
Software Analytics for Incident Management of

Online Services: An Experience Report
Jian-Guang Lou, Qingwei Lin, Rui Ding,

Qiang Fu, Dongmei Zhang

Microsoft Research Asia, Beijing, P. R. China

{jlou, qlin, juding, qifu, dongmeiz}@microsoft.com

Tao Xie

University of Illinois at Urbana-Champaign

Urbana, IL, USA

taoxie@illinois.edu

Abstract—As online services become more and more popular,

incident management has become a critical task that aims to

minimize the service downtime and to ensure high quality of the

provided services. In practice, incident management is conducted

through analyzing a huge amount of monitoring data collected at

runtime of a service. Such data-driven incident management

faces several significant challenges such as the large data scale,

complex problem space, and incomplete knowledge. To address

these challenges, we carried out two-year software-analytics

research where we designed a set of novel data-driven techniques

and developed an industrial system called the Service Analysis

Studio (SAS) targeting real scenarios in a large-scale online

service of Microsoft. SAS has been deployed to worldwide

product datacenters and widely used by on-call engineers for

incident management. This paper shares our experience about

using software analytics to solve engineers’ pain points in

incident management, the developed data-analysis techniques,

and the lessons learned from the process of research development

and technology transfer.

Index Terms—Online service, service incident diagnosis,

incident management.

I. INTRODUCTION

Software industry has been under the movement from tra-

ditional shrink-wrapped software to online services (e.g., from

shrink-wrapped Microsoft Office to online Microsoft Office

365). Online service systems such as online banking systems

and e-commerce systems have been increasingly popular and

important in our society.

Online services differ from traditional shrink-wrapped

software in various aspects, including their characteristics of

continuously running along with aiming for 24x7 availability

of services. However, during operation of an online service,

there can be a live-site service incident: an unplanned interrup-

tion/outage to the service or degradation in the quality of the

service. Such incident can lead to huge economic loss or other

serious consequences. For example, the estimated average cost

of one hour’s service downtime for Amazon.com is $180,000

[19]. Online services such as Amazon, Google, and Citrix

have experienced live-site outages during the past couple of

years [1][16].

Therefore, service providers have invested great efforts on

service-quality management to minimize the service downtime

and to ensure high quality of the provided services. For exam-

ple, an important aspect of service-quality management is in-

cident management [3]: once a service incident occurs, the

service provider should take actions immediately to diagnose

the incident and restore the service as soon as possible. Such

incident management needs to be efficient and effective in

order to ensure high availability and reliability of the services.

A typical procedure of incident management in practice

(e.g., at Microsoft and other service-provider companies) goes

as follow. When the service monitoring system detects a ser-

vice violation, the system automatically sends out an alert and

makes a phone call to a set of On-Call Engineers (OCEs) to

trigger the investigation on the incident in order to restore the

service as soon as possible. Given an incident, OCEs need to

understand what the problem is and how to resolve it. In ideal

cases, OCEs can identify the root cause of the incident and fix

it quickly. However, in most cases, OCEs are unable to identi-

fy or fix root causes within a short time. For example, it usual-

ly needs to take a long delay to fix the root causes (e.g., code

defects), to conduct regression testing of the new build, and to

re-deploy it to datacenters. Such whole process causes much

delay before the service can be recovered and continue to

serve the users. Thus, in order to recover the service as soon as

possible, a common practice is to restore the service by identi-

fying a temporary workaround solution (such as restarting a

server component) to restore the service. Then after service

restoration, identifying and fixing the underlying root cause

for the incident can be conducted via offline postmortem anal-

ysis.

Incident management of an online service differs from the

debugging of shrink-wrapped software in two main aspects.

First, incident management requires the service provider to

take actions immediately to resolve the incident, as the cost of

each hour’s service downtime is high [19]. Second, due to the

requirement of continuously running, unlike shrink-wrapped

software, when an incident occurs in an online service, it is

usually impractical to attach a debugger to the service to con-

duct diagnosis.

In practice, incident management of an online service

heavily depends on monitoring data collected at runtime of the

service such as service-level logs, performance counters, and

machine/process/service-level events. Such monitoring data

typically contains information to reflect the runtime state and

behavior of the service. Based on the monitoring data, service

incidents are timely detected in the form of service anomalies

and quality issues. To collect such data, the service system is

instrumented with an instrumentation infrastructure (e.g., the

System Center Operations Manager [4]) and continuously

monitored. For example, a service system at Microsoft under

our study generates about 12 billion lines of log messages each

day for incident management.

978-1-4799-0215-6/13 c© 2013 IEEE ASE 2013, Palo Alto, USA
Experience Track

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

475

Given that incident management of online services is data-

driven by nature, it is a perfect target problem for software-

analytics research. Software analytics [25][26][27] has recent-

ly emerged as a promising and rapidly growing research area

for data-driven software engineering, with strong emphasis on

industrial practice. In particular, software analytics is to utilize

data-driven approaches to enable software practitioners to per-

form data exploration and analysis to obtain insightful and

actionable information for completing various tasks around

software systems, software users, and software development

process. In software analytics, a great amount of work on suc-

cessful technology transfer has already been conducted at the

Software Analytics group at Microsoft Research Asia, e.g.,

performance debugging in the large [14], clone detection [10].

In this paper, we formulate incident management of an

online service as a software-analytics problem [25][27], which

can be tackled with phases of task definition, data preparation,

analytic-technology development, and deployment and feed-

back gathering. The task of incident management is defined to

consist of two parts: (1) incident investigation and diagnosis,

and (2) healing suggestion for actions taken to recover the

service as soon as possible. Data preparation aims to collect

monitoring data of the service for incident management. Ana-

lytic-technology development is to develop an incident-

management system by formulating problems and developing

algorithms and systems to explore, understand, and get in-

sights from the data. During deployment and feedback gather-

ing, feedback is gathered on how practitioners use the devel-

oped system in their routine daily work, and then it is used to

guide further improvement of the system under consideration.

By tackling incident management with software analytics,

we have developed the first industrial system for incident

management of online services and deployed the system with-

in Microsoft. Producing high impact on industrial practices,

our system is being used continuously since 2011 by Microsoft

engineers for effective and efficient incident management of

Service X (we use an alias here due to confidentiality). Our

system for Service X incorporates various novel techniques

that we have developed for addressing significant real-world

challenges of incident management posed in large-scale online

services.

Throughout the two-year process of conducting software-

analytics research for producing such high-impact system, we

have gained a set of lessons learned, which are valuable for us

and for the broad community of software engineering to carry

out successful technology transfer and adoption. We started

the project on data-driven performance analysis for online

services in 2010. It took us two years to conduct algorithm

research, build the diagnosis system, and make the system

indispensable for the service-engineering team of Service X.

