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ABSTRACT
This paper studies and optimizes automated program verifi-
cation. Detailed reasoning about software behavior is often
facilitated by program invariants that hold across all pro-
gram executions. Finding program invariants is in fact an
essential step in automated program verification. Automatic
discovery of precise invariants, however, can be very difficult
in practice. The problem can be simplified if one has ac-
cess to a candidate set of assertions (or annotations) and the
search for invariants is limited over the space defined by these
annotations. Then, the main challenge is to automatically
generate quality program annotations.

We present an approach that infers program annotations
automatically by leveraging the history of verifying related
programs. Our algorithm extracts high-quality annotations
from previous verification attempts, and then applies them
for verifying new programs. We present a case study where
we applied our algorithm to Microsoft’s Static Driver Verifier
(SDV). SDV is an industrial-strength tool for verification of
Windows device drivers that uses manually-tuned heuristics
for obtaining a set of annotations. Our technique inferred
program annotations comparable in performance to the ex-
isting annotations used in SDV that were devised manually
by human experts over years. Additionally, the inferred
annotations together with the existing ones improved the
performance of SDV overall, proving correct 47% of drivers
more while running 22% faster in our experiments.

CCS Concepts
•Theory of computation→ Invariants; •Software and
its engineering → Software verification; Formal soft-
ware verification;
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1. INTRODUCTION
The performance of program verifiers depends on the dis-

covery of precise assertions that hold during every program
run, called program invariants. Examples of such assertions
are procedure pre/post conditions and loop invariants. The
task of finding invariants is often broken down into find-
ing a set of candidate facts, or annotations, and then using
these facts to establish invariants. For example, predicate-
abstraction-based tools such as SLAM [2] or BLAST [13]
rely on discovery of useful predicates to construct program
invariants. Tools such as UFO [1] and Duality [20] rely
on interpolation to generate candidates for procedure sum-
maries. Each of these techniques, however, infer annotations
by analyzing only the program given to be verified.

We propose a novel and complementary approach of infer-
ring program annotations automatically by exploiting infor-
mation available from prior verification runs. We build on
the insight that annotations useful for verifying a particular
program are often already observed earlier during the ver-
ification of related programs. For instance, programs that
use the same API probably require similar annotations for
verifying contracts of that API. We keep track of the veri-
fication history by accumulating a set of programs and the
annotations required to construct their respective proofs. We
leverage this history to generate a small set of annotations
that are useful for subsequent (unseen) programs.

There are two key challenges in making this approach
work. First, annotations are logical formulas over program
variables, thus, tied to program-specific variable names. We
abstract away from program-specific names by working with
abstract annotations, which are arbitrary formulas with holes.
Abstract annotations are concretized to a program by filling
the holes with the program’s variables.

The set of all (abstract) annotations in the verification
history has the nice property that it is sufficient to establish
the correctness of all programs observed in the history. How-
ever, this set is likely to be very large, making the verifier
spend a significant amount of time just discarding invalid an-
notations. Our second challenge is to keep the set of inferred
annotations small. We design a minimization algorithm that
computes a set of abstract annotations such that: (1) it is
enough to establish correctness proofs of all programs in the
history, and (2) no smaller subset (or syntactically simpler
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set, in a sense that we formalize later) is enough to establish
all correctness proofs.

Our primary motivation behind these ideas is to im-
prove the performance of Microsoft’s Static Driver Verifier
(SDV) [21]. SDV is an industrial-strength tool for formal
verification of Windows device drivers. SDV checks that
drivers conform to certain properties (called rules) that es-
tablish correct usage of the Windows kernel APIs. SDV
currently uses manually-tuned heuristics for obtaining a set
of annotations that are passed to a program verifier. Using
a repository of small in-house drivers, our techniques can
not only replace the need for this manual effort, they even
out-perform these heuristics and improve the performance of
SDV overall.

We summarize our contributions as follows:

• Given a verification history, we formally define the
notion of a minimal set of annotations, and present an
algorithm for computing it.

• We apply the algorithm to SDV and experimentally
show that inferring annotations from past verification
efforts can potentially generate better annotations than
ones provided by human experts. The set of abstract
annotations inferred by our algorithm improved the
verification times by 22% on average and reduced in-
conclusive results by 47% in our experiments.

2. OVERVIEW
This section motivates the need for automatic inference

of program annotations and provides an overview of our
techniques.

2.1 Static Driver Verifier
The Static Driver Verifier (SDV) has been an important

success story for verification technology [2]. Over a decade,
it has helped Windows developers to statically find bugs in
Windows device drivers. The main verification engine of SDV
was SLAM, with several upgrades along the way [2]. SDV
switched to using an SMT-based verifier called Corral [15]
for superior performance.

An overview of SDV is shown in Figure 1. SDV accepts
the source code of a Windows device driver as input and
links it against a model of the kernel (called “OS Model” in
the figure). It then checks multiple rules that the driver
must satisfy. These rules and kernel contracts (encoded
in the OS Model) are made known to driver developers via
Microsoft Developer Network (MSDN).1 Each driver and rule
results in (possibly multiple) programs with assertions, called
verification instances that are fed to the verifier (Corral).
Corral’s job is to find an execution that leads to an assertion
violation in the verification instance. Such executions are
reported as defects to the user.

Corral operates by lazily inlining procedures and utiliz-
ing an SMT solver to search through the partially-inlined
program. To help Corral, SDV uses annotation-based invari-
ant generation. SDV generates annotations based on the
rule being checked and runs Houdini [9] on the verification
instance to compute invariants constructed from these anno-
tations. These invariants are injected back to the verification

1
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552840(v=vs.

85).aspx

instance as assumptions, which help Corral prune search
without compromising soundness.

