in Karachi. Our
monolingual English experiments show that such a document organization can
be much more effective in helping the user to locate the relevant information
than the ranked list [Leuski 2001a].
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A cluster headline precedes each cluster. The headline is produced by
the GOSP 3 multi-document headline generation system of C*ST*RD (see
Section 5) [Zhou and Hovy 2003]. The GOSP system is implemented as a Perl
script, which is called from the main Lighthouse Java code on demand. The
cluster headlines are generated from the English translations of the Hindi doc-
uments produced by the MT module of C*ST*RD.

Lighthouse uses the Ward hierarchical agglomerative clustering algorithm
to generate the document set partition [Mirkin 1996]. On input, the algorithm
receives a set of objects and a matrix of interobject distances. It starts by assign-
ing each object to its unique cluster. The algorithm iterates through the current
cluster set by selecting the closest pair of clusters and merging them together,
forming a new cluster that replaces them in the cluster set. We terminate the
clustering process as soon as the distance between the closest pair of clusters
exceeds a predefined threshold. This threshold is set to a value that generally
produces good clusters on a standard collection of documents [Leuski 2001a].
Using the clustering algorithm on another collection may require adjustments
of the threshold value. Also, the user’s task may require a cluster granularity
level that is different from the default setting. Lighthouse thereby provides the
user with controls for threshold adjustments.

To compute interdocument distances, we employ the vector-space model for
document representation [Salton 1989]. Each document j is defined as vector
Vj , where vi, j is the weight in this document of the ith term in the vocabulary.
The term weight is determined by an ad-hoc formula [Allan et al. 1998] that
combines Okapi’s tf score [Robertson et al. 1995] and INQUERY’s normalized
idf score:

vi, j = tfi, j

tfi, j + 0.5 + 1.5 doclen j

avgdoclen

log( colsize+0.5
docfi

)

log(colsize + 1)
,

where vi, j is the weight of the ith term in the vocabulary in the jth document;
tf i, j , the number of times the term occurs in the document; docfi, the number of
documents the term occurs in; doclen j , the number of terms in the document;
avgdoclen, the average number of terms per document in the collection; and
colsize, the number of documents in the collection. The similarity between a pair
of documents is computed as the cosine of the angle between the corresponding
vectors (cos θ ) [Salton 1989]. In this study, we use the inverse of the cosine
(1/ cos θ ) to define the distance between a pair of documents.

3.4 Spatial Visualization

Partitioning the document set into nonoverlapping clusters reduces interdoc-
ument relationships and hence simplifies display and manipulation of the re-
trieved set. It is very easy from a user’s point of view to tell a pair of similar
documents from a pair of dissimilar ones, since they are assigned to the same
cluster. This simplification comes at the cost of losing the intricate details of
interdocument similarity that might otherwise be useful for locating relevant

3Global Word Selection with Localized Phrase Clustering.
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information. Additionally, the clustering algorithm is a parametric approach.
Determining the best value for the threshold that defines the final partition
of the document set is a very hard question that one would like to avoid in a
real-world system.

To position the spheres in 2- or 3-dimensional space in proportion to inter-
document similarity, Lighthouse uses the same interdocument distance matrix
described in the previous section. However, the visualization discussed in this
section does not require any clusters—when a user sees spheres arranged in
groups, that is just an artifact of the interdocument similarity. Simply put, it
just draws the documents, illustrating any structure that is already present
in the data. Assigning any meaning to the structure is the user’s concern. The
reason for the difference with clustering is that the clustering threshold param-
eter introduces a discontinuity that partitions the space, while the visualization
display is performed in a continuum.

Figure 2 illustrates one advantage of visualization over clustering. Here we
selected the fifth cluster. It contains four documents, which the clustering al-
gorithm deemed to be similar enough. The document titles and spheres are
drawn with the black outline. The first document in the cluster discusses an
explosion in Karachi, the second and the fourth documents discuss Chechnya,
and the third document talks about President Bush’s visit to Peru. These four
documents are in fact different from each other and this fact can be quickly
noted by looking at the visualization—the corresponding spheres lie in differ-
ent parts of the screen. Clearly the clustering algorithm made a mistake in
bringing together these documents. Probably we need to adjust the clustering
threshold.

