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Abstract—As online services become more and more popular, 

incident management has become a critical task that aims to 

minimize the service downtime and to ensure high quality of the 

provided services. In practice, incident management is conducted 

through analyzing a huge amount of monitoring data collected at 

runtime of a service. Such data-driven incident management 

faces several significant challenges such as the large data scale, 

complex problem space, and incomplete knowledge. To address 

these challenges, we carried out two-year software-analytics 

research where we designed a set of novel data-driven techniques 

and developed an industrial system called the Service Analysis 

Studio (SAS) targeting real scenarios in a large-scale online 

service of Microsoft. SAS has been deployed to worldwide 

product datacenters and widely used by on-call engineers for 

incident management. This paper shares our experience about 

using software analytics to solve engineers’ pain points in 

incident management, the developed data-analysis techniques, 

and the lessons learned from the process of research development 

and technology transfer. 

Index Terms—Online service, service incident diagnosis, 

incident management. 

I. INTRODUCTION 

Software industry has been under the movement from tra-

ditional shrink-wrapped software to online services (e.g., from 

shrink-wrapped Microsoft Office to online Microsoft Office 

365). Online service systems such as online banking systems 

and e-commerce systems have been increasingly popular and 

important in our society.  

Online services differ from traditional shrink-wrapped 

software in various aspects, including their characteristics of 

continuously running along with aiming for 24x7 availability 

of services. However, during operation of an online service, 

there can be a live-site service incident: an unplanned interrup-

tion/outage to the service or degradation in the quality of the 

service.  Such incident can lead to huge economic loss or other 

serious consequences. For example, the estimated average cost 

of one hour’s service downtime for Amazon.com is $180,000 

[19]. Online services such as Amazon, Google, and Citrix 

have experienced live-site outages during the past couple of 

years [1][16].  

Therefore, service providers have invested great efforts on 

service-quality management to minimize the service downtime 

and to ensure high quality of the provided services. For exam-

ple, an important aspect of service-quality management is in-

cident management [3]: once a service incident occurs, the 

service provider should take actions immediately to diagnose 

the incident and restore the service as soon as possible. Such 

incident management needs to be efficient and effective in 

order to ensure high availability and reliability of the services.  

A typical procedure of incident management in practice 

(e.g., at Microsoft and other service-provider companies) goes 

as follow. When the service monitoring system detects a ser-

vice violation, the system automatically sends out an alert and 

makes a phone call to a set of On-Call Engineers (OCEs) to 

trigger the investigation on the incident in order to restore the 

service as soon as possible. Given an incident, OCEs need to 

understand what the problem is and how to resolve it. In ideal 

cases, OCEs can identify the root cause of the incident and fix 

it quickly. However, in most cases, OCEs are unable to identi-

fy or fix root causes within a short time. For example, it usual-

ly needs to take a long delay to fix the root causes (e.g., code 

defects), to conduct regression testing of the new build, and to 

re-deploy it to datacenters. Such whole process causes much 

delay before the service can be recovered and continue to 

serve the users. Thus, in order to recover the service as soon as 

possible, a common practice is to restore the service by identi-

fying a temporary workaround solution (such as restarting a 

server component) to restore the service. Then after service 

restoration, identifying and fixing the underlying root cause 

for the incident can be conducted via offline postmortem anal-

ysis. 

Incident management of an online service differs from the 

debugging of shrink-wrapped software in two main aspects. 

First, incident management requires the service provider to 

take actions immediately to resolve the incident, as the cost of 

each hour’s service downtime is high [19]. Second, due to the 

requirement of continuously running, unlike shrink-wrapped 

software, when an incident occurs in an online service, it is 

usually impractical to attach a debugger to the service to con-

duct diagnosis.  

In practice, incident management of an online service 

heavily depends on monitoring data collected at runtime of the 

service such as service-level logs, performance counters, and 

machine/process/service-level events. Such monitoring data 

typically contains information to reflect the runtime state and 

behavior of the service. Based on the monitoring data, service 

incidents are timely detected in the form of service anomalies 

and quality issues. To collect such data, the service system is 

instrumented with an instrumentation infrastructure (e.g., the 

System Center Operations Manager [4]) and continuously 

monitored. For example, a service system at Microsoft under 

our study generates about 12 billion lines of log messages each 

day for incident management.  
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Given that incident management of online services is data-

driven by nature, it is a perfect target problem for software-

analytics research. Software analytics [25][26][27] has recent-

ly emerged as a promising and rapidly growing research area 

for data-driven software engineering, with strong emphasis on 

industrial practice. In particular, software analytics is to utilize 

data-driven approaches to enable software practitioners to per-

form data exploration and analysis to obtain insightful and 

actionable information for completing various tasks around 

software systems, software users, and software development 

process. In software analytics, a great amount of work on suc-

cessful technology transfer has already been conducted at the 

Software Analytics group at Microsoft Research Asia, e.g., 

performance debugging in the large [14], clone detection [10]. 

In this paper, we formulate incident management of an 

online service as a software-analytics problem [25][27], which 

can be tackled with phases of task definition, data preparation, 

analytic-technology development, and deployment and feed-

back gathering. The task of incident management is defined to 

consist of two parts: (1) incident investigation and diagnosis, 

and (2) healing suggestion for actions taken to recover the 

service as soon as possible. Data preparation aims to collect 

monitoring data of the service for incident management. Ana-

lytic-technology development is to develop an incident-

management system by formulating problems and developing 

algorithms and systems to explore, understand, and get in-

sights from the data.  During deployment and feedback gather-

ing, feedback is gathered on how practitioners use the devel-

oped system in their routine daily work, and then it is used to 

guide further improvement of the system under consideration. 

By tackling incident management with software analytics, 

we have developed the first industrial system for incident 

management of online services and deployed the system with-

in Microsoft. Producing high impact on industrial practices, 

our system is being used continuously since 2011 by Microsoft 

engineers for effective and efficient incident management of 

Service X (we use an alias here due to confidentiality). Our 

system for Service X incorporates various novel techniques 

that we have developed for addressing significant real-world 

challenges of incident management posed in large-scale online 

services. 