In this paper, we share our lessons learned in our project

through three dimensions: solving real problems in practice,

improving performance and usability of the developed system,

and investing in system building.

In summary, this paper makes the following main contribu-

tions:

• The formulation of incident management of online

services as a software-analytics problem, which can be tackled

with phases of task definition, data preparation, analytic-

technology development, and deployment and feedback

gathering.

• The first industrial system developed and deployed for

incident management of Service X (a geographically

distributed, web-based service serving hundreds of millions of

users) and various novel techniques incorporated in the system

for addressing significant real-world challenges.

• A set of lessons learned (throughout the two-year

process of conducting software-analytics research for

producing such high-impact system), which are valuable for us

and for the broad community of software engineering to carry

out successful technology transfer and adoption.

The rest of the paper is organized as follows. Section II in-

troduces Service X. Section III presents our formulation of

service-incident management as a software-analytics problem.

Section IV presents the resulting SAS system and its tech-

niques. Section V discusses related work. Section VI presents

the lessons learned, and Section VII concludes the paper.

II. BACKGROUND OF SERVICE X

Service X is a web-based, external-facing Microsoft ser-

vice. Similar to other online services, Service X is expected to

provide high-quality service on 24x7 basis. During a certain

period of time when running the service, the Service X teams

were facing great challenges in improving the effectiveness

and efficiency of their incident management in order to pro-

vide high-quality service. We set up our goals to help the Ser-

vice X teams solve the incident-management problems. In

addition, because the architecture of Service X is representa-

tive of typical multi-layer online services, we expect that our

techniques designed for Service X are general enough to be

applied to other similar online services.

A. Overview of Service X

Service X is a geographically distributed, web-based ser-

vice serving millions of users simultaneously. Figure 1 illus-

trates the architecture of Service X. There are more than 10

different types of server roles in the system, including web

front end servers, application servers serving various applica-

tion services, and database servers, etc.

In order to provide high-quality service, Service X is in-

strumented at development time and continuously monitored

at runtime. The monitoring data collected for Service X main-

ly consists of three types: performance counters, events from

the underlying Windows operating system, and the logs creat-

ed by various components of Service X. The monitoring data

is used to detect service incidents in the form of availability or

latency issues. When a service incident is detected, the moni-

toring system of Service X would automatically send an alert

email and make a phone call to a team of service engineers,

namely On-Call Engineers (OCEs), to trigger the investigation

of the incident. The monitoring data would then be used by the

OCEs to diagnose the incident and help decide on what actions

to take in order to restore Service X as quickly as possible.

476

Web Front End Servers

… ...

Content Applications Other Applications

… ...

… ...

… ...

Database Farm

T
e

le
m

e
try

 a
n

d
 M

a
n

a
g

e
m

e
n

t F
a

rm

Active

Monitors

Debug

Agents

Management

Servers

Load Balancer

Incoming User

Requests

Datacenter

Internet

Figure 1. System overview of Service X

B. Pain Points and Challenges

Incident management is a challenging task because OCEs

are under great time pressure to restore the service. From the

communication with the OCEs, we learned the following chal-

lenges faced by them in incident management. Although these

challenges are from the OCEs of Service X, such challenges

are general to engineers of other online services because of

high resemblance of Service X to general online services.

Large-volume and irrelevant data. The monitoring data is

the primary sources for OCEs to diagnose a service incident

and identify the restoration actions. The volume of the moni-

toring data is huge due to the large scale of the Service X sys-

tem. For example, currently, about 12 billion log entries are

generated each day by various service components. The

amount will increase rapidly as the number of users increases

and/or the number of user requests increases. In addition, most

of the monitoring data is irrelevant to a particular incident.

From the diagnosis perspective, there is a huge amount of ir-

relevant data. OCEs would have to manually sift through the

huge amount of monitoring data in order to identify the por-

tions relevant to the underlying incident. Sometimes OCEs

would not even have a clue on where to start. This process is

just like finding a needle in a haystack.

Highly complex problem space. There are many potential

causes that may incur a service incident, such as hardware

failures, networking issues, resource competition, code defects,

and configurations. In general, various types of monitoring

data need to be collected in order to gather enough information

that reflects the symptoms of complex causes, because each

type of data usually reflects only certain aspects of the service

system. For example, performance counters are helpful when

diagnosing service issues caused by resource competition. In

the case of Service X, as aforementioned, performance coun-

ters, system events, and logs are collected as monitoring data.

When working on incident management, OCEs would not only

need to manually analyze each type of the monitoring data, but

also need to be able to correlate different types of data in order

to obtain thorough understanding of the service incident. It is

inefficient to manually look for answers in such a highly com-

plex problem space.

Incomplete and disaggregated knowledge. Diagnosing

service incidents often needs decent knowledge about the ser-

vice system. However, in practice, such kind of knowledge is

often not well organized or documented. A large-scale online

service system usually consists of many components. These

components are usually developed by different teams. Very

few engineers have detailed knowledge about the entire sys-

tem. Therefore, the experts of the service system usually be-

come the bottleneck for incident management. We indeed have

such observation with the Service X teams. In addition, from

the communication with the OCEs of Service X, we also

learned that there was no systematic mechanism for them to

share knowledge learnt from past service incidents. Although

each incident was recorded in a database, there was no support

on reusing the information of those incidents except manual

work. Due to the constraints of incomplete and disaggregated

knowledge, service engineers are often slow to resolve service

incidents, resulting in long Mean Time to Restore (MTTR) for

the service.

In the case of Service X, the service engineers used to suf-

fer from the aforementioned pain points during a certain peri-

od of time when they were running Service X. Their MTTR

was about 2 hours during that time, and 90% of the time was

spent on manual inspection of the monitoring data in order to

diagnose problems and identify the right restoration actions.

III. INCIDENT MANAGEMENT AS SOFTWARE ANALYTICS

As discussed in Section II, there are a set of practical chal-

lenges in the incident management of Service X. Because the

core problem is how to effectively and efficiently analyze the

huge amount of monitoring data in order to come up with the

diagnosis and restoration actions, we formulate the incident-

management problem as a software-analytics problem. We

utilized the four-step approach of developing software analyt-

ics projects [25][27] to define the objectives of our project,

conduct data collection, develop analytics techniques and an

analysis system leveraging those techniques, as well as de-

ploying the analysis system and getting feedback. The analysis

system that we developed is named as the Service Analysis

Studio (SAS).

In this section, we present the four steps of developing

SAS. We first define the objectives of SAS. Then we illustrate

the different types of monitoring data used for analyzing ser-

vice incidents. We further discuss the four primary analysis

techniques that we developed. Finally, we discuss the user

interface design of SAS and collection of user feedback in real

deployment.