In contrast, spatial visualization does not have any parameters to adjust. In
this continuum, the Cluster Hypothesis still applies: relevant documents tend
to group together. Once the user finds a relevant document, the spheres for
other relevant documents will be located nearby.

Our experiments with spatial visualization in monolingual settings showed
that such a presentation can be used effectively to direct the user’s search for
relevant information in the top ranked portion of the retrieved set [Allan et al.
2000]. We have experimentally shown that this approach significantly exceeds
the initial performance of the ranked list and rivals in its effectiveness the
traditional Rocchio relevance feedback methods [Rocchio 1971; Buckley and
Salton 1995; Allan et al. 1997; Leuski 2000].

To generate a set of spheres that represents the multidimensional document
vectors we use a Multidimensional Scaling algorithm called spring-embedding
[Fruchterman and Reingold 1991]. The spring-embedding algorithm models
each document vector as an object in 2- or 3-dimensional visualization space.
It is assumed that the objects repel each other with a constant force. They are
connected with springs, where the strength of each spring is proportional to the
cosine similarity between the corresponding document vectors. This “mechan-
ical” model begins with a random arrangement of objects and oscillates due to
existing tension forces in the springs until it reaches a state with “minimum
energy”, namely when the constraints imposed on object placement best satis-
fied. The result of the algorithm is a set of points in space, where each point
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represents a document and the interpoint distances closely mimic the interdoc-
ument dissimilarity.

Each sphere in the visualization is linked to the corresponding document title
in the ranked list, so clicking on the sphere will select the title and vice versa.
The user can examine the clustering structure and place it in the best viewing
angle by rotating, zooming, and sliding the whole structure while dragging the
mouse pointer. (Only the spheres can be manipulated in this fashion; the ranked
list remains in place.)

3.5 Supervised Classification

What if the user has difficulty with the spatial navigation and the clustering
algorithm produces unsatisfactory partitions of the retrieved document set?
Lighthouse can also categorize the documents based on the user’s examples:
The user first selects one or more documents and assigns them to a particular
category. Lighthouse then dynamically computes the likelihood of the other
documents being assigned to the category and presents this information to the
user.

For clarity of display, each category is assigned a color. The category as-
signments are indicated by painting the corresponding document titles and
spheres with the category color. The user starts with two categories: “relevant”
and “nonrelevant.” He or she can introduce new categories at will.

The title and the sphere of the document that was assigned to the category
by the user is filled with a bright shade of the category color. In contrast, the
automatically assigned documents are indicated with a less intense shade of
color, where the intensity of the shading is proportional to the computed likeli-
hood. The length of the document title background shading is proportional the
likelihood as well.

Figure 1 shows that we selected the document ranked 15 and assigned it to
the relevant category. The document title and the sphere are shown in dark
gray.4 Lighthouse estimates that the documents 17, 25, and 26 are likely to be
relevant because they are similar to the selected document. The corresponding
spheres and titles are drawn in various shades of gray. For example, document
17 is very likely to be relevant—it has dark gray shading and the title back-
ground is long. Meanwhile, document 26 is less likely to be relevant, the corre-
sponding title background is approximately half as long. In this example, the
nonrelevant category is represented by the white color. Most of the other docu-
ments are estimated to be nonrelevant, they are represented as white spheres
and the corresponding title backgrounds are painted as white bars.

This category assignments are computed using a supervised classification
“wizard” based on a neural network [Leuski 2000]. The wizard takes into
account the number of documents the user assigned to each category and
the average distances between them and each unassigned document. If the
user confirms or rejects the Lighthouse category assignments by marking a

4In this example we use different shades of gray to indicate categories due to black and white limi-
tations of the publishing media. Lighthouse paints categories in bright colors making the markings
much clearer.
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document, the system dynamically recomputes its estimates for other docu-
ments and directs the user to the most interesting information. Our experi-
ments showed that wizard-directed browsing of the retrieved document set can
be significantly more effective then using the state-of-the-art relevance feed-
back method of IR [Leuski 2000].