Throughout the two-year process of conducting software-

analytics research for producing such high-impact system, we 

have gained a set of lessons learned, which are valuable for us 

and for the broad community of software engineering to carry 

out successful technology transfer and adoption. We started 

the project on data-driven performance analysis for online 

services in 2010. It took us two years to conduct algorithm 

research, build the diagnosis system, and make the system 

indispensable for the service-engineering team of Service X. 

In this paper, we share our lessons learned in our project 

through three dimensions: solving real problems in practice, 

improving performance and usability of the developed system, 

and investing in system building. 

In summary, this paper makes the following main contribu-

tions: 

• The formulation of incident management of online 

services as a software-analytics problem, which can be tackled 

with phases of task definition, data preparation, analytic-

technology development, and deployment and feedback 

gathering. 

• The first industrial system developed and deployed for 

incident management of Service X (a geographically 

distributed, web-based service serving hundreds of millions of 

users) and various novel techniques incorporated in the system 

for addressing significant real-world challenges. 

• A set of lessons learned (throughout the two-year 

process of conducting software-analytics research for 

producing such high-impact system), which are valuable for us 

and for the broad community of software engineering to carry 

out successful technology transfer and adoption. 

The rest of the paper is organized as follows. Section II in-

troduces Service X. Section III presents our formulation of 

service-incident management as a software-analytics problem. 

Section IV presents the resulting SAS system and its tech-

niques. Section V discusses related work. Section VI presents 

the lessons learned, and Section VII concludes the paper. 

II. BACKGROUND OF SERVICE X 

Service X is a web-based, external-facing Microsoft ser-

vice. Similar to other online services, Service X is expected to 

provide high-quality service on 24x7 basis. During a certain 

period of time when running the service, the Service X teams 

were facing great challenges in improving the effectiveness 

and efficiency of their incident management in order to pro-

vide high-quality service. We set up our goals to help the Ser-

vice X teams solve the incident-management problems. In 

addition, because the architecture of Service X is representa-

tive of typical multi-layer online services, we expect that our 

techniques designed for Service X are general enough to be 

applied to other similar online services. 

A. Overview of Service X 

Service X is a geographically distributed, web-based ser-

vice serving millions of users simultaneously. Figure 1 illus-

trates the architecture of Service X. There are more than 10 

different types of server roles in the system, including web 

front end servers, application servers serving various applica-

tion services, and database servers, etc. 

In order to provide high-quality service, Service X is in-

strumented at development time and continuously monitored 

at runtime. The monitoring data collected for Service X main-

ly consists of three types: performance counters, events from 

the underlying Windows operating system, and the logs creat-

ed by various components of Service X. The monitoring data 

is used to detect service incidents in the form of availability or 

latency issues. When a service incident is detected, the moni-

toring system of Service X would automatically send an alert 

email and make a phone call to a team of service engineers, 

namely On-Call Engineers (OCEs), to trigger the investigation 

of the incident. The monitoring data would then be used by the 

OCEs to diagnose the incident and help decide on what actions 

to take in order to restore Service X as quickly as possible. 
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Figure 1. System overview of Service X 

B. Pain Points and Challenges 

Incident management is a challenging task because OCEs 

are under great time pressure to restore the service. From the 

communication with the OCEs, we learned the following chal-

lenges faced by them in incident management. Although these 

challenges are from the OCEs of Service X, such challenges 

are general to engineers of other online services because of 

high resemblance of Service X to general online services. 

Large-volume and irrelevant data. The monitoring data is 

the primary sources for OCEs to diagnose a service incident 

and identify the restoration actions. The volume of the moni-

toring data is huge due to the large scale of the Service X sys-

tem. For example, currently, about 12 billion log entries are 

generated each day by various service components. The 

amount will increase rapidly as the number of users increases 

and/or the number of user requests increases. In addition, most 

of the monitoring data is irrelevant to a particular incident. 

From the diagnosis perspective, there is a huge amount of ir-

relevant data. OCEs would have to manually sift through the 

huge amount of monitoring data in order to identify the por-

tions relevant to the underlying incident. Sometimes OCEs 

would not even have a clue on where to start. This process is 

just like finding a needle in a haystack.  

Highly complex problem space. There are many potential 

causes that may incur a service incident, such as hardware 

failures, networking issues, resource competition, code defects, 

and configurations. In general, various types of monitoring 

data need to be collected in order to gather enough information 

that reflects the symptoms of complex causes, because each 

type of data usually reflects only certain aspects of the service 

system. For example, performance counters are helpful when 

diagnosing service issues caused by resource competition. In 

the case of Service X, as aforementioned, performance coun-

ters, system events, and logs are collected as monitoring data. 

When working on incident management, OCEs would not only 

need to manually analyze each type of the monitoring data, but 

also need to be able to correlate different types of data in order 

to obtain thorough understanding of the service incident. It is 

inefficient to manually look for answers in such a highly com-

plex problem space.  

Incomplete and disaggregated knowledge. Diagnosing 

service incidents often needs decent knowledge about the ser-

vice system. However, in practice, such kind of knowledge is 

often not well organized or documented. A large-scale online 

service system usually consists of many components. These 

components are usually developed by different teams. Very 

few engineers have detailed knowledge about the entire sys-

tem. Therefore, the experts of the service system usually be-

come the bottleneck for incident management. We indeed have 

such observation with the Service X teams. In addition, from 

the communication with the OCEs of Service X, we also 

learned that there was no systematic mechanism for them to 

share knowledge learnt from past service incidents. Although 

each incident was recorded in a database, there was no support 

on reusing the information of those incidents except manual 

work. Due to the constraints of incomplete and disaggregated 

knowledge, service engineers are often slow to resolve service 

incidents, resulting in long Mean Time to Restore (MTTR) for 

the service.  

In the case of Service X, the service engineers used to suf-

fer from the aforementioned pain points during a certain peri-

od of time when they were running Service X. Their MTTR 

was about 2 hours during that time, and 90% of the time was 

spent on manual inspection of the monitoring data in order to 

diagnose problems and identify the right restoration actions. 

III. INCIDENT MANAGEMENT AS SOFTWARE ANALYTICS 

As discussed in Section II, there are a set of practical chal-

lenges in the incident management of Service X. Because the 

core problem is how to effectively and efficiently analyze the 

huge amount of monitoring data in order to come up with the 

diagnosis and restoration actions, we formulate the incident-

management problem as a software-analytics problem. We 

utilized the four-step approach of developing software analyt-

ics projects [25][27] to define the objectives of our project, 

conduct data collection, develop analytics techniques and an 

analysis system leveraging those techniques, as well as de-

ploying the analysis system and getting feedback. The analysis 

system that we developed is named as the Service Analysis 

Studio (SAS). 