Corral has four possible outcomes, as mentioned in Fig-
ure 1. Corral uses over-approximations (refined by invariants
inferred by Houdini), hence it can prove correctness and
return “proof”. Corral can also find a bug and report the
failing execution. Corral stops search when it hits an internal
coverage bound [18] and returns “bound”. Although this is an
inconclusive verdict, it is still considered more useful than a
Timeout outcome because the latter does not guarantee any
coverage. SDV has experienced several upgrades, including
major improvements to Corral [16, 17]. Showing further
improvements would truly build on the state-of-the-art in
the area.

This paper focuses on improving annotation generation
in SDV. The current process of generating annotations is
guided by a set of heuristics that have been manually tuned
and maintained over several years. These heuristics can
be found in our technical report [28]. What makes this
approach feasible is that the heuristics only look at the rule
being checked (not the driver) for generating the annotations.
While driver code is not known ahead of time, the set of rules
is fixed and known to SDV developers before SDV’s release.

The goal of this paper is two-fold. First, we want to auto-
matically generate annotations instead of requiring manual
effort. Second, we wish to show that automated inference can
out-perform the expert-driven heuristics. We achieve these
goals by learning useful information from past verification
efforts.

2.2 Examples of SDV Rules
We give two examples of rules (properties) that SDV checks.

The rules are described in an abstract manner, without using
the actual tool notation, for clarity.

Acquire-release rules. The OS kernel provides multiple
resources to help the driver accomplish its task. The kernel
expects that the driver (specifically, the dispatch routines of
the drivers) must release all acquired resources when it exits.
SDV checks this property by instrumenting the Acquire-
Release API as shown in Figure 2(a). The actual code of
the API is immaterial while checking this property, thus, is
not shown. The rule introduces the model variable depth
to keep track of the number of resources held; the variable is
asserted to be zero when the driver’s dispatch routine exits.
This rule abstractly captures the SpinLockRelease rule
of SDV.2

Figure 2(b) shows a family of (fake) drivers that exercise
this API correctly. Entry points of the drivers are the proce-
dures Pn and Q. Pn is parameterized by the value of n. It calls
the routine dispatchPn where we use the notation [st]n to
denote n occurrences of the statement st. These programs
model typical usage of the Acquire-Release API that we
have seen in drivers (while abstracting away irrelevant de-
tails). SDV links the driver code (Figure 2(b)) together with
the instrumented API code (Figure 2(a)) to produce a verifi-
cation instance that is fed to Corral. The construction of a
proof of correctness and the role of annotations is discussed
in the next section.

Irql-based rules. An Interrupt Request Level (IRQL)
captures the priority associated with a task. Tasks with
higher IRQL cannot be interrupted by tasks with a lower

2
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552780(v=vs.

85).aspx
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Figure 1: An overview of SDV’s implementation.

IRQL. Drivers often raise the IRQL level to perform critical
activity uninterrupted, but are required not to spend too
much time at the high IRQL for the sake of responsiveness
of the system. SDV checks that drivers do not call certain
time consuming kernel APIs when at a high IRQL3.

Figure 3 shows IRQL modeling and usage. The OS
model variable sdv_irql_current records the current
IRQL value of the processor. Kernel APIs KeRaiseIrql4

and KeLowerIrql can be used to change the IRQL
value. The rule simply asserts that the procedure
“do_work_at_low_irql” is only called when IRQL is 0
(lowest possible value). The program with entry point main
is a (fake) driver that correctly exercises the kernel API.

2.3 Annotations and Proofs
We now set up some notation to describe program proofs.

If f is a procedure and φ is a formula, we use [φ]@f to
denote that φ is a valid postcondition of f. If f has a loop
starting at location L then the notation [φ]@f@L denotes
that φ is a valid loop invariant for L. We model assertion
failures as setting of a special ok bit to false. For a variable
x, let old(x) refer to the value of x at the beginning of
the procedure or loop, depending on the context in which
it is used. For instance, [(x == old(x) + 1) ∨ ¬ok]@f
means that the execution of f either increments the value
of x or it fails an assertion. In other words, if f doesn’t
fail then it increments x. [x == old(x)]@f@L means
that the loop at location L of procedure f preserves the
value of x across an arbitrary number of loop iterations.
A proof of correctness of a program is simply a sequence
of mutually-inductive postconditions of procedures or loops
in the program that imply ok == true at the end of the
program. For simplicity (and without loss of generality) we
do not talk about procedure preconditions in this paper.
Annotations are simply formulas that serve as candidates for
postconditions.

Figure 2(c) shows possible proofs for the previously intro-
duced programs of Figure 2. The figure contains two possible
proofs for Pn (marked as “A” and “B”) and a single proof
for Q. Note that all postconditions in proof A of Pn do not
depend on the value of n, whereas proof B is specific to the
value of n.

Generation of invariants from a given set of annotations
(which we call annotation-based invariant generation) is much

3See, for example, https://msdn.microsoft.com/en-us/
library/windows/hardware/ff547747(v=vs.85).aspx
4https://msdn.microsoft.com/en-us/library/windows/
hardware/ff553079(v=vs.85).aspx

simpler than full-blown verification, often even decidable.
One may use, for example, predicate abstraction [3] to con-
struct invariants that are Boolean combinations of the given
annotations. In our work, we use the Houdini algorithm [9]
to find conjunctive invariants: ones that are conjunctions of
some subset of the given annotations. This problem has a
lower complexity than predicate abstraction and is very fast
in practice for small to medium number of annotations. For
example, given annotations {depth == 0, ψ−1, ψ0, ψ1, η}
(not knowing if they are valid postconditions or loop invari-
ants) it is very efficient to construct a proof for Pn (of type
A) using Houdini.