A. Objectives

We defined four main objectives for SAS, in order to help

the OCEs of Service X to overcome the practical challenges in

their incident-management effort.

Automating analysis. SAS should have the capability to

automatically identify the information relevant to the cause of

477

the incident under investigation from the huge amount of mon-

itoring data. The identified information should provide insight-

ful clues for OCEs to determine the problematic site of the

incident, therefore significantly reducing the investigation

effort.

Handling heterogeneity. SAS should be able to analyze

the various types of monitoring data collected from different

data sources. In the case of Service X, the types of monitoring

data included performance counters, system events, and logs

generated by different service components. Each data source

provides the diagnostic information of Service X from a cer-

tain aspect. Different from all previous work [6][8][9][24] that

focused on only a single type of data source (e.g., system met-

rics), SAS aims to provide a comprehensive analysis of the

various types of data from all data sources to support the diag-

nosis of service incidents.

Accumulating knowledge. SAS should provide a mecha-

nism to accumulate and leverage the knowledge about the in-

cidents. Similar to other services in the real world, the same

incident of Service X may reoccur due to various reasons. For

example, the bug fix for the root cause of the incident has not

yet been deployed, a temporary workaround solution stops to

take effect, or the service suffers repetitively from high work-

load and resource competition. Accumulating the knowledge

about past incidents can help improve the effectiveness and

efficiency of incident management. If OCEs can quickly de-

termine that a new incident is similar to a previous one, then

they will be able to quickly restore the service by leveraging

the diagnosis effort of the previous one. SAS is targeted to

accumulate the knowledge of past incidents by constructing a

historical incident repository, and to leverage such knowledge

to resolve new incidents.

Supporting human-in-the-loop (HITL). SAS should pro-

vide flexible and intuitive user interfaces in order to enable

OCEs to effectively and efficiently interact with the analysis

results and the monitoring data. The diagnosis of a service

incident is a complex decision-making process. Given the

complexity and diversity of service incidents, it is too ambi-

tious and not realistic in practice to build and deploy a fully

automatic diagnosis system in real production environments.

Therefore, rather than making incident management fully au-

tomatic, we keep the OCEs in the loop to make decisions on

the diagnosis and identification of restoration actions. Mean-

while, we fully utilize the power of data-analysis algorithms to

provide as much information as possible to facilitate the deci-

sion making of the OCEs.

B. Monitoring Data of Service X

As introduced in previous sections, different types of data

are collected in order to monitor the quality of Service X, as

well as diagnosing service incidents. In this section, we dis-

cuss each type of the monitoring data in detail. We also ex-

plain how the quality of Service X is measured and how ser-

vice incidents are detected.

Detecting incidents during service operation is often based

on the Key Performance Indicators (KPI), such as the average

request latency and request-failure rate. In the case of Service

X, for each user request, the response time is recorded at the

service side (as the request duration) along with the HTTP

status code (http-status-code) of the response to the request.

The http-status-code indicates the returned status of a given

web request, e.g., 200 refers to “OK” and 500 refers to “Inter-

nal Server Error”. The duration indicates the total response

time, e.g., duration>10 seconds indicates that the user has ex-

perienced very slow response. These two attributes are used to

calculate the KPIs for Service X. Each KPI is calculated once

per time epoch (i.e., 5 minutes in the system of Service X). For

example, for each time epoch, the 95-percentile latency is cal-

culated based on the duration values of all requests within the

time epoch. KPI values are monitored to provide an overall

description about the health state of Service X from users’

perspective. In practice, the values of KPIs are checked against

certain specified Service Level Objective (SLO). The SLO is

defined to be the acceptable value ranges of KPIs. When Ser-

vice X is running, if a KPI’s value (e.g., average latency) vio-

lates the SLO, a KPI violation, i.e., service incident, is detect-

ed, and alerts are sent out to notify that the service is in a SLO-

violation state. The diagnosis of a service incident is to find

out the problematic site that causes the service to violate the

SLO.

Besides KPIs, performance counters and system events,

which are collectively named as system metrics, are also col-

lected for the diagnosis purpose. System metrics record the

measurement results of the system, including the resource us-

age of processes and machines (e.g., the CPU utilization, disk

queue lengths, and I/O operation rate), request workload (e.g.,

the number of requests), SQL-related metrics (e.g., the average

SQL lock waiting time), and application-specific metrics (e.g.,

the cache hit ratio, the number of throttled requests). These

metrics are collected via OS facilities (e.g., Windows Man-

agement Instrumentation (WMI)) and stored in a SQL data-

base. Similar to KPIs, each system metric is also aggregated

over time epochs. For example, two metric values are calculat-

ed for the CPU-usage metric over an epoch: the average (or

median) value and the maximum value of CPU usage within

the epoch. There are more than 1200 different types of metrics

collected in Service X.

Another important type of data collected in Service X is

transactional logs. Transactional logs are generated during

system execution, and they record detailed information about

the system’s runtime behaviors when processing user requests.

Each log entry contains the following fields: the timestamp,

request ID (TxID), event ID, and detailed text message.

• A request ID is a Global Unique Identifier (GUID)

representing a request instance. Service X can serve multiple

requests simultaneously using concurrent threads. These

threads write log entries to the same file as they execute,

resulting in a log file with interleaving entries of different

requests. The log entries can be grouped into different

sequences using request IDs. In this way, each group represents

the log sequence produced when serving a particular request.

• An event ID is a unique identifier representing an

event-logging statement in the source code. The event ID in a

log entry indicates which logging statement prints out this entry.

The event ID bridges the logs with the source code – given a

478

log sequence represented by a request ID, the execution path of

modules and functions in the source code can be identified.

Usually, different types of requests generate different log

sequences due to different program logics. Sometimes the same

type of requests can also generate different log sequences due

to different input and configuration values, etc.

After data preparation, we need to design a set of data-

driven analysis techniques targeting at the real scenarios in

Service X. These techniques can automatically extract the in-

formation from the monitoring data and guide OCEs to find

out the problematic site of an incident.

IV. TECHNIQUES IN SAS

A set of data-driven techniques for diagnosing service in-

cidents have been developed in SAS for incident diagnosis in

Service X. Each of these techniques targets at a specific sce-

nario and a certain type of data. In this section, we briefly go

through some analysis techniques designed for different types

of data, along with the SAS user interfaces and deployment-

time feedback.

Because poor predictions are produced by just directly ap-

plying standard classification algorithms or state-of-the-art

information-retrieval techniques without considering charac-

teristics of logs in our scenario [11][12], we designed and ex-

tended our techniques based on carefully considering domain-

specific characteristics of software-generated data to achieve

satisfying performance.