In this section, we present the four steps of developing 

SAS. We first define the objectives of SAS. Then we illustrate 

the different types of monitoring data used for analyzing ser-

vice incidents. We further discuss the four primary analysis 

techniques that we developed. Finally, we discuss the user 

interface design of SAS and collection of user feedback in real 

deployment. 

A. Objectives 

We defined four main objectives for SAS, in order to help 

the OCEs of Service X to overcome the practical challenges in 

their incident-management effort. 

Automating analysis. SAS should have the capability to 

automatically identify the information relevant to the cause of 
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the incident under investigation from the huge amount of mon-

itoring data. The identified information should provide insight-

ful clues for OCEs to determine the problematic site of the 

incident, therefore significantly reducing the investigation 

effort.  

Handling heterogeneity. SAS should be able to analyze 

the various types of monitoring data collected from different 

data sources. In the case of Service X, the types of monitoring 

data included performance counters, system events, and logs 

generated by different service components. Each data source 

provides the diagnostic information of Service X from a cer-

tain aspect. Different from all previous work [6][8][9][24] that 

focused on only a single type of data source (e.g., system met-

rics), SAS aims to provide a comprehensive analysis of the 

various types of data from all data sources to support the diag-

nosis of service incidents. 

Accumulating knowledge. SAS should provide a mecha-

nism to accumulate and leverage the knowledge about the in-

cidents. Similar to other services in the real world, the same 

incident of Service X may reoccur due to various reasons. For 

example, the bug fix for the root cause of the incident has not 

yet been deployed, a temporary workaround solution stops to 

take effect, or the service suffers repetitively from high work-

load and resource competition. Accumulating the knowledge 

about past incidents can help improve the effectiveness and 

efficiency of incident management. If OCEs can quickly de-

termine that a new incident is similar to a previous one, then 

they will be able to quickly restore the service by leveraging 

the diagnosis effort of the previous one. SAS is targeted to 

accumulate the knowledge of past incidents by constructing a 

historical incident repository, and to leverage such knowledge 

to resolve new incidents. 

Supporting human-in-the-loop (HITL). SAS should pro-

vide flexible and intuitive user interfaces in order to enable 

OCEs to effectively and efficiently interact with the analysis 

results and the monitoring data. The diagnosis of a service 

incident is a complex decision-making process. Given the 

complexity and diversity of service incidents, it is too ambi-

tious and not realistic in practice to build and deploy a fully 

automatic diagnosis system in real production environments. 

Therefore, rather than making incident management fully au-

tomatic, we keep the OCEs in the loop to make decisions on 

the diagnosis and identification of restoration actions. Mean-

while, we fully utilize the power of data-analysis algorithms to 

provide as much information as possible to facilitate the deci-

sion making of the OCEs. 

B. Monitoring Data of Service X 

As introduced in previous sections, different types of data 

are collected in order to monitor the quality of Service X, as 

well as diagnosing service incidents. In this section, we dis-

cuss each type of the monitoring data in detail. We also ex-

plain how the quality of Service X is measured and how ser-

vice incidents are detected. 

Detecting incidents during service operation is often based 

on the Key Performance Indicators (KPI), such as the average 

request latency and request-failure rate. In the case of Service 

X, for each user request, the response time is recorded at the 

service side (as the request duration) along with the HTTP 

status code (http-status-code) of the response to the request. 

The http-status-code indicates the returned status of a given 

web request, e.g., 200 refers to “OK” and 500 refers to “Inter-

nal Server Error”. The duration indicates the total response 

time, e.g., duration>10 seconds indicates that the user has ex-

perienced very slow response. These two attributes are used to 

calculate the KPIs for Service X. Each KPI is calculated once 

per time epoch (i.e., 5 minutes in the system of Service X). For 

example, for each time epoch, the 95-percentile latency is cal-

culated based on the duration values of all requests within the 

time epoch. KPI values are monitored to provide an overall 

description about the health state of Service X from users’ 

perspective. In practice, the values of KPIs are checked against 

certain specified Service Level Objective (SLO). The SLO is 

defined to be the acceptable value ranges of KPIs. When Ser-

vice X is running, if a KPI’s value (e.g., average latency) vio-

lates the SLO, a KPI violation, i.e., service incident, is detect-

ed, and alerts are sent out to notify that the service is in a SLO-

violation state. The diagnosis of a service incident is to find 

out the problematic site that causes the service to violate the 

SLO. 

Besides KPIs, performance counters and system events, 

which are collectively named as system metrics, are also col-

lected for the diagnosis purpose. System metrics record the 

measurement results of the system, including the resource us-

age of processes and machines (e.g., the CPU utilization, disk 

queue lengths, and I/O operation rate), request workload (e.g., 

the number of requests), SQL-related metrics (e.g., the average 

SQL lock waiting time), and application-specific metrics (e.g., 

the cache hit ratio, the number of throttled requests). These 

metrics are collected via OS facilities (e.g., Windows Man-

agement Instrumentation (WMI)) and stored in a SQL data-

base. Similar to KPIs, each system metric is also aggregated 

over time epochs. For example, two metric values are calculat-

ed for the CPU-usage metric over an epoch: the average (or 

median) value and the maximum value of CPU usage within 

the epoch. There are more than 1200 different types of metrics 

collected in Service X. 

Another important type of data collected in Service X is 

transactional logs. Transactional logs are generated during 

system execution, and they record detailed information about 

the system’s runtime behaviors when processing user requests. 

Each log entry contains the following fields: the timestamp, 

request ID (TxID), event ID, and detailed text message. 

• A request ID is a Global Unique Identifier (GUID) 

representing a request instance. Service X can serve multiple 

requests simultaneously using concurrent threads. These 

threads write log entries to the same file as they execute, 

resulting in a log file with interleaving entries of different 

requests. The log entries can be grouped into different 

sequences using request IDs. In this way, each group represents 

the log sequence produced when serving a particular request. 

• An event ID is a unique identifier representing an 

event-logging statement in the source code. The event ID in a 

log entry indicates which logging statement prints out this entry. 