2.4 Minimal Repositories
Our technique requires a repository of programs and their

proof of correctness. The proofs may be constructed manually
or by using proof-generating verifiers. We do not expect
to control the proof-generation process. Suppose we have
programs Q and Pn for each n ∈ N , for some large set N .
Further, suppose we have proof of type B (Figure 2(c)) for
Pn for all values of n, except n0, and Pn0 has a proof of type
A. These N programs together with their corresponding
proofs constitute a repository.

We extract all annotations present in the proofs, which
produces a large set A = {depth == 0, ψ−1, ψ0, ψ1, η, ψ0 ∧
η}∪{σn | n ∈ N−{n0}}. Retaining a large set of annotations
is inefficient, even for annotation-based invariant generation
techniques. Moreover, some of the annotations are very
specific to a program, e.g., σn is only useful for proving
correctness of Pn.

Our technique minimizes A while retaining its invariant-
generation power. The “power” is captured using a cost
metric based on the ability of a set of annotations to prove a
set of programs correct, given a fixed verifier. The cost is ∞
if some program cannot be proved, otherwise, it reflects the
running time of the verifier. Our algorithm simplifies A by
dropping annotations or making them syntactically simpler
as long as the cost does not increase (or only increases by
a tolerable amount; the exact formulation can be found in
Section 3).

For illustration, assume that the cost becomes ∞ as soon
as the annotations cannot establish some loop invariant or
postcondition of a recursive procedure (intuitively, because
these are the critical parts of a proof), and is unit cost oth-
erwise. Starting with A, our algorithm drops depth == 0
and η from this set because these are not important for the
inductive argument; i.e., cost remains unit after dropping
them. Next, if it tries to drop ψ0, the cost becomes ∞ be-
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var depth: int;

procedure init() {
depth := 0;

}

procedure Acquire() {
depth := depth + 1;

}

procedure Release() {
depth := depth - 1;

}

procedure d_exit()
{

assert depth == 0;
}

procedure Pn()
{ cal l init(); cal l dispatchPn(); }

procedure dispatchPn() {
[call Acquire()]n;

L1: while(*)
{ cal l Acquire(); cal l Release(); }
[call Release()]n; cal l d_exit();

}

procedure Q()
{ cal l init(); cal l dispatchQ(); }

procedure dispatchQ() {
L2: while(*)

{ cal l Acquire(); cal l Release();
cal l dispatchQ(); }

cal l d_exit();
}

(a) (b)

// Definitions
ψi ≡ depth− old(depth) == i
σn ≡ old(depth) == n⇒ depth == n
η ≡ (old(depth) == 0⇒ ok)

// Proof A of Pn

[depth == 0]@init, [ψ1]@Acquire, [ψ−1]@Release, [η]@d_exit, [ψ0]@dispatchPn@L1, [η]@dispatchPn

// Proof B of Pn

[depth == 0]@init, [ψ1]@Acquire, [ψ−1]@Release, [η]@d_exit, [σn]@dispatchPn@L1, [η]@dispatchPn

// Proof of Q
[depth == 0]@init, [ψ1]@Acquire, [ψ−1]@Release, [η]@d_exit, [ψ0 ∧ η]@dispatchQ@L2, [ψ0 ∧ η]@dispatchQ

(c)

Figure 2: (a) An Acquire-Release API, (b) a family of programs exercising the API, and (c) possible proofs
of correctness of the programs.

cause the loop invariant of Pn0 is lost. Thus, ψ0 is retained
in A. Next, each of the σn annotations get dropped. Even
though these annotations were loop invariants in the original
proofs, they can be replaced by the more general annotation
ψ0 that is present in A. In this way, learning from a large set
of proofs increases the chances of finding annotations useful
for many programs.

Finally, while ψ0∧η cannot be dropped, our algorithm tries
to simplify its Boolean structure. The algorithm simplifies
it to η because having annotations {ψ0, η} is enough for
annotation-based invariant generation to establish ψ0 ∧ η as
an invariant. At this point, the algorithm reaches a fixpoint
where no annotation can be dropped or simplified and it
returns the set: {ψ−1, ψ0, ψ1, η}.

The algorithm is non-deterministic; it could have chosen to
drop ψ0∧η in its first iteration because η was still present inA.
In general, our algorithm only guarantees a locally optimal
solution with respect to a given cost metric. Globally-optimal
solutions are also possible to compute, but at a higher cost,
which was not justified in our experiments.

Although the programs considered here are simple, they
are derived from real-world code. They reflect common us-
age patterns of acquire-release-kind of APIs that we have
observed in drivers. The program Q illustrates an uncom-
mon (but not rare) scenario where recursion happens via
kernel callbacks (driver code itself typically does not exhibit
recursion).

2.5 Abstract Annotations
Annotations are formulas over program variables. In gen-

eral, different programs have different variables. To abstract
away from program-specific variables, we introduce the con-
cept of an abstract annotation that is a formula over only
generic and shared variables.

We call the set of global variables common to all programs
in the repository as the shared vocabulary. We assume these
variables serve a similar role in all programs, e.g., the depth
variable of Figure 2 will be present in all programs that
exercise the acquire-release API, and sdv_irql_current
will be present in all programs that exercise the IRQL API
of Figure 3. Shared variables, i.e., variables in the shared
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// DRIVER
procedure main() {

var loc: int;
cal l init();
cal l loc := KeRaiseIrql(2);
while(*) {

cal l KeLowerIrql(loc);
cal l do_work_at_low_irql();
cal l loc := KeRaiseIrql(2);

}
cal l KeLowerIrql(loc);

}

// RULE
procedure do_work_at_low_irql()
{ assert sdv_irql_current == 0; }

// OS MODEL and RULE
var sdv_irql_current: int;

procedure init()
{ sdv_irql_current := 0; }

procedure KeRaiseIrql(new_irql: int)
returns (old_irql: int) {
old_irql := sdv_irql_current;
sdv_irql_current := new_irql;

}

procedure KeLowerIrql(new_irql: int)
{ sdv_irql_current := new_irql; }

Figure 3: IRQL modeling and example of usage.

vocabulary, can be freely used in annotations because they
are present in all programs that exercise the same rule.