3.6 Lighthouse Summary

Lighthouse is primarily a document organization and presentation system. It
uses interdocument similarity information to focus the user’s attention on the
groups of similar documents in order to locate relevant information much more
effectively than traditional ranked list presentations do. It has been shown to
be very successful in decreasing the amount of nonrelevant information the
user has to examine before locating the relevant documents. This is especially
important in the cross-lingual settings, where the user has to read the MT
output. All the technologies used in Lighthouse are language-neutral. The main
challenge in adapting Lighthouse for the Surprise Language Exercise was to
provide the Hindi IR system.

4. INEATS

Once the user has retrieved and identified possibly relevant cluster(s) of docu-
ments, summarization can help in various ways to reduce the amount of brows-
ing required to find the most useful information. At the crudest granularity,
cluster-based headlines (produced here by GOSP; see Section 5) characterize
the whole cluster in 15 words. At the next level of granularity, document-
based headlines characterize the contents of one document. At the next level,
paragraph-length summaries of a cluster (produced by iNeATS; this section)
and of a single document provide more detail. Most finely, paragraph-length
summaries of a single document, tailored to topic word(s) input by the user,
provide the most accurate drill-down into document content.

In contrast to the mostly language-neutral technologies used in Lighthouse,
the summarization algorithm used in iNeATS is more language-dependent.
We did not have enough time to create the training data required for building
versions of the summarizer properly trained for Hindi. Our main focus was to
integrate the summarizers into C*ST*RD. We show the summarization results
obtained on the machine-translated versions of the Hindi documents.

iNeATS helps the user summarize and examine single or small sets of doc-
uments in more detail than allowed by Lighthouse. It can be invoked from
within Lighthouse by selecting a group of documents on the Lighthouse screen
and choosing “Summarize” from the pop-up menu.

Most automatic summarization systems work by assigning one or more
scores to each sentence, combining the scores, ranking the sentences, extracting
the top-scoring sentences from the documents, and arranging them in coher-
ent order [McKeown et al. 2001; Over 2001]. The system has to make deci-
sions on the summary’s length, inclusion of redundant material, and focus.
Any of these decisions may have a significant impact on the quality of the
output.
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We believe a system that directly involves the user in the summary gener-
ation process and adapts to his or her input will produce better summaries.
Additionally, it has been shown that users are more satisfied with a system
that visualizes its decisions and gives the user a sense of control over the pro-
cess [Koenemann and Belkin 1996]. We identify three ways in which interac-
tivity and visualization can be incorporated into the multi-document summa-
rization process:

(1) give the user direct control over the summarization parameters such as
summary length, redundancy, and focus;

(2) support rapid browsing of the document set using the summary as the
starting point and combining a multi-document summary with summaries
of individual documents;

(3) incorporate alternative formats for organizing and displaying the summary,
for example, a set of news stories can be summarized by placing the stories
on a world map based on the locations of the events described in the stories.

The iNeATS part of C*ST*RD addresses all three directions. It is built on
top of the NeATS multi-document summarization system.

4.1 NeATS

NeATS [Lin and Hovy 2002] is an extraction-based multi-document summariza-
tion system. It is among the top two performers in the international DUC 2001
and 2002 summarization evaluation competitions organized by NIST [Over
2001]. It consists of three principal components:

Content selection. The goal of content selection is to identify important con-
cepts mentioned in a document set. Given two sets of documents, relevant and
nonrelevant, NeATS computes the likelihood ratio [Dunning 1993] to identify
key concepts as unigrams, bigrams, and trigrams, and clusters these concepts,
called topic signatures [Lin and Hovy 2000], to identify major subtopics within
the main topic. (In the C*ST*RD system the relevant document set is the doc-
ument set the user wants to summarize. We implement the nonrelevant doc-
ument set by randomly sampling the whole collection. The size of the sample
is set equal to the size of the relevant document set.) Each sentence in the
document set is then ranked, using the topic signatures.

Content filtering. NeATS uses three different filters to assign importance
scores to each sentence: sentence position, stigma words, and word redun-
dancy. Sentence position has been used as an effective content filter since
the late 1960s [Edmundson 1969]. NeATS applies a simple sentence filter
that only retains the N lead sentences. Stigma words are defined as fol-
lows. Some sentences start with conjunctions, quotation marks, pronouns, or
are headed by the verb “say” and its derivatives (e.g., “Joe said . . . ”). Since
these stigma words usually cause discontinuities in summaries, the second
filter reduces the scores of sentences containing stigma words to demote
their ranks and avoid including them in summaries of small sizes. Third, to
address the redundancy problem, NeATS uses a simplified version of CMU’s
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Fig. 3. The iNeATS interface.