The event ID bridges the logs with the source code – given a 
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log sequence represented by a request ID, the execution path of 

modules and functions in the source code can be identified. 

Usually, different types of requests generate different log 

sequences due to different program logics. Sometimes the same 

type of requests can also generate different log sequences due 

to different input and configuration values, etc. 

After data preparation, we need to design a set of data-

driven analysis techniques targeting at the real scenarios in 

Service X. These techniques can automatically extract the in-

formation from the monitoring data and guide OCEs to find 

out the problematic site of an incident. 

IV. TECHNIQUES IN SAS 

A set of data-driven techniques for diagnosing service in-

cidents have been developed in SAS for incident diagnosis in 

Service X. Each of these techniques targets at a specific sce-

nario and a certain type of data. In this section, we briefly go 

through some analysis techniques designed for different types 

of data, along with the SAS user interfaces and deployment-

time feedback.  

Because poor predictions are produced by just directly ap-

plying standard classification algorithms or state-of-the-art 

information-retrieval techniques without considering charac-

teristics of logs in our scenario [11][12], we designed and ex-

tended our techniques based on carefully considering domain-

specific characteristics of software-generated data to achieve 

satisfying performance. 

A. Identification of Incident Beacons from System Metrics 

When engineers diagnose incidents of online services, they 

usually start from hunting for a small subset of system metrics 

that are symptoms incurred by the causes of the incidents. We 

name such kind of metrics as service-incident beacons. A ser-

vice-incident beacon is formed from a combination of metrics 

with unusual values that produce a symptom. It could help 

directly pinpoint the potential incident causes or could provide 

intermediately useful information leading engineers to locate 

the causes. For example, when a blocking and resource-

intensive SQL query blocks the execution of other queries 

accessing the same table, symptoms can be observed on moni-

toring data: the waiting time on the SQL-inducing lock be-

comes longer, and the event “SQL query time out failure” is 

triggered. Such metrics can be considered as incident beacons. 

There are more than 1200 system metrics in Service X. We 

developed an analysis technique that helped OCEs effectively 

and efficiently identify service-incident beacons from such 

huge number of system metrics.  

Our analysis technique consists of three steps. First, using 

anomaly detection, we discretize the values of system metrics 

to indicate normal or abnormal states of those metrics. The 

reason is that a service-incident beacon often has exceptionally 

high or low values that are significantly out of its normal value 

range during the period of the incident. Second, we apply cor-

relation analysis to identify incident beacons from suspicious 

metrics using the historical monitoring data. In particular, with 

the discretized metric values and the SLO states (indicating 

whether the SLO is violated or not) of a KPI in each epoch, we 

mine all the possible association rules between the abnormal 

metrics and the service violations by leveraging an algorithm 

for mining Class Association Rules (CARs) [17]. These mined 

CARs are stored as incident-beacon candidates for the diagno-

sis purpose. Third, given a newly detected service incident and 

its corresponding metrics and KPIs during the time period of 

the incident, we calculate the log likelihood for each CAR 

candidate obtained in Step 2 to assess how likely it is related 

to the underlying service incident. The metrics involved in the 

CARs with top rankings are provided as service-incident bea-

cons to the OCEs. The technical details of our analysis tech-

nique can be found elsewhere [12]. 

 

 

Figure 2. The recall results 

 

Figure 3. The precision results 

We tested some state-of-the-art algorithms proposed to 

solve similar problems [6][8][9], found that they did not work 

well for Service X because of the following two main charac-

teristics of incidents of Service X, and then designed our own 

analysis technique to deal with such characteristics. First, most 

incidents of Service X last less than 2 hours. Each incident 

contains only a small number of epochs. When a model is 

learned for each incident, the previously proposed learning 

algorithms [6][8][9] would suffer from the over-fitting prob-

lem due to the insufficient amount of training data. Our tech-

nique reduces the chance of over-fitting because incident bea-

cons are selected from the candidates that are significant rules 

mined out of the entire historical data set. Second, in practice, 

a false negative (i.e., a real incident beacon not being reported) 

can often incur high investigation cost for OCEs, because 

OCEs would have to go through all the metrics to find the rel-

evant ones. Unlike classification-based techniques that identify 

a single model [6][8][9] for each incident, our CAR-mining 

technique can discover all rules that satisfy given requirements 

including the minimal support, confidence, and lift values. 

Therefore, our technique can help reduce the false-negative 

ratio when there are coupling effects [12] in the underlying 

incidents. The profound differences between classification and 

association-rule mining [13] can help illustrate why a mining-

based technique works for Service X. 

0

20

40

60

80

100

0 5 10 15

re
ca

ll 
(%

)

Threshold of metric number

Ours
L1-LR

479



We evaluated our analysis technique using real data of 

Service X. For example, on a data set of 36 incidents, with 

nearly the same precision, our technique achieved a high recall 

(~90%) compared to the recall of ~60% obtained using L1-

Logistic Regression (in short as L1-LR, an algorithm in state-

of-the-art research [9]). Figures 2 and 3 show the recall and 

precision results, respectively, as we change the threshold of 

the number of selected metrics from 1 to 10. We can observe 

that our technique can achieve better recall and precision in all 

cases than the technique of L1-LR. In practice, a threshold of 5 

or 6 is a good choice. The characteristics of incidents of Ser-

vice X, such as the short-period violation and coupling effect, 

are common among many other online services. Therefore, our 

analysis technique can also be applied to other online services. 

B. Mining Suspicious Execution Patterns 

Besides system metrics, the transactional logs also provide 

rich information for diagnosing service incidents. When scan-

ning through the logs, OCEs usually look for a set of log 

events that show up together in the log sequences of failed 

requests but not in the ones of the succeeded requests. Such a 

set of log events are named as suspicious execution patterns. A 

suspicious execution pattern could be very simple, e.g., an 

error message that indicates a specific fault in the execution. It 

could also be a combination of log events of several operations. 

For example, a normal execution path looks like {task start, 

user login, cookie validation success, access resource R, do the 

job, logout}.  In contrast, a failed execution path may look like 

{task start, user login, cookie not found, security token rebuild, 

access resource R error}. The failure occurred because re-

source R cannot recognize the new security token when the 

old cookie was lost. The code branch reflected by {cookie not 

found, Security token rebuild, access resource X error} indi-

cates a suspicious execution pattern. 