Generic variables are not specific to any program. There
are fours kinds of generic variables:

{Local,Global,FormalIn,FormalOut}.

The kind of a generic variable is determined statically by
inspecting the declaration of a program variable. An anno-
tation is converted to an abstract annotation by replacing
variables by generic variables of the corresponding type. For
example, consider the postcondition [x == y]@f on a pro-
cedure f with formal input argument x and formal output
argument y. This will get converted to the abstract annota-
tion ($fin == $fout) where $fin and $fout are generic
variables of kind FormalIn and FormalOut, respectively.

Abstract annotations are concretized when applied to a
program. Let p be a program and proc a procedure in p.
We define a concretization function γp,proc as follows. For
an abstract annotation a, γp,proc(a) returns all annotations
such that a generic variable of type Global is substituted
with some global variable of p, a generic variable of type
FormalIn is substituted with some formal-in parameter of
proc, and similarly for FormalOut and Local. γp,proc must
return all such annotations. γp,proc leaves shared variables
unchanged.

Consider the driver in Figure 3. Proving correct-
ness of main requires a loop invariant that the value of

sdv_irql_current is unchanged across loop iterations,
which in turn requires that the value of loc is maintained
across iterations. That is, it requires the loop invariant
loc == old(loc). Our technique, once it observes a proof
with this loop invariant will generate and keep the abstract an-
notation $floc == old($floc), where $floc is a generic
variable of type Local. With this abstract annotation, when
SDV is executed on a driver that exercises the IRQL rule,
the annotation will get instantiated with all local variables
manipulated by loops in the driver, and the annotation-based
invariant generation algorithm will be able to establish cor-
rectness of drivers that require preservation of local variable
values, similar to main of Figure 3.

3. ALGORITHM
We now formally describe the annotation inference algo-

rithm. Our presentation of the algorithm is general, ab-
stracting away from SDV specifics for ease of presentation
and to emphasize the use of verification histories. However,
we evaluate the algorithm only on SDV in this work. We
leave generalization to other verification domains as future
work. We start by introducing the necessary notation and
definitions.

Language. We assume an imperative programming lan-
guage with standard features such as global variables, pro-
cedures, assume and assert statements, assignments, etc.
We also assume that programs in this language do not have
loops. Loops can be encoded using recursion. This allows our
framework to only concentrate on procedure postconditions
for establishing proofs of correctness.

Given a program p, we denote the set of procedures in p
with procs(p). Each procedure can be annotated with any
number of first order logic (FOL) formulas. These formulas
are defined over procedure parameters and global variables
and they do not take part in program execution; they are
used by program verifiers as candidate postconditions for
establishing program correctness.

Abstract annotations. Let V be a set of variables called
the shared vocabulary. All programs must contain V as global
variables. Let G be a set of generic variables. None of the
programs contain a variable from G. An abstract annotation
a is a formula over variables in V ∪ G. Further, for every
program p and procedure proc ∈ procs(p), we assume a
function γp,proc that maps an abstract annotation to a set
of concrete annotations. As defined in the previous section,
γp,proc substitutes generic variables with the variables in
scope of proc.

We call a finite set of abstract annotations t ∈ T a template.
Given a program p and a template t, annotate(p, t) returns
p where each procedure proc ∈ procs(p) is annotated with
the set of program annotations

⋃
a∈t γp,proc(a).

Verification. Given a fixed verifier, for a program p and
a template t, we say that proves(p, t) holds if the verifier can
prove the correctness of annotate(p, t). The verifier can use
the procedure annotations as potential postconditions during
the verification. Also, we require that if proves(p, t) and
t ⊆ t′, then proves(p, t′) must hold as well. In other words,
if a set of abstract annotations is sufficient for proving some
program correct then all of its supersets are also sufficient.

3.1 Problem
Our annotation inference problem is defined using the

notion of an objective relation. Such relations are used to
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encode what templates (and hence annotations) are more
desirable for the current application in mind.

Definition 1 (Objective relation for a program).
We say →p: T× T is an objective relation for a program p
iff (1) it is well-founded and (2) for each t ∈ dom(→p), the
set {t′ | t→p t

′} is finite.

The objective relation is hence finite branching. One example
of such a relation is the proper subset relation, i.e., t→p t

′

iff t′ ⊂ t. Another example would be the relation where t′ is
a copy of t except that an annotation in t′ is a sub-formula
of the corresponding annotation in t. This relation roughly
corresponds to the syntactically simpler concept mentioned
in Section 1. Section 4 presents the objective relation used
in our experiments with SDV.

We extend the objective relation to a set P of programs
p1, . . . , pn:

Definition 2 (Objective relation for programs).
We define →P : T × T, an objective relation for a set of
programs P = {p1, . . . , pn} as a well founded and finite
branching relation t→P t′ ⇔

∧
i t→pi t

′.

We proceed by defining the notion of a minimal template
that intuitively stands for a locally optimal template. The
locality is defined as a branching set of a template induced
by a given objective relation.

Definition 3 (Minimal program template).
Given a program p, a template t such that proves(p, t), and
an objective relation →p, we say t′ is a minimal template iff:

1. proves(p, t′)

2. there exists no t′′ such that t′ →p t
′′ and proves(p, t′′)

The definition states that a minimal template must prove a
given program and none of its immediate (→p) successors do.
We point out that, in the above definition, t only ensures that
p is correct and this definition establishes no relationship
between a minimal template and t. However, the results com-
puted by the implementations for finding minimal templates
can be dependent on t.