A. Identification of Incident Beacons from System Metrics

When engineers diagnose incidents of online services, they

usually start from hunting for a small subset of system metrics

that are symptoms incurred by the causes of the incidents. We

name such kind of metrics as service-incident beacons. A ser-

vice-incident beacon is formed from a combination of metrics

with unusual values that produce a symptom. It could help

directly pinpoint the potential incident causes or could provide

intermediately useful information leading engineers to locate

the causes. For example, when a blocking and resource-

intensive SQL query blocks the execution of other queries

accessing the same table, symptoms can be observed on moni-

toring data: the waiting time on the SQL-inducing lock be-

comes longer, and the event “SQL query time out failure” is

triggered. Such metrics can be considered as incident beacons.

There are more than 1200 system metrics in Service X. We

developed an analysis technique that helped OCEs effectively

and efficiently identify service-incident beacons from such

huge number of system metrics.

Our analysis technique consists of three steps. First, using

anomaly detection, we discretize the values of system metrics

to indicate normal or abnormal states of those metrics. The

reason is that a service-incident beacon often has exceptionally

high or low values that are significantly out of its normal value

range during the period of the incident. Second, we apply cor-

relation analysis to identify incident beacons from suspicious

metrics using the historical monitoring data. In particular, with

the discretized metric values and the SLO states (indicating

whether the SLO is violated or not) of a KPI in each epoch, we

mine all the possible association rules between the abnormal

metrics and the service violations by leveraging an algorithm

for mining Class Association Rules (CARs) [17]. These mined

CARs are stored as incident-beacon candidates for the diagno-

sis purpose. Third, given a newly detected service incident and

its corresponding metrics and KPIs during the time period of

the incident, we calculate the log likelihood for each CAR

candidate obtained in Step 2 to assess how likely it is related

to the underlying service incident. The metrics involved in the

CARs with top rankings are provided as service-incident bea-

cons to the OCEs. The technical details of our analysis tech-

nique can be found elsewhere [12].

Figure 2. The recall results

Figure 3. The precision results

We tested some state-of-the-art algorithms proposed to

solve similar problems [6][8][9], found that they did not work

well for Service X because of the following two main charac-

teristics of incidents of Service X, and then designed our own

analysis technique to deal with such characteristics. First, most

incidents of Service X last less than 2 hours. Each incident

contains only a small number of epochs. When a model is

learned for each incident, the previously proposed learning

algorithms [6][8][9] would suffer from the over-fitting prob-

lem due to the insufficient amount of training data. Our tech-

nique reduces the chance of over-fitting because incident bea-

cons are selected from the candidates that are significant rules

mined out of the entire historical data set. Second, in practice,

a false negative (i.e., a real incident beacon not being reported)

can often incur high investigation cost for OCEs, because

OCEs would have to go through all the metrics to find the rel-

evant ones. Unlike classification-based techniques that identify

a single model [6][8][9] for each incident, our CAR-mining

technique can discover all rules that satisfy given requirements

including the minimal support, confidence, and lift values.

Therefore, our technique can help reduce the false-negative

ratio when there are coupling effects [12] in the underlying

incidents. The profound differences between classification and

association-rule mining [13] can help illustrate why a mining-

based technique works for Service X.

0

20

40

60

80

100

0 5 10 15

re
ca

ll
(%

)

Threshold of metric number

Ours
L1-LR

479

We evaluated our analysis technique using real data of

Service X. For example, on a data set of 36 incidents, with

nearly the same precision, our technique achieved a high recall

(~90%) compared to the recall of ~60% obtained using L1-

Logistic Regression (in short as L1-LR, an algorithm in state-

of-the-art research [9]). Figures 2 and 3 show the recall and

precision results, respectively, as we change the threshold of

the number of selected metrics from 1 to 10. We can observe

that our technique can achieve better recall and precision in all

cases than the technique of L1-LR. In practice, a threshold of 5

or 6 is a good choice. The characteristics of incidents of Ser-

vice X, such as the short-period violation and coupling effect,

are common among many other online services. Therefore, our

analysis technique can also be applied to other online services.

B. Mining Suspicious Execution Patterns

Besides system metrics, the transactional logs also provide

rich information for diagnosing service incidents. When scan-

ning through the logs, OCEs usually look for a set of log

events that show up together in the log sequences of failed

requests but not in the ones of the succeeded requests. Such a

set of log events are named as suspicious execution patterns. A

suspicious execution pattern could be very simple, e.g., an

error message that indicates a specific fault in the execution. It

could also be a combination of log events of several operations.

For example, a normal execution path looks like {task start,

user login, cookie validation success, access resource R, do the

job, logout}. In contrast, a failed execution path may look like

{task start, user login, cookie not found, security token rebuild,

access resource R error}. The failure occurred because re-

source R cannot recognize the new security token when the

old cookie was lost. The code branch reflected by {cookie not

found, Security token rebuild, access resource X error} indi-

cates a suspicious execution pattern.

As discussed in previous sections, a huge number of logs

are generated at any time when Service X is running. It is crit-

ical to automatically identify suspicious execution patterns in

order to free OCEs from manually scanning the logs. We pro-

pose a mining-based technique to automatically identify suspi-

cious execution patterns. The basic idea behind our technique

is that, given a set of logs for failed requests and succeeded

requests, respectively, execution patterns shared by more

failed executions and fewer succeeded executions are more

suspicious than others. The details of our technique can be

found elsewhere [11]. Our technique mainly consists of two

steps.

First, we mine execution patterns by modeling the

trunk/branch relations of program-execution paths with a For-

mal Concept Analysis (FCA) [2] technique. Given a set of

transactional logs, we treat each request as an object, the set of

events (corresponding to this request) as attributes, and then

we apply FCA to obtain a lattice graph. Each node in the graph

is a concept. Each concept, denoted as c, contains two ele-

ments: intent and extent. (denoting the intent of con-

cept c) is an event set, and Ext(c) (denoting the extent of con-

cept c) is a request set. In the graph, each parent concept con-

tains the common path of its children, and each child concept

contains a different branch structure in code paths. Then, we

further extract a complementary set (the

log events that are in node c but not in node p) for every par-

ent-child node pair (p, c) in the graph. All extracted comple-

mentary sets are stored as candidates of suspicious execu-

tion patterns for further evaluation.

Second, we use a score named as Delta Mutual Infor-

mation (DMI) to measure the suspicious level of each execu-

tion pattern. DMI is defined as

 () , where and () represent mutual

information defined on (a Boolean random variable defined

on concept c, with the variable value as 1 if the request be-

longs to and as 0 otherwise) and Y (the fail/success

status of a given request, e.g., 1 if the request is failed). Theo-

retical analysis has shown that DMI can properly measure the

contribution of ∆Es for failure correlation [11]. By walking

through all edges in the lattice graph, we select all as sus-

picious execution patterns if each of them has a large DMI

value, and then present them to OCEs for diagnosis.