MMR [Goldstein et al. 1999] algorithm. A sentence is added to the summary
if and only if its content has less than X percent stemmed word overlap with
the summary. NeATS uses the Porter stemmer to stem the tokens and X is a
parameter of the summarization process that can assume values between 0 and
100. Once every sentence has been scored, an automatically trained function
combines the scores into a single value for each sentence.

Content presentation. To ensure coherence of the summary, NeATS pairs
each sentence with a lead sentence, which tends to introduce the contents of its
document. It then outputs the final sentences in their chronological order.

4.2 Interactive Summarization

Figure 3 shows a screenshot of the iNeATS system. We divide the screen into
three parts corresponding to the three directions outlined at the beginning of the
section. The control panel displays the summarization parameters on the left
side of the screen. The document panel shows the document text on the right
side. The summary panel presents the summaries in the middle of the screen.

4.3 Controlling the Summarization Process

The top of the control panel provides the user with control over the summariza-
tion process. The first set of widgets contains controls for the summary size,
sentence position, and redundancy filters. The second row of parameters dis-
plays the set of topic signatures identified by the iNeATS engine. The selected
subset of the topic signatures defines the content focus for the summary. If the
user enters a new value for one of the parameters or selects a different subset
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of the topic signatures, iNeATS immediately regenerates and redisplays the
summary text in the top portion of the summary panel.

4.4 Browsing the Document Set

iNeATS facilitates browsing of the document set by providing (1) an overview of
the documents, (2) linking the sentences in the summary to the original docu-
ments, and (3) using sentence blending to highlight the most relevant sentences
in the documents [Leuski et al. 2003].

The bottom part of the control panel is occupied by document thumbnail dis-
plays. The thumbnails are arranged in chronological order and each document
is assigned a unique color to paint the text background for the document. The
same color is used to draw the document thumbnail in the control panel, to fill
up the text background in the document panel, and to paint the background
of those sentences in the summary that were collected from the document. For
example, the screenshot shows that a user selected the second document which
was assigned the orange color.5 The document panel displays the document text
on orange background. iNeATS selected summary sentences 3, 4, 5, and 6 from
this document, so these four sentences are shown in the summary panel with
orange background.

The sentences in the summary are linked to the original documents in two
ways. First, the document can be identified by the color of the sentence. Second,
each sentence is hyperlinked to the document—if the user moves the mouse over
a sentence, the sentence is underlined in the summary and highlighted in the
document text. For example, the first sentence of the summary is the document
sentence highlighted in the document panel. If the user clicks on the sentence,
iNeATS brings the source document into the document panel and scrolls the
window to make the sentence visible.

The relevant parts of the documents are illuminated using the technique
that we call sentence blending. We make the text color intensity of each sen-
tence proportional to the relevance score computed by the NeATS engine and a
blending parameter, which can be controlled by the user with a slider widget at
the top of the document panel. The higher the sentence score, the darker the text
is. Conversely, sentences that blend into the background have a very low sen-
tence score. The blending parameter controls the proportion of the top ranked
sentences visible on the screen at each moment. This blending affects both the
full-text and the thumbnail document presentations. Combining the sentence
blending with the document set overview, the user can quickly see which doc-
ument contains most of the relevant material and where approximately in the
document this material is placed.

For example, in Figure 3 the blending parameter is set to 50%. The first line
of the document is the headline and it is ignored in summarization. The first
and sixth sentences are very important and they are shown in black. These are
sentences that start with “in chechnya. . . ” and “bbc to press. . . ” The second,

5The distinction between the colors may not be apparent on a black and white reproduction of the
screenshot but it is very noticeable on a computer screen. The actual color is not crucial for this
discussion.
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third, and fourth sentences are less important and they are shown in gray.
Apparently, the second sentence has slightly lower score than the other two
because it was not selected for the summary.

Some sentences may have a very high score but do not appear in the sum-
mary because of their position in the document. We illustrate this by rendering
such sentences in italics. For example, the document in Figure 3 has one such
sentence, which starts with “the president bush. . . ,” at the end of the document.
It is shown in black italics, indicating that it has a high relevance score and its
position is higher than the sentence cutoff, which is set to 10.