Our inference algorithm is built around the notion of a
minimal template. We hence define the problem of finding a
minimal template for a given program.

Problem 1 (Computing a minimal template).
Given a program p, a template t such that proves(p, t),
and an objective relation →p, the problem of computing a
minimal template is finding a formula t′ that is minimal
subject to p and the ordering →p.

We define a program repository as R = [(p1, t1), ..., (pn, tn)]
where proves(pi, ti) for 1 ≤ i ≤ n. Repositories capture
verification histories. The set of programs in the repository R
is denoted by PR. The actual technique used for proving the
correctness of pi can be arbitrary. However, we envision that
in practice, a verifier will be fixed for the whole repository.
We now define a locally optimal template for a verification
history.

Definition 4 (Minimal repository template).
Given a program repository R = [(p1, t1), ..., (pn, tn)] where
proves(pi, ti) for all 1 ≤ i ≤ n, and an objective relation
→PR , we say that T is a minimal repository template
(subject to →PR) iff the following holds

Algorithm 1 Computing a minimal program template

Require: proves(p, t) and → is an objective relation
1: procedure MinTemplate(p, t,→)
2: mint← t
3: loop
4: for all t′ ∈ {t′ | t→ t′} do
5: if proves(p, t′) then
6: mint← t′

7: goto 3

8: return mint

1. proves(pi, T ) for all 1 ≤ i ≤ n

2. there exists no T ′ such that T →PR T ′ and
proves(pi, T

′) for all 1 ≤ i ≤ n

We are now ready to formally state the problem of inferring
program annotations from past verification runs.

Problem 2 (Inferring program annotations).
Given a program repository R = [(p1, t1), ..., (pn, tn)] where
proves(pi, ti) for all 1 ≤ i ≤ n, and an objective relation
→PR , the problem of inferring program annotations is to
find a template T that is a minimal repository template
subject to →PR .

In the sequel, we suppress the subscripts of the→ relations
for brevity. We now show algorithms for solving the problems
of computing minimal templates.

3.2 Solution
We start with the solution for Problem 1 shown in Al-

gorithm 1. The MinTemplate algorithm assumes that a
given template t is sufficient to establish correctness of p
and that → is an objective relation. We start by considering
t as a minimal template candidate (line 2). We continue
by enumerating all immediate successors of t by → (line 4).
Then, the algorithm checks if any of the successors can prove
p (line 5). If so, then the algorithm sets such a successor as
a candidate for the minimal template and repeats the whole
process (lines 6 and 7). Otherwise, the minimal candidate is
returned as the solution (line 8).

Theorem 1. Let p be a program, t a template, and → an
objective relation. If proves(p, t), then Algorithm 1 computes
a minimal template for p, t, and →.

Proof. Since → is finite branching, we have that inner
loop at line 4 terminates. From the fact that → is well-
founded, it follows that the outer loop at line 3 also termi-
nates. Since lines 4 and 5 simply follow the definition of a
minimal template, we have that the returned template is
indeed minimal.

The complexity of the algorithm depends on→ relation and
implementation of proves. Assuming proves has unit com-
plexity, the running time of Algorithm 1 is O(l ·m), where l is
the longest well-founded chain of → and m is the maximum
size of the branching sets max{|{t′ | t→ t′}| | t ∈ dom(→)}.
However, proving a program correct is undecidable in general
and expensive in practice. Further, annotating a program p
given a template t can also be expensive if for proc ∈ procs(p),
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Algorithm 2 Computing a minimal repository template

Require: proves(pi, ti) for all (pi, ti) ∈ R
Require: → is an objective relation
1: procedure MinRepoTemplate(R,→)
2: mints← [ ]
3: for all i ∈ [1, ..., |R|] do
4: (p, t) = R[i]
5: mints[i] = MinTemplate(p, t,→)

6: C = ∅
7: for all i ∈ [1, . . . , |R|] do
8: C = C ∪mints[i]
9: for all t ∈ {t′ | C →{p1,...,pi} t

′} do
10: b = true
11: for all j ∈ [1, . . . , i] do
12: b = b ∧ proves(pj , t)
13: if b then
14: C = t
15: goto 9

16: return C

the concretization function γp,proc has a large image; t can
then potentially be instantiated with a large number of con-
cretizations. This high complexity of the algorithm can be
remedied in practice by choosing γp,proc with smaller images
and exploiting the structure of → if the relation is known
beforehand. We note that a result computed by the algo-
rithm is not necessarily minimum. As we show in Section 5,
minimal templates sufficed for all practical purposes in our
experiments.

Algorithm 2 computes a minimal repository template by
building on Algorithm 1. First, we find the minimum tem-
plate for each program in the repository and store it in
mints (lines 3-5). Next, the minimal repository template
is set to the empty set of clauses (line 6). The outer loop
(lines 7-15) has the invariant that after the ith iteration
C is a minimal repository template for the sub-repository
[(p1, t1), . . . , (pi, ti)]. The inner loop checks if an immediate
successor of C can prove the correctness of the programs
p1, . . . , pi. If so, then C is updated to that successor tem-
plate.

One possible optimization is to cache the clauses un-
der which a program can/cannot be proved. Therefore,
if proves(p, t) is in the cache and we later make a query
proves(p, t′) where t ⊆ t′, then, we can return true. Simi-
larly, if ¬proves(p, t) is in the cache and we make a query
proves(p, t′) where t′ ⊆ t, then, we can return false.

Theorem 2. Let R be a program repository and → an
objective relation. If proves(p, t) for all (p, t) ∈ R, then
Algorithm 2 computes a minimal repository template for R
and →.