In the practice of Service X, several patterns appeared in

incidents in long term, such as ones related to SQL timeout or

user-authentication rejection. Some patterns were live in short

term, specific to some versions of software, or improper con-

figurations; these patterns disappeared after software upgrade.

C. Detection of Malfunctioned Role Instance

In addition to analyzing the system metrics and transac-

tional logs, based on the characteristics of the system architec-

ture of online services, we also developed a statistics-based

technique to help with incident management.

As discussed in Section II, usually there are multiple server

roles in a large-scale online service system, e.g., front end

server and SQL server. There are often a number of instances

for each role running on different servers, under the control of

a load balancer that distributes the workload among the peer

instances. The configurations of these peer servers with the

same role are usually homogeneous for simplicity and robust-

ness. Therefore, when the service is at a healthy state, different

instances of the same role should have similar behaviors. If the

behavior of one instance deviates far from its peer instances,

then this instance is likely to act in an abnormal state. Such

behavioral differences can help us quickly detect the instances

of malfunctioned server roles.

The detection algorithm consists of two steps. First, a met-

ric (denoted as) reflecting the health state of a role is select-

ed, and its values are monitored for each role instance. For a

specific role, we calculate its values across all the instances in

the time epoch of investigation, and learn a probabilistic mod-

el from the calculated metric values. In SAS, for simplicity,

we use Gaussian distribution to model the metric. The

parameters are estimated using a robust estimation

method to reduce the interference of outliers:

{

 | |

Second, we identify the role instances whose correspond-

ing metric values are far from the distribution .
In SAS, we use the preceding technique to detect the mal-

functioned instances of three roles: the front end server, appli-

480

cation server, and SQL server. This technique is simple, and

yet we have found it highly effective in real practice. It can

often locate the problematic servers with high accuracy, thus

effectively narrowing down the investigation scope for OCEs.

This technique is not limited to Service X, being general and

applicable to common online services.

D. Leveraging Previous Effort for Recurrent Incidents

Similar incidents may reoccur due to reasons discussed in

Section III-B. Therefore, leveraging the knowledge from past

incidents can help improve the effectiveness and efficiency of

incident management. The key here is to design a technique

that automatically retrieves the past incidents similar to the

new one, and then proposes a potential restoration action

based on the past solutions.

Incident retrieval. There is rich information associated

with each service incident, e.g., timestamp, monitoring data,

and text describing the symptoms, diagnosis, taken actions,

and results, etc. The monitoring data is the most important

because it faithfully reflects the states of the service system

during the incident. Therefore, we use the monitoring infor-

mation to derive signatures to represent the incidents for the

retrieval purpose. Using the technique discussed in Section IV,

we mine out the suspicious execution patterns in transactional

logs, and use such patterns as signatures for each incident.

Then we define a similarity metric to compare a new inci-

dent to past ones. We treat each incident as a document, each

execution pattern as a term, and the corresponding DMI score

as the weight of the term. We then use the Generalized Vector

Space Model [22] to calculate the similarity of two incidents.

 HEALING ACTIONS TABLE I.

Healing-action adaptation. According to our empirical

study of healing actions in the incident repository, we find that

most healing actions can be formatted as a tuple <verb, target,

location>, where “verb” denotes an action and “target” denotes

a component or service. Table 1 shows all “verbs” and “targets”

in SAS. When we retrieve a similar historical incident, we

extract the verb and target from its description text. For exam-

ple, we extract “reboot” as the verb and “SQL server” as the

target from the description “We found few SQL servers with

high memory usage and few servers were not able to connect

through SSMS. Availability is back up after rebooting these

SQL machine SQL32-003”. We determine the location using

the technique that detects the malfunctioned server role.

Evaluation. We have evaluated the effectiveness of our

technique using the “leave-one-out” strategy based on 77 real

incidents of Service X. These cases are grouped into 8 catego-

ries; we measure the accuracy of our technique’s effectiveness

in suggesting a correct healing action for each “new issue”

(i.e., the one that is left out during “leave-one-out”). Both the

two results show that our approach is effective. The average

accuracy of top-1 recommendation is 0.90. More detailed re-

sults including the ROC curves of our technique can be found

elsewhere [11].

E. Usability

As a practical tool, making the analysis results actionable

and understandable to OCEs is very important. Otherwise, the

tool would not make real impact or be widely used by OCEs.

Figure 4. An example analysis report

One pain point of the OCEs is to sift through a huge

amount of monitoring data when working on a service incident.

To address such pain point, we defined two design rationales

for presenting the analysis results in SAS: conciseness and

comprehensiveness. Based on the results generated using dif-

ferent analysis techniques, SAS can automatically compose an

analysis report using a predefined decision tree. This report

serves as the primary form of presentation for SAS to com-

municate its analysis results to OCEs. As shown in Figure 4,

the report is concise, and yet contains comprehensive infor-

mation about the underlying incident. The report has three

parts. It first provides information on the impact of the inci-

dent, e.g., the number of failed user requests and the number

of impacted users. Such information helps the OCEs to assess

the severity of the incident. The second part of the report pro-

vides information for assisting effective diagnosis including

the summary of the underlying issue (if found), a list of similar

incidents in the past, and links to the detailed diagnosis results

of each type of the monitoring data. This report provides an

easy and systematic way for service engineers to consume the

analysis results, and thus greatly improves the usability of

SAS. For example, OCEs can quickly get an overview of the

incident and understand what was going on during the period

of the incident. They can also obtain detailed information for

further investigation through a single mouse click. The third

part of the report recommends service-recovery actions

adapted from those for similar incidents in the past. For exam-

ple, in Figure 4, the suggested action is to reset the IIS on a

specific front end server.

verb target verb target

recycle App-pool re-image WFE

restart IIS or Service rotate WFE

reboot WFE rotate SQL

reboot SQL patch WFE

reset DB patch SQL

There is an internal server error related issue.

Datacenter: DC1

Start time: 9/4/2012 3:48:00 AM End time: 9/4/2012 3:58:00 AM

Impact:

Influenced requests 1000

Influenced end users 100

Diagnosis:

This issue is a problem of “Credential loss”. The source of the issue mainly locates at Front End Server—

“FE001”.

Here are similar previous occurrences of the issue:

 Incident ID 91236: 3/14/2012 10:49:00 AM (see detail)

 Incident ID 91271: 7/26/2012 14:25:00 AM (see detail)

See also:

Malfunctioned Frontend Servers 973 of 1000 failed requests related to FE001.

 Malfunctioned SQL Servers No malfunctioned SQL servers detected.

Suspicious Metrics No highly correlated metrics found.

 Suspicious Execution Patterns 1 major pattern in the logs covers 973 of 1000 failed requests.