4.5 Alternative Summaries

The bottom part of the summary panel is occupied by a map-based visual-
ization. We use BBN’s IdentiFinder [Bikel et al. 1997] to detect the names of
geographic locations in the document set. We highlight the most frequent ones
on a world map, determining the geographic locations by querying the Getty
Gazetteer [Getty 2003].

Each location is identified by a black dot followed by a frequency chart and the
location name. The frequency chart is a bar chart where each bar corresponds
to a document. The bar is painted using the document color and the length of
the bar is proportional to the number of times the location name is used in the
document. For example, the set used in earlier figures contains documents about
explosions in Chechnya, Karachi, and Lima. iNeATS identified and displayed
six locations: Russia, Moscow, Pakistan, Karachi, Peru, and Lima. We notice
that the first two locations appear only in the first two documents, the next
two are discussed only in the third document, and the last two locations are
mentioned in the fourth document.

This panel of the display can of course be used for other multimedia displays,
including graphs or bar charts for numerical information or pictures of relevant
objects and places.

4.6 Multilingual Summarization

NeATS is based on SUMMARIST, an older single-document summarization
system developed at ISI. Despite containing additional sentence scoring algo-
rithms, SUMMARIST has been applied to several other languages, including
Spanish, French, Italian, Chinese, and Bahasa Indonesia. In general, adapting
an extractive summarization system such as SUMMARIST or NeATS to new
language requires adapting or retraining the individual sentence scoring mod-
ules for the conditions of the new language. The position module, for example,
exploits the fact that certain text genres exhibit a stereotypical text structure,
for example in news articles the most important information appears early in
the text. To the extent this is true in the new language (and genre), the position
module can be employed without change. Other modules of course have to be
retrained, or at least their resources have to be rebuilt. English stigma word
lists, for example, are of no use in Hindi documents.

Having enough training material (examples of full texts and abstracts, or
extracts), one can fairly easily adapt the individual modules. In the time allowed
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for the Surprise Language Exercise, we could not build or find the requisite
materials, and hence had to deploy NeATS on the English produced by the MT
module. While not ideal, this solution did not harm the summary quality too
much; the relative crudeness of the three scoring algorithms of NeATS did not
suffer from the slightly degraded quality of the interrupted MT process. We
conclude that one can, without much harm, show the user summaries based on
slightly degraded MT, and then only request better quality translation when
the user starts exploring a particular document (see Section 6 for discussion).

4.7 Implementation and Efficiency Issues

iNeATS is implemented as a Java module that places calls to the external
NeATS implementation, collects the results and presents them on the screen.
The NeATS engine is written in Perl and C. It loads the documents, parses
them, extracts key concepts, computes sentence scores, and generates the sum-
maries. It takes approximately 10 s to preprocess a set of documents and create
sentence ranking information on a 800 MHz PowerPC laptop. Once the pre-
processing stage is complete, NeATS can compute the final summary almost
instantaneously. When the user adjusts the summarization parameters, iN-
eATS takes approximately 1 s to regenerate and redisplay the summary.

Another time consuming operation is querying the web-based gazetteer. We
addressed this problem by caching the most widely used locations locally on the
hard drive.

5. HEADLINE GENERATION

Cluster headlines, displayed in the Lighthouse interface, help the user decide
which document clusters are worth further examination. Since cluster head-
lines need to be short, sentence extraction using NeATS is not an option.

Our multi-document headline generation module, a Perl implementation of
the GOSP algorithm, generates headlines for document clusters in two stages:
First, it generates a headline, composed of phrases, for each document in the
cluster. Then it selects among the individual document headlines the most “in-
formative” phrases until it meets a headline length limit criterion (see Sec-
tion 5.2). The length threshold of a headline is generally set to 15 words. We
discuss the single-document headline system first.

5.1 Single-Document Headline Generation

Single-document headline generation is performed as follows:

(1) Select headline-worthy words from the document body: Potential headline
candidates are determined by statistical model trained on a collection of
documents and their headlines. The scoring function combines two models
of “headline worthiness”:

Score(w) = Pfo(w) × Ptf (w).