Proof. For every subrepository Ri = [(p1, t1), . . . , (pi, ti)]
the relation →Ri is well-founded and finite branching for any
chosen reduction operator. Since the body of the loop at
line 9 follows the definition of a minimal repository template,
then at the end of each iteration of the loop at line 7, C is a
minimal template for Ri, as pointed out earlier. The result
then follows from the case when i = |R|.

We also point out that the loop starting at line 7 is in fact
not necessary for optimality. The algorithm can immediately
start with C as the union of all minimal program templates
stored in mints. However, such a C could become impracti-
cally large. In Algorithm 2, the size of C is kept moderate.
Observe that the minimal templates computed using these
two versions of the algorithm might not be the same. This
is because minimal templates are not unique.

4. APPLICATION TO SDV
We use a specific objective relation to infer useful program

annotations for SDV on Windows device drivers.

4.1 Repository
For internal testing, SDV uses a set of toy drivers, col-

lectively called the Rule Test Suite (RTS) for quick “smoke
testing” of SDV. These drivers are small, often a few hun-
dred lines of code (with relevant part in tens of lines of code
only). We use RTS as the program repository for inferring
a minimal repository template for each rule. We will refer
to such templates as “inferred templates” and to manually
crafted templates simply as “manual templates”. The use of
RTS as the training set is quite natural as it allows us to
leverage existing test cases to learn and improve performance
on real drivers. RTS consists of 304 drivers totaling around
100KLOC.

Once we infer a template, we measure the performance of
SDV using the template on a set of real device drivers. We use
66 device drivers for this task, totaling around 700KLOC. We
note that the device drivers were functionally very different:
they included storage drivers, modem drivers, bus drivers,
etc.

SDV has hundreds of rules. For this paper, we concentrate
on a collection of 28 rules. Of these, 14 rules were selected
because they were known to cause performance issues for
SDV. We added, randomly chosen, 14 other rules. These 28
rules on the 66 drivers produced a total of 1420 verification
instances (not all rules apply to all drivers).

Obtaining Annotations. The RTS suite consists of
fairly small drivers that are easy to prove manually. We,
however, automated the entire process by running a proof-
generating verifier. Our implementation uses Duality [20]
but conceptually we could have used tools such as SLAM
and Yogi [4] as well.

Our objective is to learn a template per rule. For each of
the 28 rules, we (1) form a repository of programs that assert
the rule and their corresponding correctness proofs and (2)
define the shared vocabulary V to consist of model variables
of the rule as well as OS model variables. Every program
in a repository is guaranteed to include the corresponding
shared vocabulary as global variables.

4.2 Objective Relation
We restrict abstract annotations to be clauses, i.e., a dis-

junction of formulas. Conjunctions at the top level are broken
down into multiple annotations, one for each conjunct. For
convenience, we think of a clause as a set of formulas where
disjunction is implied between the elements of the set. The
empty set corresponds to true. Given two annotations a1
and a2, by a1 ⊆ a2 we therefore designate that the formulas
of a1 are a subset of the formulas of a2. For a template t,
we define t̄ to be t consistently indexed by the set {1, ..., |t|}.
In other words, t̄ = {a1, ..., a|t|} where ai ∈ t ⇐⇒ ai ∈ t̄.

456



For convenience, we define t̄[i] = ai. Given two templates t1
and t2, we say t2 is simplified (or simpler) than t1, written
t2 � t1, iff (1) |t1| = |t2| and (2) t̄2[i] ⊆ t̄1[i] for all 1 ≤ i ≤ n.
If t2 � t1 and there exists i such that t̄2[i] ⊂ t̄1[i], we say t2
is strictly simpler than t1, written t2 � t1. Finally, t2 �1 t1
holds iff t2 � t1 and |t̄1/t̄2| = 1. In other words, t2 is strictly
simpler than t1 but only at one abstract annotation; we then
say t2 is 1-simpler than t1. For example, suppose a template
t′ is t except that literal l is in t̄[1] but not in t̄′[1]. Then we
have t′ � t, t′ � t, and t′ �1 t.

Given a program p and a template t, let h(p, t) be the result
of running Houdini on annotates(p, t). Further, let cperf (p, t)
denote the number of procedures that Corral inlined if it
was able to prove correctness of h(p, t), and −1 otherwise.
cperf (p, t) measures the performance of Corral. We use it
as a proxy for the running time that is independent of the
machine configuration. We now define the corral objective
relation. Given a program p and two templates t1 and t2,
t1 →p t2 holds iff:

• t2 �1 t1

• 0 ≤ cperf (p, t2) ≤ 2 ∗ cperf (p, t1)

The above definitions encode our intention to find those tem-
plates that are structurally simpler and smaller, if one views
making a clause empty as removing it. The reason why we
chose 1-simpler relation instead of the general simplification
is that we want to keep branching sets of the objective re-
lation tractable. This way, we are sacrificing optimality for
better inference times. Also note that our objective relation
allows the performance of Corral to get worse when using t2.
But Corral must still be able to prove correctness. We allow
the degradation in performance to allow more opportunities
for the templates to get simplified. However, we still restrict
the performance to not get out of hand (not more than a
factor of 2). This allows us to kill the execution of Corral on
h(p, t2) as soon as it inlines twice as many procedures as on
h(p, t1), without waiting for a verdict.

Lastly, we define a repository objective relation. For a
set of programs P = {p1, ..., pn} we define t1 →P t2 ⇐⇒∧

i t1 →pi t2. In other words, we want to infer templates that
are consistently optimal for all repository programs, subject
to the objective relation →p.

4.3 Implementation
We use a slightly modified version of Algorithm 2 for

computing a minimal repository template. We describe
the algorithm by only explaining the modifications that we
introduced.