Suggested actions based on similar past incident (ID 91236):

Reset the IIS service on the front end server FE001.

481

In addition, we present the results of suspicious execution

patterns in an easy-to-understand way in SAS. Many terms in

the machine-learning and data-mining areas are not easily ac-

cessible to OCEs. For example, many OCEs are not familiar

with execution patterns or FCA. In SAS, we use a UI to high-

light the common difference between logs of succeeded and

failed requests, and facilitate OCEs to intuitively manipulate

the log sequences for understanding the contribution of differ-

ent log messages to the failure.

F. Deployment and Feedback

SAS was first deployed to the datacenters of Service X

worldwide in June 2011. The OCEs of Service X have been

using SAS for incident management since then. Now, they

heavily depend on SAS. Because of its importance for Service

X, we were required to make sure the high availability of SAS.

However, in practice, it is very difficult to estimate how much

OCE time a tool helps save. In order to assess the impact of

SAS in practice, we have instrumented SAS and started to

collect its usage data since 2012. The usage data records all

the interactions between users and SAS. Based on the usage

data, we can answer questions such as “who uses which analy-

sis module at what time on what data?”

According to the usage data from a 6-month study, about

91% of OCEs used SAS to accomplish their incident-

management tasks. SAS was used to diagnose about 86% of

service incidents. Along with engineers from Service X teams,

we investigated whether the analysis results of SAS were use-

ful for diagnosing an incident. The ground truth is set up ac-

cording to the product-ticketing system. In particular, for each

service incident, a ticket is created in the ticketing system to

record the detailed information of the diagnosis process of the

service incident including symptoms, email threads, diagnosis

results, and recovery actions. We use the recorded tickets as

the ground truth, and compare them with our analysis results

to conduct the evaluation. The results are considered useful if

(1) they can directly help locate the cause of the incident; (2)

they can locate the malfunctioned component; or (3) they can

find out the problematic site to help OCEs to reduce their in-

vestigation scope. The data in these 6 months shows that SAS

helped diagnose about 76% of the service incidents that SAS

was used for.

There are two main reasons why SAS failed to provide

useful diagnosis information for the remaining 24% service

incidents. First, sources of incident causes were not covered by

the monitoring system. For example, in the production envi-

ronment of Service X, several incidents were caused by a mal-

functioned Active Directory (AD) controller. Since no moni-

toring information was collected on AD servers back then,

SAS could not provide useful clues for diagnosis. Second,

there are inconsistencies and errors in the transactional logs.

Such factor may impact the precision of our incident retrieval

algorithm.

In summary, with the techniques of data analysis, SAS

tackled challenges in practice, and it helped OCEs of Service

X improve their effectiveness and efficiency of incident man-

agement. We expect that the analysis techniques and design

principals of SAS can be applied to other online services.

V. RELATED WORK

Previous work applies statistical-analysis techniques (i.e.,

machine learning and data mining) to tackle the scale and

complexity challenges in incident management. We discuss

related work in three categories.

Incident-beacon identification. Previous work

[6][8][9][15][24] mainly focused on finding suspicious system

metrics that may be related to the incident under investigation.

Given the data of system-SLO states (violation or compliance)

and system metrics, Cohen et al. [6][8][15][24] proposed the

Tree-Augmented-Network (TAN) approach to deduce a TAN

model, which uses a few system metrics to predict system-

SLO states. Their approach identifies the metrics used by the

deduced TAN model as service-issue beacons. Bodik et al. [6]

adapted their approach by adopting a different model, named

as L1-Logistic Regression, to identify highly correlated met-

rics more accurately. However, these previous classification-

based approaches [6][8][9][15][24] usually analyze each per-

formance issue one by one, and have a number of limitations

(suffering from the over-fitting problem when learning a clas-

sifier for a performance issue with short duration, identifying

only general symptoms as incident beacons, etc.)[12]. Our

techniques in SAS tackle these problems by mining CARs

from historical data, and then selecting the best ones from the

candidates by matching them with the performance issue un-

der investigation.

Known-incident association. As discussed earlier, associ-

ating a newly incoming incident with a previous known inci-

dent is very useful in incident management. Yuan et al. [23]

used classification techniques to classify system problems into

different categories. However, in real practice, classification-

based techniques are often not applicable due to lack of la-

beled samples. In addition, a classification-based technique

often cannot check whether an incident is a totally new one or

similar to a previous one. Previous work [6][8][9][15][24]

retrieved similar previous incidents by defining similarity

based on the beacons of incidents (those beacons are used as

incident signatures). Another set of research efforts in the area

of mining bug repositories is also related to our known-

incident association technique. The basic idea of such scenario

is to apply web-search techniques on a bug repository where

each bug report is considered as a web document. Ashok et al.

[5] implemented a search system for similar-bug retrieval to

speed up bug fixing based on the natural-language text,

dumped traces, and outputs described in the bug reports. Some

other work [20][21] uses mining or classification techniques

on textual information to cluster or detect duplicate bug re-

ports. These techniques would not be effective in our problem

setting because the textual information is a much weaker rep-

resentation of an incident compared to the monitoring data

associated with the incident. Furthermore, the textual infor-

mation is also incomplete or imprecise [11]. Different from the

previous work, we extract incident signatures by analyzing the

difference between the logs of failed requests and succeeded

requests. In SAS, we go further to provide healing suggestions

by leveraging the solutions of previous incidents in the inci-

dent repository.

482

Fault localization. Automated localization of faults/bugs is

a major research area in software engineering. Two kinds of

localization techniques are used in SAS. The basic idea of our

technique for execution-pattern mining is similar to previous

work [18][20] in that we all leverage the differences between

the logs of failed and succeeded requests. Sun et al. [20] eval-

uated patterns mined from both correct and incorrect runs to

detect duplicate bug reports. Our work uses contrast infor-

mation to achieve high accuracy of signature generation. Cel-

lier [7] applied FCA to fault localization by using concepts to

find interesting clusters. In contrast to these previous tech-

niques on fault localization, our work is motivated by address-

ing challenges of incident management.

The above-discussed previous work focused on developing

techniques for a single type of data sources, and none of them

has been deployed to a real-world online service system. In

our work, we conducted comprehensive analysis on various

monitoring-data types to handle real-world problems, and de-

veloped the SAS system, which has been used in real produc-

tion environments.

VI. LESSONS LEARNED

We started the project on data-driven performance analysis

for online services in 2010. It took us two years to conduct

algorithm research, build the diagnosis system, and make the

system an indispensable system for the engineering team of

Service X. In this section, we share some of our experiences

and the lessons learned along the way.

A. Solving Real Problems

Solving real problems is one of the key factors to the suc-

cess of SAS. We did not, however, take the problem-driven

approach right at the beginning of the project, and we learned

the lesson the hard ways.