Pfo(w) is the probability of a word w occurring in the headline given the
position (measured by sentence number) of its first occurrence in the docu-
ment body. It is estimated as follows.
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Fig. 4. GOSP forming bigram chains around headline-worthy words in the initial portion of the
document body. The headline generated by the system is police racism and brutality have shaken
this city.

Let fo(w) be a function that returns the position (in terms of the sentence
number) of the first occurrence of the word w in the document body of a
given document, and let

Count Posi =
M∑

k=1

Nk∑

j=1

δ(fok(hk, j ) = i)

be the number of times a headline word has its first occurrence in the doc-
ument body in position i in a document collection, where M is the number
of documents in the collection; Nk , the number of words in the headline of
document k; fok , the “first occurrence” function with respect to document
k; hk, j , the j th word in the headline of document k; and δ an evaluation
function that returns 1 if the argument expression is true, 0 otherwise.

Then

Pfo(w) =
Count Posfo

∑Q
k=1 Count PosQ

,

where Q is the highest sentence number in the training collection.
An evaluation of this measure in Zhou and Hovy [2003] showed that

roughly 40% (310 out of 808) of the words in headlines also occur within
the first 50 words of the document body. Similar observations can be found
in Zajic et al. [2002] and Lin and Hovy [1997].

The same evaluation in Zhou and Hovy [2003] also indicated that when
the length of the headline is restricted, predictions are best if the sentence
position model is combined with a lexicalized model based on the correla-
tion of a word’s occurrence in a document’s body and its occurrence in the
headline [Jin and Hauptmann 2001]:

Ptf (w) =
∑M

j=1(TFbody(w, j ) × TFheadline(w, j ))
∑M

j=1 TFbody(w, j )
,

where TFbody(w, j ) is the number of occurrences of the word w in the doc-
ument body of the j th document in the collection, and TFheadline(w, j )) the
number of occurrences of w in the document’s headline.

(2) Extract phrases from the initial 50 words of the document body: Next, the
GOSP algorithm forms “bigrams chains” around each occurrence of the
10 highest-scoring words within the first 50 words of the document body
(see Figure 4). This restriction is based on the aforementioned observation
that the more important words in the document tend to have their first
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occurrence early in the text. These bigram chains form candidate headline
phrases.

The headline candidate phrases are then sorted by their length in de-
creasing order. Starting with the longest phrase, candidate phrases are
added to the set of final headline phrases until the length threshold is
met.

(3) Cleanup: Finally, dangling verbs, particles, conjunctions at the beginning
and the end of the final headline phrases are removed. In order to do so, a
part-of-speech tagger is run on all input texts. Using a set of hand-written
rules, dangling words and words in the stop list are removed.

5.2 Multi-Document Headline Assembly

The procedure described so far generates sets of phrases for single-document
headlines, resulting in a fairly large set of overlapping candidate phrases for the
entire collection. From this set of candidate phrases, we must now extract the
ones with the highest “information value,” as measured in the ratio of headline-
worthy words to the total number of words in the phrase, and the least overlap
between the phrases selected.

We use a greedy strategy to select the most informative phrases. The selection
process works as follows. First, all phrases in the collection are ranked by the
ratio of keywords (headline-worthy words) and the total number of words in
the phrase. The highest ranking one is selected. (In the sample in Figure 5, we
prefer longer phrases over shorter ones if they have the same keyword ratio.
Whether this is the best strategy has yet to be determined.) Once a phrase
has been selected, all keywords in it lose their value as keywords, and the
remaining phrases are reranked. Note, for example, that the phrase SOUTH
GEORGIA drops from rank 4 to rank 27 after GEORGIA ELEVEN CHILDREN
INFECTED has been selected. This is because GEORGIA has lost its value as
a keyword, so that the keyword ration drops from 100% to 50%. This procedure
is repeated until the headline is shorter than a predefined length threshold. In
our experiments the length threshold was set to 15 words.

5.3 GOSP Before MT or MT Before GOSP?

When generating headlines for document clusters in a cross-lingual application,
an important decision must be made: Should the cluster headline be generated
from the source language and then translated, or is it better to generate the
headline from the document translations?