We first note that the corral objective relation has to
be computed by actually running Corral. While perform-
ing a greedy descent, we simply enumerate all 1-simplified
templates and run Corral on each of them. This run tells
us whether the program can be proved and the number of
inlined procedures, if any. Also, we enumerate first those an-
notations where the corresponding simplified clause is empty.
Then, we enumerate annotations where the simplified clause
has one literal, and then when it has two, and so forth, until
we have enumerated all 1-simplified templates. This way, we
are heuristically choosing the well-founded chains of smaller
lengths while searching for a minimal template.

The second modification we introduce has the purpose of
keeping C small in Algorithm 2. While computing a minimal

template for a single program, we first check whether any
of the previously computed minimal templates is perhaps
minimal for the new program. If so then we continue by ana-
lyzing the next program. As a result, the number of distinct
minimal templates in mints reduces, and so does the size of
C. Further, due to the definition of γproc,p, our algorithm
can produce the same annotated program for different tem-
plates. In that case, the result of running Houdini+Corral
for the first template is same as the result of running them
on the other template. We therefore use the concretized
annotations to cache Corral’s outcome and reuse the results
when possible.

We set a timeout of 8 hours for the algorithm. If the
execution reaches a timeout, we simply return the current
value of C. In practice, for SDV, the template inference
needs to be performed just once in a release cycle; hence,
one can devote much more time for inference.

5. EVALUATION
We implemented our algorithms in a tool called ProofMin-

imization5. It accepts a list of annotated programs written
in Boogie [19] as input and computes the minimal repository
template. The shared vocabulary is automatically defined to
be the set of global variables common to all input programs.
The implementation is a simple wrapper, of less than 1000
lines of C# code, around the implementation of Corral [18].

We ran our experiments on a cluster of 6 identical server-
class machines. Each of the servers had Intel Xeon CPUs
1.8 GHz, 64 GB RAM and 16 logical processors. The total
CPU time of our experiments exceeded well over a month.
We relied on parallelism extensively to produce results in a
reasonable amount of time.

Training Modes. Our experiments evaluate two differ-
ent ways of using the inferred templates. In the first mode,
called MT, the inferred templates only augment the manual
templates. This is achieved by adding the manual templates
to each (p, t) pair in our program repository and requiring
our algorithm to never throw out a manually-generated an-
notation. This mode of operation is more controlled: it does
not seek to replace existing manual effort, but rather to just
augment it.

The second mode of operation, called NT, does not use
manual templates at all. This simulates the scenario when
no manually-generated templates had been added to SDV.
It answers how much of the manual effort behind the design
of manual templates can be automated using our techniques.

Clearly, the quality of inferred templates will depend on
the quality of the training set, i.e., the repository used for
inferring a minimal repository template. Because it was never
intended to use RTS for inferring templates, the training sets
are sometimes inadequate for our approach. For instance,
for a few rules, RTS only contains buggy drivers. (Inferring
annotations from buggy programs is an interesting problem,
but outside the scope of this paper.) Thus, we also evaluate
expanding our training set by sampling a randomly-chosen
fraction of the 66 real drivers and including them in the
training set. The test set, i.e., the set of unseen drivers over
which we evaluate the inferred templates then shrinks to the
remaining drivers.

5Implementation is available at https://github.com/
boogie-org/corral/tree/master/AddOns/pminbench along
with supplemental material and examples that the reader
can use to experiment.
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Figure 4: Annotation inference times for the 28
rules.

Let Train(f%,m), where 0 ≤ f ≤ 100 and m is either
MT or NT, refer to the experiment where the training set
consisted of all RTS drivers and f percent of the real drivers,
and the inference was done in mode m. An exception is
the special case of Train(100%,MT ) which denotes that all
drivers were used in the training set as well as the test set.
We use Train(100%,MT ) as a limit study on the quality of
annotations that we can infer.

Results. For the experiment Train(0%, NT), the running
time of ProofMinimization is shown in Figure 4. It takes
just a couple of minutes for some rules while it timeouts
after 8 hours for five rules. Not including the rules for which
ProofMinimization times out, it takes roughly 2.5 hours
on average to compute the result.

The results with various different training modes are re-
ported in Tables 1 and 2. Each of the tables compares three
versions of SDV. The version called “None” does not use any
templates and captures the performance of Corral without
any annotations. “Manual” refers to using manual templates,
which is the currently-shipping production system. “Inferred”
refers to using the set of annotations inferred by our tool.
Each of the tables measures performance in terms of the num-
ber of timeouts (#TO), number of times the coverage bound
was hit (#Bnd), the number of bugs reported (#Bugs), the
average running time of Houdini+Corral (Avg), and the
average running time of just Houdini (Houd).

Table 1(left) compares performance for Train(0%, MT).
In this mode, our inferred set of annotations was empty for 12
of the 28 rules. The inferred set can be empty when the RTS
wasn’t rich enough, or because the manual templates were
sufficient. In this case, the performance of “Inferred” matches
with that of “Manual”. Table 1 compares performance on the
remaining 16 rules where we did infer annotations. These
results demonstrate that our extra set of annotations are
useful. The number of timeouts come down a fraction and
the number of times the coverage bound was hit comes down
significantly. All of these previously inconclusive cases, 54
in number, convert to a proved verdict. In summary, the
total number of inconclusive answers drops down by 47%.
Moreover, even though Houdini ran slower because of the
extra annotations, the performance improvement in Corral
made the overall system much faster (22%).

For Train(30%, MT), we did three runs, each time sam-
pling a different fraction of the drivers. (The variance across

the three runs was very small, thus, we stopped with three
runs.) The results for “Inferred” were averaged across the
three runs and are shown in Table 1 (right). It is interesting
that performance is similar to Train(0%, MT). Using a
fraction of drivers did not provide much new information.
However, the results of Train(100%, MT) shown in Table 2
(left) do indicate that drivers potentially carry information
not present in RTS. Learning over all drivers increased the
quality of inferred annotations significantly (even though the
running time of Houdini is highest in this setting).