When we first knew about the various challenges of Ser-

vice X, we went on the usual research route looking into the

research literature on existing work to understand state-of-the-

art techniques in the area. We found that using a machine-

learning technique to classify, retrieve, and predict service

violations had been an interesting topic, and a classification-

based technique was the mainstream solution. We analyzed the

pros and cons of several popular classification-based tech-

niques, implemented, and tested them using the real data that

we obtained from Service X. However, the results were not

satisfactory as discussed in Section IV-A; therefore, we decid-

ed to research on this topic in order to improve the recall and

precision. We spent a few months along this direction and did

get better results later.

We presented to the engineering team from Service X the

improvements that we made over the state-of-the-art tech-

niques, and we got feedback such as “interesting”, “good”, and

“useful”, as well as questions and comments such as “this

technique alone cannot solve our problems”, and “do you guys

look at logs as well?”, “How can you help find the root

cause?”, etc. It was then when we realized that we missed two

important issues. One was that there were other data sources

(e.g., service logs) that were important for analyzing service-

quality issues but we did not leverage. The other was that the

problem that we worked on was important, but it may not be

the most important one and it was not the whole problem.

Since we had a real system running, and there were practi-

tioners who faced real challenges and were willing to talk with

us, we decided to reset the project and take a problem-driven

approach in order to ensure that our research would address

the real problems. After a few rounds of communication with

the Service X teams, we clearly identified that the top priority

for Service X at that time was to greatly reduce the Mean-

Time-To-Restore (MTTR), and the primary challenges includ-

ed dealing with large-scale and heterogeneous data, and lever-

aging disaggregated knowledge learned from past incidents,

etc. Based on these challenges and real-world scenarios, we

formulated the incident-management problem of online ser-

vices as a software-analytics problem, and researched and de-

veloped SAS as discussed in the previous sections.

B. Improving Techniques in Practice

Robustness. In a large-scale online-service system, data

missing and noise can be common. In the design of techniques,

much effort was spent on tuning the underlying algorithms to

make them robust in the real scenarios. For example, in order

to improve the robustness of our algorithm of malfunctioned-

role detection, median values and Medians of Absolute Differ-

ence (MAD) are used to estimate the Gaussian parameters. In

addition, during the detection stage, we use Bayesian inference

by setting a low a-prior failure probability (e.g., 1e-5), which

can largely reduce the rate of false positives. In our execution-

pattern analysis, each execution pattern is represented by a

sub-set of log events rather than a sub-sequence of log events

to improve algorithm robustness. Because many distributed-

system components serve a single user request collaboratively

and their log events may be disordered due to machine-time

bias, an algorithm based on execution patterns with temporal

sequential events is not robust enough in practice. In addition,

our empirical study shows that an event set is an effective ab-

straction for our problem context (similar observations were

also made by Cellier [7]).

Performance. In addition to the enabling algorithms for

analyzing the large-scale and heterogeneous data, performance

plays an important role in the adoption of SAS in practice. In

order to speed up the investigation of service incidents, OCEs

need to obtain relevant information as quickly as possible. We

paid a lot of attention to ensure high performance when de-

signing and implementing SAS.

In order to enable real-time analysis leveraging historical

data, we designed a background service to incrementally pro-

cess new generated data as it came in, and save the intermedi-

ate results for on-demand analysis later on. Our service runs

once every 5 minutes, collects the metric data newly generated

during the past 5 minutes, calculates the KPIs and metric val-

ues from the data, and runs some analysis modules. For exam-

ple, the first two steps of the technique for identifying incident

beacons (see Section IV-A) run as a part of the background

service to learn a set of CARs incrementally. The learned

CARs are stored as intermediate results, and then are used

later for on-demand analysis. On the contrary, the third step is

often run on demand. When an OCE tries to investigate a ser-

483

vice incident, he/she often selects the time period of the inci-

dent for analysis through the UI of SAS, and lets SAS run the

third step of the technique on the metrics for the time period

under investigation. Because the third step does not require

heavy computation, an OCE can obtain incident beacons im-

mediately.

We also have some special designs in the module of execu-

tion-pattern analysis to improve the performance. First, we

automatically cache log sequences of a few succeeded requests

in a local file, and update the cache every day in the back-

ground service. Doing so can help speed up the on-demand

analysis by reducing the data-fetching time. Second, during

the on-demand analysis, we select a 20-minute time window

where the service has the worst performance among the time

range of the incident under investigation, and use only the

failed requests in the window for analysis to reduce the com-

putational cost of execution-pattern analysis. Such design can

largely improve the interactivity of SAS. When an analysis

step did take a relatively long time, e.g., a few seconds, related

information would be displayed to notify users on what analy-

sis was running along with its progress.

C. Availability

Besides the interactivity and the performance, high availa-

bility is also very important for a tool designed for online ser-

vices. When a service incident occurs, OCEs need to use the

tool for investigating and resolving the incident as quickly as

possible. If the tool is unavailable at that time, OCEs have to

spend extra time to restore the tool or to investigate the inci-

dent through other ways (e.g., manually inspecting the instru-

mented data). Therefore, it is important to guarantee the high

availability of SAS. In order to improve the robustness of SAS,

the background service of SAS is designed to be auto-

recoverable from failures. For example, there are a set of

check points in the service code. At each check point, we veri-

fy the states of the service, and record the states and all inter-

mediate results in files. When the service fails, it is restarted

automatically by the operating system, and then, it recovers its

states from the latest check-point files. During the past year,

we encountered one case: we were called in during a mid-

night to fix a SAS issue because OCEs were unable to get the

latest analysis report from SAS; such issue was caused by that

the account used for SAS was deleted by an operator by mis-

take.

D. Investing in System Building

In addition to conducting algorithm research, we also built

the entire SAS system, which was deployed in the datacenters

of Service X worldwide. The engineering cost in building such

a system was not low. We did not build SAS to its current

state all at once. Instead, we took a step-by-step way and add-

ed functionalities incrementally. Doing so did not only help

pave the way to creating real impact in three main ways (as

discussed below), but also helped us maintain the engineering

investment within the manageable scope.

First, having a working system helped demonstrate the re-

search value and built trust with the product-team partners.

Usually, product teams are under tight schedule and they

would not have cycles for “distractions” once they are in the

full development mode. In the case of providing online ser-

vices, they are quite sensitive about deploying systems or tools

that consume resources in datacenters and might impact the

services in any way. Considering these practical issues, we

built SAS v1.0 with the primary functionality of discovering

problematic execution patterns associated with the given ser-

vice incident by analyzing the service logs. This functionality

greatly reduced the scope of log investigation from thousands

of lines of logs to just tens of lines. We first demonstrated the

effectiveness of SAS using historical logs. Then we got the

permission to run it within the internal deployment environ-

ment of Service X. This step was critical because SAS was

made available for the first time to the teams of Service X for

troubleshooting, and this step demonstrated that running SAS

had negligible impact on Service X. After SAS v1.0 was used

to help troubleshoot some incidents, we got the permission to

deploy it to the production environment of one datacenter. The

success there created the demand of worldwide deployment

into all datacenters.