In order to answer this question, we computed single-document headlines
for Hindi documents and then translated the headlines using our MT sys-
tem. We also computed headlines for the machine-translated versions of the
same documents. There were 26 documents in the set. We compared the perfor-
mance of both approaches using the automated evaluation-scoring algorithm
ROUGE (Recall-Oriented Understudy for Gisting Evaluation). ROUGE, intro-
duced by Lin and Hovy [2003] (then still under the name RED), is a measure of
n-gram recall between candidate summaries (or headlines) and a set of refer-
ence summaries/headlines.
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Fig. 5. Multi-document headline assembly. Candidate phrases are ranked (1st column) by the ra-
tio (2nd column) of keywords (headline-worthy words; displayed in upper case) and total number of
words in the phrase. After each phrase selection, the keywords in it become “downgraded” to non-
keywords (displayed in lower case), and the remaining phrases are reranked. For example, SOUTH
GEORGIA drops from rank 4 to rank 27 after GEORGIA ELEVEN CHILDREN INFECTED has
been selected, because GEORGIA loses its value as a keyword. The process stops when the headline
length limit has been reached.

ROUGE is computed as follow:

ROUGEn =
∑

C∈{Reference Summary}
∑

ngram∈C Countmatch(ngram)
∑

C∈{Reference Summary}
∑

ngram∈C Count(ngram)
,

where n stands for the length of the n-gram and Countmatch(ngram) is the
maximum number of n-grams co-occurring in a candidate summary and a ref-
erence summary and Count(ngram) is the number of n-grams in the reference
summary. It is clear that ROUGEn is a recall-related metric since the denom-
inator of the equation is the total sum of the number of n-grams occurring at
the reference summary side.

The data in Table I indicate that generating English headlines from trans-
lations is better than translating Hindi headlines generated from the original
documents. This result is statistically significant for unigrams and bigrams
with the confidence level of 95% (α = 0.95).
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Table I. Comparative ROUGE (n-Gram Overlap (recall)) Score for Multi-Document
Headline Generation

System Unigrams Bigrams Trigrams 4-grams
HH 0.43 (±0.07) 0.16 (±0.06) 0.06 (±0.04) 0.02 (±0.02)
Trans 0.19 (±0.06) 0.02 (±0.02) 0.00 (±0.00) 0.00 (±0.00)
Gen 0.29 (±0.07) 0.07 (±0.04) 0.01 (±0.02) 0.01 (±0.01)
Gen10 0.27 (±0.08) 0.08 (±0.05) 0.03 (±0.03) 0.01 (±0.01)
Gen15 0.32 (±0.07) 0.08 (±0.04) 0.02 (±0.02) 0.01 (±0.01)
HH overlap among (human) reference translations
Trans headline generated from Hindi originals, then translated
Gen headline generated from MT output of full text
Gen10 same as Gen; optimized to achieve an average headlines length of 10
Gen15 same as Gen; optimized to achieve an average headlines length of 15

Notes: Only the first 10 content words in the headlines were considered in the evaluation in order to
favor short headlines. Confidence intervals (with α = 0.95) were calculated by jackknifing (systematic
resampling by selecting 3 out of 4 references for scoring).

Table II. Examples of Generated Single-Document Headlines

Translate then generate Generate then translate

Defense minister threat of legal action New
Delhi/Fernandes/Supremo/food

The legal action threatened Delhi/party
Mr./threat/accused

Summit of site with demonstration violence
June/police/city/French

Summit conference with/as a countries/
Centre

Trade agreement/pressure/be in business
concessions/countries Bangladesh in
Dhaka/Asian

The/officers it/the concessions/the/the
discussion

Two factors contribute to this phenomenon:

(1) Translation of whole documents increases the sample size and therefore it
increases the chances of the translation engine “hitting the right words.”
The impact of mistranslation of generated headlines is stronger than of
occasional mistranslations in large amounts of text.

(2) The translation engine was designed to translate whole sentences, not
phrases. It does not perform as well when the input is a list of separate
phrases.

Table II gives a few examples of the generated headlines. Each row in the
table corresponds to single document. The left column shows the English head-
line produced from the translated English document. The right column presents
the automatic English translation of the headline generated from the original
Hindi document.