As discussed in previous sections, a huge number of logs 

are generated at any time when Service X is running. It is crit-

ical to automatically identify suspicious execution patterns in 

order to free OCEs from manually scanning the logs. We pro-

pose a mining-based technique to automatically identify suspi-

cious execution patterns. The basic idea behind our technique 

is that, given a set of logs for failed requests and succeeded 

requests, respectively, execution patterns shared by more 

failed executions and fewer succeeded executions are more 

suspicious than others. The details of our technique can be 

found elsewhere [11]. Our technique mainly consists of two 

steps.  

First, we mine execution patterns by modeling the 

trunk/branch relations of program-execution paths with a For-

mal Concept Analysis (FCA) [2] technique. Given a set of 

transactional logs, we treat each request as an object, the set of 

events (corresponding to this request) as attributes, and then 

we apply FCA to obtain a lattice graph. Each node in the graph 

is a concept. Each concept, denoted as c, contains two ele-

ments: intent and extent.        (denoting the intent of con-

cept c) is an event set, and Ext(c) (denoting the extent of con-

cept c) is a request set. In the graph, each parent concept con-

tains the common path of its children, and each child concept 

contains a different branch structure in code paths. Then, we 

further extract a complementary set                   (the 

log events that are in node c but not in node p) for every par-

ent-child node pair (p, c) in the graph. All extracted comple-

mentary sets     are stored as candidates of suspicious execu-

tion patterns for further evaluation. 

Second, we use a score named as Delta Mutual Infor-

mation (DMI) to measure the suspicious level of each execu-

tion pattern. DMI is defined as                  

 (    ) , where         and  (    )  represent mutual 

information defined on    (a Boolean random variable defined 

on concept c, with the variable value as 1 if the request be-

longs to        and as 0 otherwise) and Y (the fail/success 

status of a given request, e.g., 1 if the request is failed). Theo-

retical analysis has shown that DMI can properly measure the 

contribution of ∆Es for failure correlation [11]. By walking 

through all edges in the lattice graph, we select all     as sus-

picious execution patterns if each of them has a large DMI 

value, and then present them to OCEs for diagnosis. 

In the practice of Service X, several patterns appeared in 

incidents in long term, such as ones related to SQL timeout or 

user-authentication rejection. Some patterns were live in short 

term, specific to some versions of software, or improper con-

figurations; these patterns disappeared after software upgrade. 

C. Detection of Malfunctioned Role Instance 

In addition to analyzing the system metrics and transac-

tional logs, based on the characteristics of the system architec-

ture of online services, we also developed a statistics-based 

technique to help with incident management.   

As discussed in Section II, usually there are multiple server 

roles in a large-scale online service system, e.g., front end 

server and SQL server. There are often a number of instances 

for each role running on different servers, under the control of 

a load balancer that distributes the workload among the peer 

instances. The configurations of these peer servers with the 

same role are usually homogeneous for simplicity and robust-

ness. Therefore, when the service is at a healthy state, different 

instances of the same role should have similar behaviors. If the 

behavior of one instance deviates far from its peer instances, 

then this instance is likely to act in an abnormal state. Such 

behavioral differences can help us quickly detect the instances 

of malfunctioned server roles. 

The detection algorithm consists of two steps. First, a met-

ric (denoted as  ) reflecting the health state of a role is select-

ed, and its values are monitored for each role instance. For a 

specific role, we calculate its values across all the instances in 

the time epoch of investigation, and learn a probabilistic mod-

el from the calculated metric values. In SAS, for simplicity, 

we use Gaussian distribution        to model the metric. The 

parameters       are estimated using a robust estimation 

method to reduce the interference of outliers: 

{
           

              |   |     
 

Second, we identify the role instances whose correspond-

ing metric values are far from the distribution       . 
In SAS, we use the preceding technique to detect the mal-

functioned instances of three roles: the front end server, appli-
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cation server, and SQL server. This technique is simple, and 

yet we have found it highly effective in real practice. It can 

often locate the problematic servers with high accuracy, thus 

effectively narrowing down the investigation scope for OCEs. 

This technique is not limited to Service X, being general and 

applicable to common online services. 

D. Leveraging Previous Effort for Recurrent Incidents 

Similar incidents may reoccur due to reasons discussed in 

Section III-B. Therefore, leveraging the knowledge from past 

incidents can help improve the effectiveness and efficiency of 

incident management. The key here is to design a technique 

that automatically retrieves the past incidents similar to the 

new one, and then proposes a potential restoration action 

based on the past solutions.  

Incident retrieval. There is rich information associated 

with each service incident, e.g., timestamp, monitoring data, 

and text describing the symptoms, diagnosis, taken actions, 

and results, etc. The monitoring data is the most important 

because it faithfully reflects the states of the service system 

during the incident. Therefore, we use the monitoring infor-

mation to derive signatures to represent the incidents for the 

retrieval purpose. Using the technique discussed in Section IV, 

we mine out the suspicious execution patterns in transactional 

logs, and use such patterns as signatures for each incident.  

Then we define a similarity metric to compare a new inci-

dent to past ones. We treat each incident as a document, each 

execution pattern as a term, and the corresponding DMI score 

as the weight of the term. We then use the Generalized Vector 

Space Model [22] to calculate the similarity of two incidents. 

 HEALING ACTIONS TABLE I. 

 

Healing-action adaptation. According to our empirical 

study of healing actions in the incident repository, we find that 

most healing actions can be formatted as a tuple <verb, target, 

location>, where “verb” denotes an action and “target” denotes 

a component or service. Table 1 shows all “verbs” and “targets” 

in SAS. When we retrieve a similar historical incident, we 

extract the verb and target from its description text. For exam-

ple, we extract “reboot” as the verb and “SQL server” as the 

target from the description “We found few SQL servers with 

high memory usage and few servers were not able to connect 

through SSMS. Availability is back up after rebooting these 

SQL machine SQL32-003”. We determine the location using 

the technique that detects the malfunctioned server role.  

Evaluation. We have evaluated the effectiveness of our 

technique using the “leave-one-out” strategy based on 77 real 

incidents of Service X. These cases are grouped into 8 catego-

ries; we measure the accuracy of our technique’s effectiveness 

in suggesting a correct healing action for each “new issue” 

(i.e., the one that is left out during “leave-one-out”). Both the 

two results show that our approach is effective. The average 

accuracy of top-1 recommendation is 0.90. More detailed re-

sults including the ROC curves of our technique can be found 

elsewhere [11]. 