Second, a working system helped us get timely feedback.

The feedback allowed us to observe the troubleshooting expe-

riences of service engineers, and it helped us understand how

well the service engineers used SAS. At the same time, we

instrumented SAS to collect how service engineers used it in

the real settings. This data provided quantitative metrics for us

to measure the impact of our work. The investigation on why

SAS was not used for or could not help with certain incidents

could lead to new research problems.

Third, a working system helped us build up credibility and

bring in more research opportunities. As more and more teams

came to know the success of SAS, they started to come to us

with their own problems. Some of them were similar to the

challenges of Service X and the others were different. For the

similar problems, we could easily reuse the analysis tech-

niques and modules that we built for SAS. Therefore, the en-

gineering investment really paid off, and it would pay off more

as components in SAS got (re)used more. The different prob-

lems provided new opportunities for us to explore the online

service landscape.

VII. CONCLUSION

Incident management has become a critical task for an

online service to ensure high quality and reliability of the ser-

vice. However, incident management faces a number of signif-

icant challenges such as the large data scale, complex problem

space, and incomplete knowledge. To address these challenges,

we developed an industrial system called SAS based on a set

of data-driven techniques to improve the effectiveness and

efficiency of incident management in a large-scale online ser-

vice of Microsoft. In this paper, we have shared our experi-

ence on incident management for the large-scale online service

including the way of using software analytics to solve engi-

neers’ pain points in incident management, the resulting indus-

trial system, and the lessons learned from the process of re-

search development and technology transfer.

484

REFERENCES

[1] “Amazon’s S3 cloud service turns into a puff of smoke”. In

InformationWeek NewsFilter, Aug., 2008.

[2] http://en.wikipedia.org/wiki/Formal_concept_analysis

[3] http://en.wikipedia.org/wiki/Incident_management

[4] http://en.wikipedia.org/wiki/system_center_operations_manager

[5] B. Ashok, J. Joy, H.K. Liang, S. K. Rajamani, G. Srinivasa, V.

Vangala. “DebugAdvisor: A recommender system for

debugging”. In Proc. of ESEC/FSE’ 09, pp. 373-382, 2009.

[6] P. Bodik, M. Goldszmidt, A. Fox, D.B. Woodard, H. Andersen.

“Fingerprinting the datacenter: Automated classification of

performance crises”. In Proc. of EuroSys’ 10, pp. 111-124, 2010.

[7] P. Cellier. “Formal concept analysis applied to fault

localization”. In Proc. ICSE Companion’ 08. pp. 991-994, 2008.

[8] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J.S. Chase.

“Correlating instrumentation data to system states: A building

block for automated diagnosis and control”. In Proc. of USENIX

OSDI’ 04, pp. 231-244, 2004.

[9] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, A. Fox.

“Capturing, indexing, clustering, and retrieving system history”.

In Proc. of SOSP’ 05, pp. 105-118, 2005.

[10] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, T. Xie, “XIAO:

Tuning code clones at hands of engineers in practice”. In Proc.

of ACSAC’ 12, pp. 369-378, 2012.

[11] R. Ding, Q. Fu, J.-G. Lou, Q. Lin, D. Zhang, J. Shen, T. Xie,

“Healing online service systems via mining historical issue

repositories”. In Proc. of ASE’ 12, pp. 318-321, 2012.

[12] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, Z. Ye, T. Xie,

“Performance issue diagnosis for online service systems”. In

Proc. of SRDS’ 12, pp. 273-278, 2012.

[13] A. A. Freitas, “Understanding the crucial differences between

classification and discovery of association rules - a position

paper”. In SIGKDD Exploration, vol.2, no.1, pp. 65-69, 2000.

[14] S. Han, Y. Dang, S. Ge, D. Zhang, T. Xie, “Performance

debugging in the large via mining millions of stack traces”. In

Proc. of ICSE’ 12, pp. 145-155, 2012.

[15] C. Huang, I. Cohen, J. Symons, T. Abdelzaher, “Achieving

scalable automated diagnosis of distributed systems performance

problems”. In Technical Report, HP, 2006.

[16] J. N. Hoover: “Outages force cloud computing users to rethink

tactics”. In InformationWeek, Aug. 16, 2008.

[17] J. Li, H. Shen, R. W. Topor, "Mining optimal class association

rule set". In Proc. of PAKDD’ 01, pp. 364-375, 2001.

[18] C. Liu, X.F. Yan, L. Fei, J.W. Han, S.P. Midkiff. “SOBER:

statistical model-based bug localization”. In Proc. of ESEC/FSE’

05, pp. 286-295, 2005.

[19] D. A. Patterson. “A simple way to estimate the cost of

downtime”. In Proc. of LISA’ 02, pp. 185-188, 2002

[20] C. Sun, D. Lo, X.Y. Wang, J. Jiang, S.C. Khoo. “A

discriminative model approach for accurate duplicate bug report

retrieval”. In Proc. of ICSE’ 10, pp. 45-54, 2010.

[21] X.Y. Wang, L. Zhang, T. Xie, J. Anvik, J.S. Sun. “An approach

to detecting duplicate bug reports using natural language and

execution information”. In Proc. of ICSE’ 08, pp. 461-470, 2008.

[22] S. K. M. Wong, W. Ziarko, P. C. N. Wong, “Generalized vector

spaces model in information retrieval”. In Proc. of ACM SIGIR’

85, pp. 18-25, 1985.

[23] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M. Wang, W. Y.

Ma. “Automated known problem diagnosis with event traces”.

In Proc. of EuroSys’ 06, pp. 375-388, 2006.

[24] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, A. Fox,

“Ensembles of models for automated diagnosis of system

performance problems”. In Technical Report, HP, 2005.

[25] D. Zhang, Y. Dang, J. Lou, S. Han, H. Zhang, T. Xie. “Software

analytics as a learning case in practice: approaches and

experiences”. In Proc. of MALETS’ 11, pp. 55-58, 2011.

[26] D. Zhang, S. Han, Y. Dang, J. Lou, H. Zhang, T. Xie. “Software

Analytics in Practice”. IEEE Software, Special Issue on the

Many Faces of Software Analytics, vol. 30 no. 5, pp. 30-37,

September/October 2013.

[27] D. Zhang, T. Xie. “Software analytics in practice: mini tutorial”.

In Proc. of ICSE’ 12, pp. 997, 2012.

485