5.4 Integration Efficiency

The present Lighthouse/GOSP implementation requires approximately 1 s to
compute a cluster headline in a 800 MHz Power PC machine in the interactive
settings. Three factors affect the speed of the headline generation: (1) the la-
tency of a Java call to an external command, (2) the time required by GOSP
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to load and parse the document text, and (3) the time required by GOSP to
generate the headline. The first two factors significantly outweigh the last one.
Both of them can be eliminated by rewriting the GOSP algorithm in Java
and merging it into the Lighthouse framework. Lighthouse already parses
the documents and generates document vectors to compute interdocument
similarity.

6. TRADEOFFS: MT EARLY OR LATE?

A principal underlying question is architectural: should we translate the Hindi
first and then apply the various language modules such as retrieval, cluster-
ing, and summarization, or first apply the various modules on the Hindi source
and then translate the results? Is it better to develop foreign capabilities for
the various technologies (knowing that, given resource limitations, their perfor-
mance will almost certainly be lower than the English original)? Or is it better
to try to perfect and speed up MT, and then focus on improving just the English
versions of the other modules? And how should one handle the IR?—certainly
one cannot translate all the world’s text into English!

Since these questions involve user performance and satisfaction measures,
it is impossible to study all the tradeoffs involved in 1 month. However, we can
learn some important lessons. Clearly, in a real-world setting, especially when
operating over the World Wide Web, one would prefer to minimize translation,
since it is an expensive process. However, our results in Section 5.3 suggest
that this approach is not ideal within the system: once retrieval is complete,
translating and then summarizing the documents can produce significantly
better summaries than creating headlines for the Hindi documents and then
translating the headlines. Until we have time and the training data required
for properly building a Hindi headliner, this will be the case. But for a rapid-
deployment scenario one has to follow the first option, using a standard English-
trained summarizer.

Similarly, as described in Section 2, we can speed up MT by forgoing some
word reordering and hence compromising on the output quality. Since IR op-
erates at the isolated word level, this compromise does not impact IR. We can
then introduce this portion of the MT process at a later stage, for example af-
ter headline browsing but before paragraph-sized summarization, allowing the
user to see an improved version of just the sentences selected for the summary.

As one decomposes each module into submodules, additional opportunities
for interweaving them appear. For example, the N best alternative translations
of a sentence generally are probably not equivalent when it comes to composing
a headline from parts of them; GOSP might actually be able to create a more
fluent headline from the second- or third-best translation.

As the component technologies mature, and as evaluation metrics for
such integrated systems as C*ST*RD are perfected, we can look forward to
increasingly refined configurations of modules, parameterized depending on
the user’s task, the time available for system construction, and the amount of
training material at hand. This kind of system integration provides an exciting
new arena for research in Human Language Technology.
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7. CONCLUSION

During DARPA’s June 2003 Surprise Language Exercise, we worked on creat-
ing technology solutions for providing access to information in Hindi for English
speakers. Our focus in this exercise was twofold. First, we created a MT system
that is very successful in translating Hindi documents into English. Second,
we built an interactive information access system using various technologies
developed at ISI. This system, called C*ST*RD, integrates cross-lingual in-
formation retrieval, document organization and visualization, multi-document
summarization and headline generation. The goal of C*ST*RD is to provide
an English speaking user with information search capabilities in Hindi docu-
ment collections and minimize the user’s exposure to the MT output by means
of effective document organization and various text-based and non-text-based
summarization approaches.

Most of the document organization technologies employed in C*ST*RD such
as clustering and spatial visualization are language-neutral and were easy
to adapt for Hindi. Several studies in monolingual English settings showed
that these techniques are very effective in helping a user in locating relevant
documents among the retrieved document set. We expect this claim to be valid
in the cross-lingual settings.

Other C*ST*RD technologies, including IR and document summarization,
depend on the target language and either require implementation effort to
adapt them to Hindi or can applied to the English output of the MT system. We
handled this problem differently for IR and summarization. We implemented
English–Hindi query translation and Hindi document analysis such as tok-
enization and stopword removal. On the other hand, we applied multi-document
summarization to the machine-translated output. This strategy proved to be
very successful for document headline generation. Our experiments showed
that summarizing MT output creates better headlines than translating head-
lines produced from the original text.

The time limitation of the Surprise Language Exercise precluded us from
conducting any extensive study in the same time frame. A subjective cursory
evaluation of C*ST*RD indicates that it is indeed good and effective tool for
searching Hindi documents for English speakers.
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