E. Usability 

As a practical tool, making the analysis results actionable 

and understandable to OCEs is very important. Otherwise, the 

tool would not make real impact or be widely used by OCEs. 

 

 

Figure 4. An example analysis report 

One pain point of the OCEs is to sift through a huge 

amount of monitoring data when working on a service incident. 

To address such pain point, we defined two design rationales 

for presenting the analysis results in SAS: conciseness and 

comprehensiveness. Based on the results generated using dif-

ferent analysis techniques, SAS can automatically compose an 

analysis report using a predefined decision tree. This report 

serves as the primary form of presentation for SAS to com-

municate its analysis results to OCEs. As shown in Figure 4, 

the report is concise, and yet contains comprehensive infor-

mation about the underlying incident. The report has three 

parts. It first provides information on the impact of the inci-

dent, e.g., the number of failed user requests and the number 

of impacted users. Such information helps the OCEs to assess 

the severity of the incident. The second part of the report pro-

vides information for assisting effective diagnosis including 

the summary of the underlying issue (if found), a list of similar 

incidents in the past, and links to the detailed diagnosis results 

of each type of the monitoring data. This report provides an 

easy and systematic way for service engineers to consume the 

analysis results, and thus greatly improves the usability of 

SAS. For example, OCEs can quickly get an overview of the 

incident and understand what was going on during the period 

of the incident. They can also obtain detailed information for 

further investigation through a single mouse click. The third 

part of the report recommends service-recovery actions 

adapted from those for similar incidents in the past. For exam-

ple, in Figure 4, the suggested action is to reset the IIS on a 

specific front end server. 

verb target verb target

recycle App-pool re-image WFE

restart IIS or Service rotate WFE

reboot WFE rotate SQL

reboot SQL patch WFE

reset DB patch SQL

There is an internal server error related issue. 

Datacenter: DC1 

Start time: 9/4/2012 3:48:00 AM End time: 9/4/2012 3:58:00 AM 

Impact: 

Influenced requests 1000 

Influenced end users 100 

 

Diagnosis: 

This issue is a problem of “Credential loss”. The source of the issue mainly locates at Front End Server—

“FE001”. 

Here are similar previous occurrences of the issue: 

 Incident ID 91236: 3/14/2012 10:49:00 AM (see detail) 

 Incident ID 91271: 7/26/2012 14:25:00 AM (see detail) 

See also: 

Malfunctioned Frontend Servers    973 of 1000 failed requests related to FE001. 

 Malfunctioned SQL Servers No malfunctioned SQL servers detected. 

Suspicious Metrics No highly correlated metrics found. 

 Suspicious Execution Patterns 1 major pattern in the logs covers 973 of 1000 failed requests. 

 

Suggested actions based on similar past incident (ID 91236): 

Reset the IIS service on the front end server FE001. 
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In addition, we present the results of suspicious execution 

patterns in an easy-to-understand way in SAS. Many terms in 

the machine-learning and data-mining areas are not easily ac-

cessible to OCEs. For example, many OCEs are not familiar 

with execution patterns or FCA. In SAS, we use a UI to high-

light the common difference between logs of succeeded and 

failed requests, and facilitate OCEs to intuitively manipulate 

the log sequences for understanding the contribution of differ-

ent log messages to the failure. 

F. Deployment and Feedback 

SAS was first deployed to the datacenters of Service X 

worldwide in June 2011. The OCEs of Service X have been 

using SAS for incident management since then. Now, they 

heavily depend on SAS. Because of its importance for Service 

X, we were required to make sure the high availability of SAS. 

However, in practice, it is very difficult to estimate how much 

OCE time a tool helps save. In order to assess the impact of 

SAS in practice, we have instrumented SAS and started to 

collect its usage data since 2012. The usage data records all 

the interactions between users and SAS. Based on the usage 

data, we can answer questions such as “who uses which analy-

sis module at what time on what data?” 

According to the usage data from a 6-month study, about 

91% of OCEs used SAS to accomplish their incident-

management tasks. SAS was used to diagnose about 86% of 

service incidents. Along with engineers from Service X teams, 

we investigated whether the analysis results of SAS were use-

ful for diagnosing an incident. The ground truth is set up ac-

cording to the product-ticketing system. In particular, for each 

service incident, a ticket is created in the ticketing system to 

record the detailed information of the diagnosis process of the 

service incident including symptoms, email threads, diagnosis 

results, and recovery actions. We use the recorded tickets as 

the ground truth, and compare them with our analysis results 

to conduct the evaluation. The results are considered useful if 

(1) they can directly help locate the cause of the incident; (2) 

they can locate the malfunctioned component; or (3) they can 

find out the problematic site to help OCEs to reduce their in-

vestigation scope. The data in these 6 months shows that SAS 

helped diagnose about 76% of the service incidents that SAS 

was used for.  

There are two main reasons why SAS failed to provide 

useful diagnosis information for the remaining 24% service 

incidents. First, sources of incident causes were not covered by 

the monitoring system. For example, in the production envi-

ronment of Service X, several incidents were caused by a mal-

functioned Active Directory (AD) controller. Since no moni-

toring information was collected on AD servers back then, 

SAS could not provide useful clues for diagnosis. Second, 

there are inconsistencies and errors in the transactional logs. 

Such factor may impact the precision of our incident retrieval 

algorithm.  

In summary, with the techniques of data analysis, SAS 

tackled challenges in practice, and it helped OCEs of Service 

X improve their effectiveness and efficiency of incident man-

agement. We expect that the analysis techniques and design 

principals of SAS can be applied to other online services. 

V. RELATED WORK 

Previous work applies statistical-analysis techniques (i.e., 

machine learning and data mining) to tackle the scale and 

complexity challenges in incident management. We discuss 

related work in three categories. 

Incident-beacon identification. Previous work 

[6][8][9][15][24] mainly focused on finding suspicious system 

metrics that may be related to the incident under investigation. 