Table 2 (right) shows results of Train(0%, NT). With no
help from manual templates, Corral’s performance depends
even more significantly on the inferred set of annotations.
We were able to achieve a similar quality of results compared
to using manual templates. There was a near-equal split
between rules on which inferred annotations do better and
ones on which manual templates do better. In consultation
with the SDV team, we realized that the exercise of setting up
manual templates often borrowed annotations across rules,
where annotations useful for one rule would be generated
for similar rules as well. In our setting, we did not explore
sharing information between rules.

The number of abstract annotations per template, on
average, was 12.78 for the manual templates. The Train(0%,
MT) experiment produced 13.63 annotations per template,
on average. The Train(100%, MT) experiment produced
16.6 annotations per template, on average. The Train(0%,
NT) experiment produced 3.3 annotations per template,
on average, which is significantly smaller than the manual
templates.

We supply the list of all rules and templates in the sup-
plemental material. Here we summarize examples of useful
annotations that our technique was able to infer, but were
missed by experts. Firstly, for IRQL-based rules, the annota-
tion $floc == old($floc) was necessary for establishing
important loop invariants such as “the IRQL value is un-
changed across loop iterations” (see example in Figure 3 and
discussion in Sections 2.2 and 2.5). While the experts an-
ticipated the latter (i.e., IRQL is unchanged) to be a useful
annotation, they did not expect that an invariant over local
variables would be required to prove it inductively.

A second instance of useful annotations found by our
technique is for SDV rules with multiple model variables.
Manual templates mostly have annotations that capture the
effect of a procedure’s execution on a single model variable
[28]. However, these are insufficient to capture inter-variable
relationships. We infer several annotations over multiple
variables which helped significantly for such rules.

To summarize, Train(0%, MT) results show that we can
significantly improve the performance of a production sys-
tem by augmenting existing manual effort. The results for
Train(0%, NT) show that as new rules are developed and
test cases are added to RTS, we can automatically generate
useful annotations avoiding the need for further manual effort
in coming up with new templates.

6. RELATED WORK
This work falls into the category of predicting program

properties from codebases. For example, JSNice learns from
Javascript repositories on GitHub and predicts more legible
identifier names and (unverified) type annotations [24]. In
contrast, this work is the first attempt at inferring annota-
tions from verification histories and demonstrating their use
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Table 1: Left: Results for Train(0%, MT) on a total of 16 rules with 873 verification instances. Right: Results
for Train(30%, MT), averaged across three runs, on a total of 25 rules with 1002 verification instances.

Time (sec)
Config #TO #Bnd #Bugs Avg Houd
None 77 228 46 94.3 0
Manual 27 88 46 71.9 10.0
Inferred 24 37 46 51.6 12.1

Time (sec)
Config #TO #Bnd #Bugs Avg Houd
None 112 265 64 104.3 0
Manual 50 91 64 70.5 10.1
Inferred 46.6 41 64 59.4 14.6

Table 2: Left: Results for Train(100%, MT) on a total of 28 rules with 1420 verification instances. Right:
Results for Train(0%, NT) on a total of 28 rules with 1420 verification instances.

Time (sec)
Config #TO #Bnd #Bugs Avg Houd
None 143 342 104 98.1 0
Manual 55 123 108 58.4 9.3
Inferred 45 25 108 46.1 16.2

Time (sec)
Config #TO #Bnd #Bugs Avg Houd
None 143 342 104 98.1 0
Manual 55 123 108 58.44 9.3
Inferred 59 92 108 56.5 9.1

in an industrial-scale verification setting. Other approaches
use codebases to predict different program properties rather
than annotations [22, 23, 25]. For instance, work presented
in [23] applies Bayesian optimization on existing codebases
to learn a strategy for deciding for which part of an unseen
program a static analyzer should sacrifice time for precision
while performing the analysis.

There are verification and testing approaches that lever-
age previous versions of a program under analysis. For
example, [11] improves performance of test generation for a
program by leveraging existing tests belonging to a previous
version. Regression verification verifies the equivalence of
two successive versions of a program [12]. For similar pro-
grams, [12] argues that this verification task is easier than
our goal here, i.e., formal verification of a stand alone pro-
gram. A recent generalization of regression verification is
differential assertion checking where a verifier checks that a
bug is not introduced in going from one program version to
another [14]. Techniques in [7] extrapolate from predicates
used for verifying a program under sequential consistency
to verify the same program under a relaxed memory model.
Incremental verification attempts to reuse annotations cor-
responding to a program in the verification of its updated
version [26, 8, 5]. In these works, the history typically con-
sists of revisions of the program under analysis. We consider
histories with programs that use the same kernel API but
can be very different otherwise. For example, we can use
annotations inferred from a storage and a modem driver to
help verify an IEEE-1394 bus driver. Also, our technique
uses the minimization mechanism to reduce the size of the
accumulated annotations in order to retain practicality.

The techniques described in this paper can be used to infer
invariants using verification histories. Previous approaches
to invariant inference perform analysis only over the program
under consideration. These include invariant inference using
static analysis [6] or learning from concrete executions [10,
27]. Our work is complementary to these.

7. CONCLUSION
We present an algorithm for computing a small set of use-

ful program annotations from a repository of past verification
runs. We used this algorithm to improve the performance
of SDV by generating better quality annotations than those
produced by human experts. By utilizing the inferred an-

notations, we reduce the number of inconclusive answers
by 47% while running 22% faster on average, even for a
heavily-optimized system.

Our approach benefited from SDV’s separation of verifying
driver correctness into checking multiple rules. By concen-
trating on one rule at a time, our inferred annotations were
tailored to a specific property of drivers. In future work,
we wish to study the generality of our algorithm in other
verification domains that rely on annotations for constructing
program proofs.
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