Given the data of system-SLO states (violation or compliance) 

and system metrics, Cohen et al. [6][8][15][24] proposed the 

Tree-Augmented-Network (TAN) approach to deduce a TAN 

model, which uses a few system metrics to predict system-

SLO states. Their approach identifies the metrics used by the 

deduced TAN model as service-issue beacons. Bodik et al. [6] 

adapted their approach by adopting a different model, named 

as L1-Logistic Regression, to identify highly correlated met-

rics more accurately. However, these previous classification-

based approaches [6][8][9][15][24] usually analyze each per-

formance issue one by one, and have a number of limitations 

(suffering from the over-fitting problem when learning a clas-

sifier for a performance issue with short duration, identifying 

only general symptoms as incident beacons, etc.)[12]. Our 

techniques in SAS tackle these problems by mining CARs 

from historical data, and then selecting the best ones from the 

candidates by matching them with the performance issue un-

der investigation. 

Known-incident association. As discussed earlier, associ-

ating a newly incoming incident with a previous known inci-

dent is very useful in incident management. Yuan et al. [23] 

used classification techniques to classify system problems into 

different categories. However, in real practice, classification-

based techniques are often not applicable due to lack of la-

beled samples. In addition, a classification-based technique 

often cannot check whether an incident is a totally new one or 

similar to a previous one. Previous work [6][8][9][15][24] 

retrieved similar previous incidents by defining similarity 

based on the beacons of incidents (those beacons are used as 

incident signatures). Another set of research efforts in the area 

of mining bug repositories is also related to our known-

incident association technique. The basic idea of such scenario 

is to apply web-search techniques on a bug repository where 

each bug report is considered as a web document. Ashok et al. 

[5] implemented a search system for similar-bug retrieval to 

speed up bug fixing based on the natural-language text, 

dumped traces, and outputs described in the bug reports. Some 

other work [20][21] uses mining or classification techniques 

on textual information to cluster or detect duplicate bug re-

ports. These techniques would not be effective in our problem 

setting because the textual information is a much weaker rep-

resentation of an incident compared to the monitoring data 

associated with the incident. Furthermore, the textual infor-

mation is also incomplete or imprecise [11]. Different from the 

previous work, we extract incident signatures by analyzing the 

difference between the logs of failed requests and succeeded 

requests. In SAS, we go further to provide healing suggestions 

by leveraging the solutions of previous incidents in the inci-

dent repository.  
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Fault localization. Automated localization of faults/bugs is 

a major research area in software engineering. Two kinds of 

localization techniques are used in SAS. The basic idea of our 

technique for execution-pattern mining is similar to previous 

work [18][20] in that we all leverage the differences between 

the logs of failed and succeeded requests. Sun et al. [20] eval-

uated patterns mined from both correct and incorrect runs to 

detect duplicate bug reports. Our work uses contrast infor-

mation to achieve high accuracy of signature generation. Cel-

lier [7] applied FCA to fault localization by using concepts to 

find interesting clusters. In contrast to these previous tech-

niques on fault localization, our work is motivated by address-

ing challenges of incident management. 

The above-discussed previous work focused on developing 

techniques for a single type of data sources, and none of them 

has been deployed to a real-world online service system. In 

our work, we conducted comprehensive analysis on various 

monitoring-data types to handle real-world problems, and de-

veloped the SAS system, which has been used in real produc-

tion environments. 

VI. LESSONS LEARNED 

We started the project on data-driven performance analysis 

for online services in 2010. It took us two years to conduct 

algorithm research, build the diagnosis system, and make the 

system an indispensable system for the engineering team of 

Service X. In this section, we share some of our experiences 

and the lessons learned along the way. 

A. Solving Real Problems 

Solving real problems is one of the key factors to the suc-

cess of SAS. We did not, however, take the problem-driven 

approach right at the beginning of the project, and we learned 

the lesson the hard ways. 

When we first knew about the various challenges of Ser-

vice X, we went on the usual research route looking into the 

research literature on existing work to understand state-of-the-

art techniques in the area. We found that using a machine-

learning technique to classify, retrieve, and predict service 

violations had been an interesting topic, and a classification-

based technique was the mainstream solution. We analyzed the 

pros and cons of several popular classification-based tech-

niques, implemented, and tested them using the real data that 

we obtained from Service X. However, the results were not 

satisfactory as discussed in Section IV-A; therefore, we decid-

ed to research on this topic in order to improve the recall and 

precision. We spent a few months along this direction and did 

get better results later.  

We presented to the engineering team from Service X the 

improvements that we made over the state-of-the-art tech-

niques, and we got feedback such as “interesting”, “good”, and 

“useful”, as well as questions and comments such as “this 

technique alone cannot solve our problems”, and “do you guys 

look at logs as well?”, “How can you help find the root 

cause?”, etc. It was then when we realized that we missed two 

important issues. One was that there were other data sources 

(e.g., service logs) that were important for analyzing service-

quality issues but we did not leverage. The other was that the 

problem that we worked on was important, but it may not be 

the most important one and it was not the whole problem. 

Since we had a real system running, and there were practi-

tioners who faced real challenges and were willing to talk with 

us, we decided to reset the project and take a problem-driven 

approach in order to ensure that our research would address 

the real problems. After a few rounds of communication with 

the Service X teams, we clearly identified that the top priority 

for Service X at that time was to greatly reduce the Mean-

Time-To-Restore (MTTR), and the primary challenges includ-

ed dealing with large-scale and heterogeneous data, and lever-

aging disaggregated knowledge learned from past incidents, 

etc. Based on these challenges and real-world scenarios, we 

formulated the incident-management problem of online ser-

vices as a software-analytics problem, and researched and de-

veloped SAS as discussed in the previous sections. 

B. Improving Techniques in Practice 

Robustness. In a large-scale online-service system, data 

missing and noise can be common. In the design of techniques, 

much effort was spent on tuning the underlying algorithms to 

make them robust in the real scenarios. For example, in order 

to improve the robustness of our algorithm of malfunctioned-

role detection, median values and Medians of Absolute Differ-

ence (MAD) are used to estimate the Gaussian parameters. In 

addition, during the detection stage, we use Bayesian inference 

by setting a low a-prior failure probability (e.g., 1e-5), which 

can largely reduce the rate of false positives. In our execution-

pattern analysis, each execution pattern is represented by a 

sub-set of log events rather than a sub-sequence of log events 

to improve algorithm robustness. Because many distributed-

system components serve a single user request collaboratively 

and their log events may be disordered due to machine-time 

bias, an algorithm based on execution patterns with temporal 

sequential events is not robust enough in practice. In addition, 

our empirical study shows that an event set is an effective ab-

straction for our problem context (similar observations were 

also made by Cellier [7]). 

Performance. In addition to the enabling algorithms for 

analyzing the large-scale and heterogeneous data, performance 

plays an important role in the adoption of SAS in practice. In 

order to speed up the investigation of service incidents, OCEs 

need to obtain relevant information as quickly as possible. We 

paid a lot of attention to ensure high performance when de-

signing and implementing SAS.  

In order to enable real-time analysis leveraging historical 

data, we designed a background service to incrementally pro-

cess new generated data as it came in, and save the intermedi-

ate results for on-demand analysis later on. Our service runs 

once every 5 minutes, collects the metric data newly generated 

during the past 5 minutes, calculates the KPIs and metric val-

ues from the data, and runs some analysis modules. For exam-

ple, the first two steps of the technique for identifying incident 

beacons (see Section IV-A) run as a part of the background 

service to learn a set of CARs incrementally. The learned 

CARs are stored as intermediate results, and then are used 

later for on-demand analysis. On the contrary, the third step is 

often run on demand. When an OCE tries to investigate a ser-
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vice incident, he/she often selects the time period of the inci-

dent for analysis through the UI of SAS, and lets SAS run the 

third step of the technique on the metrics for the time period 

under investigation. Because the third step does not require 

heavy computation, an OCE can obtain incident beacons im-

mediately. 

We also have some special designs in the module of execu-

tion-pattern analysis to improve the performance. First, we 

automatically cache log sequences of a few succeeded requests 

in a local file, and update the cache every day in the back-

ground service. Doing so can help speed up the on-demand 

analysis by reducing the data-fetching time. Second, during 

the on-demand analysis, we select a 20-minute time window 

where the service has the worst performance among the time 

range of the incident under investigation, and use only the 

failed requests in the window for analysis to reduce the com-

putational cost of execution-pattern analysis. Such design can 

largely improve the interactivity of SAS. When an analysis 

step did take a relatively long time, e.g., a few seconds, related 

information would be displayed to notify users on what analy-

sis was running along with its progress. 

C. Availability 

Besides the interactivity and the performance, high availa-

bility is also very important for a tool designed for online ser-

vices. When a service incident occurs, OCEs need to use the 

tool for investigating and resolving the incident as quickly as 

possible. If the tool is unavailable at that time, OCEs have to 

spend extra time to restore the tool or to investigate the inci-

dent through other ways (e.g., manually inspecting the instru-

mented data). Therefore, it is important to guarantee the high 

availability of SAS. In order to improve the robustness of SAS, 

the background service of SAS is designed to be auto-

recoverable from failures. For example, there are a set of 

check points in the service code. At each check point, we veri-

fy the states of the service, and record the states and all inter-

mediate results in files. When the service fails, it is restarted 

automatically by the operating system, and then, it recovers its 

states from the latest check-point files. During the past year, 

we encountered one case: we were called in during a mid-

night to fix a SAS issue because OCEs were unable to get the 

latest analysis report from SAS; such issue was caused by that 

the account used for SAS was deleted by an operator by mis-

take. 

D. Investing in System Building 

In addition to conducting algorithm research, we also built 

the entire SAS system, which was deployed in the datacenters 

of Service X worldwide. The engineering cost in building such 

a system was not low. We did not build SAS to its current 

state all at once. Instead, we took a step-by-step way and add-

ed functionalities incrementally. Doing so did not only help 

pave the way to creating real impact in three main ways (as 

discussed below), but also helped us maintain the engineering 

investment within the manageable scope. 

First, having a working system helped demonstrate the re-

search value and built trust with the product-team partners. 

Usually, product teams are under tight schedule and they 

would not have cycles for “distractions” once they are in the 

full development mode. In the case of providing online ser-

vices, they are quite sensitive about deploying systems or tools 

that consume resources in datacenters and might impact the 

services in any way. Considering these practical issues, we 

built SAS v1.0 with the primary functionality of discovering 

problematic execution patterns associated with the given ser-

vice incident by analyzing the service logs. This functionality 

greatly reduced the scope of log investigation from thousands 

of lines of logs to just tens of lines. We first demonstrated the 

effectiveness of SAS using historical logs. Then we got the 

permission to run it within the internal deployment environ-

ment of Service X. This step was critical because SAS was 

made available for the first time to the teams of Service X for 

troubleshooting, and this step demonstrated that running SAS 

had negligible impact on Service X. After SAS v1.0 was used 

to help troubleshoot some incidents, we got the permission to 

deploy it to the production environment of one datacenter. The 

success there created the demand of worldwide deployment 

into all datacenters. 

Second, a working system helped us get timely feedback. 

The feedback allowed us to observe the troubleshooting expe-

riences of service engineers, and it helped us understand how 

well the service engineers used SAS. At the same time, we 

instrumented SAS to collect how service engineers used it in 

the real settings. This data provided quantitative metrics for us 

to measure the impact of our work. The investigation on why 

SAS was not used for or could not help with certain incidents 

could lead to new research problems. 

Third, a working system helped us build up credibility and 

bring in more research opportunities. As more and more teams 

came to know the success of SAS, they started to come to us 

with their own problems. Some of them were similar to the 

challenges of Service X and the others were different. For the 

similar problems, we could easily reuse the analysis tech-

niques and modules that we built for SAS. Therefore, the en-

gineering investment really paid off, and it would pay off more 

as components in SAS got (re)used more. The different prob-

lems provided new opportunities for us to explore the online 

service landscape. 

VII. CONCLUSION 

Incident management has become a critical task for an 

online service to ensure high quality and reliability of the ser-

vice. However, incident management faces a number of signif-

icant challenges such as the large data scale, complex problem 

space, and incomplete knowledge. To address these challenges, 

we developed an industrial system called SAS based on a set 

of data-driven techniques to improve the effectiveness and 

efficiency of incident management in a large-scale online ser-

vice of Microsoft. In this paper, we have shared our experi-

ence on incident management for the large-scale online service 

including the way of using software analytics to solve engi-

neers’ pain points in incident management, the resulting indus-

trial system, and the lessons learned from the process of re-

search development and technology transfer. 
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