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State of 𝑁 interacting qubits: ~ 2𝑁 bits of info!

Simulating 250 interacting qubits 
requires ~ classical bits!
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Can quantum chemistry be performed on a small quantum 

computer: Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. 

Hastings, Matthias Troyer

As quantum computing technology improves and quantum 

computers with a small but non-trivial number of N > 100 qubits 

appear feasible in the near future the question of possible 

applications of small quantum computers gains importance. One 

frequently mentioned application is Feynman's original proposal of 

simulating quantum systems, and in particular the electronic 

structure of molecules and materials. In this paper, we analyze the 
computational requirements for one of the standard algorithms to 

perform quantum chemistry on a quantum computer. We focus on 

the quantum resources required to find the ground state of a 

molecule twice as large as what current classical computers can solve 

exactly. We find that while such a problem requires about a ten-fold 

increase in the number of qubits over current technology, the 

required increase in the number of gates that can be coherently 

executed is many orders of magnitude larger. This suggests that for 

quantum computation to become useful for quantum chemistry 

problems, drastic algorithmic improvements will be needed. 

http://arxiv.org/abs/1312.1695

Improving Quantum Algorithms for Quantum Chemistry: M. B. 

Hastings, D. Wecker, B. Bauer, M. Troyer

We present several improvements to the standard Trotter-Suzuki 

based algorithms used in the simulation of quantum chemistry on 

a quantum computer. First, we modify how Jordan-Wigner 

transformations are implemented to reduce their cost from linear 

or logarithmic in the number of orbitals to a constant. Our 

modification does not require additional ancilla qubits. Then, we 

demonstrate how many operations can be parallelized, leading to 

a further linear decrease in the parallel depth of the circuit, at the 
cost of a small constant factor increase in number of qubits 

required. Thirdly, we modify the term order in the Trotter-Suzuki 

decomposition, significantly reducing the error at given Trotter-

Suzuki timestep. A final improvement modifies the Hamiltonian to 

reduce errors introduced by the non-zero Trotter-Suzuki timestep. 

All of these techniques are validated using numerical simulation 

and detailed gate counts are given for realistic molecules.  

http://arxiv.org/abs/1403.1539
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The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry

David Poulin, M. B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doherty, Matthias Troyer

The simulation of molecules is a widely anticipated application of quantum computers. However, 

recent studies \cite{WBCH13a,HWBT14a} have cast a shadow on this hope by revealing that the 

complexity in gate count of such simulations increases with the number of spin orbitals N as N8, 

which becomes prohibitive even for molecules of modest size N∼100. This study was partly based on 

a scaling analysis of the Trotter step required for an ensemble of random artificial molecules. Here, 

we revisit this analysis and find instead that the scaling is closer to N6 in worst case for real model 

molecules we have studied, indicating that the random ensemble fails to accurately capture the 

statistical properties of real-world molecules. Actual scaling may be significantly better than this due 
to averaging effects. We then present an alternative simulation scheme and show that it can 

sometimes outperform existing schemes, but that this possibility depends crucially on the details of 

the simulated molecule. We obtain further improvements using a version of the coalescing scheme 

of \cite{WBCH13a}; this scheme is based on using different Trotter steps for different terms. The 

method we use to bound the complexity of simulating a given molecule is efficient, in contrast to the 

approach of \cite{WBCH13a,HWBT14a} which relied on exponentially costly classical exact simulation. 

http://arxiv.org/abs/1406.4920

On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, Nathan Wiebe

Although the simulation of quantum chemistry is one of the most anticipated 

applications of quantum computing, the scaling of known upper bounds on the 

complexity of these algorithms is daunting. Prior work has bounded errors due to 

Trotterization in terms of the norm of the error operator and analyzed scaling with 

respect to the number of spin-orbitals. However, we find that these error bounds can 

be loose by up to sixteen orders of magnitude for some molecules. Furthermore, 

numerical results for small systems fail to reveal any clear correlation between ground 

state error and number of spin-orbitals. We instead argue that chemical properties, 
such as the maximum nuclear charge in a molecule and the filling fraction of orbitals, 

can be decisive for determining the cost of a quantum simulation. Our analysis 

motivates several strategies to use classical processing to further reduce the required 

Trotter step size and to estimate the necessary number of steps, without requiring 

additional quantum resources. Finally, we demonstrate improved methods for state 

preparation techniques which are asymptotically superior to proposals in the 

simulation literature. 

http://arxiv.org/abs/1410.8159

Ferredoxin (𝐹𝑒2𝑆2) used in many metabolic reactions 

including energy transport in photosynthesis

 Intractable on a classical computer

 Assumed quantum scaling: ~24 billion years (𝑁11 scaling)

 First paper:      ~850 thousand years to solve (𝑁9 scaling)

 Second paper: ~30 years to solve (𝑁7 scaling)

 Third paper:    ~5 days to solve (𝑁5.5 scaling)

 Fourth paper: ~1 hour to solve (𝑁3, 𝑍2.5 scaling)



𝐻2 𝐻𝐹 𝐻2𝑂 𝑁𝐻3

𝐶𝐻4 𝐻𝐶𝑙 𝐹2 𝐻2𝑆

Geometries and molecular models from http://www.colby.edu/chemistry/webmo/
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LIQ𝑈𝑖|〉

SoL𝑖|〉 and QCoDeS

http://StationQ.github.io/Liquid
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Mourik, … Kouwenhoven 2012

http://arxiv.org/abs/1204.2792

• Build experiment as 

described

• Measure zero-bias peak

• See that it goes away if we 

remove any of the necessary 

components





Growth by Diana Car,  Sébastien Plissard and Erik 
Bakkers
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From: Nick Bonesteel talk at KITP UCSB



After Hyart et al 2013 
http://arxiv.org/abs/1303.4379
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• Mott Insulators

• Transition Metal Compounds 

• Cuprates (e.g., High Tc SC)

• Lanthanides and Actinides

• Kondo Physics (Low temperature 

Resistance) from Magnetic 

Impurities

• Quantum Dots



𝐻𝑖𝑚𝑝 = 𝑈𝑛↑𝑛↓ − Σ𝑘,𝜎 𝑡𝑘𝑐𝜎
†

𝑎𝑘,𝜎
𝑏𝑎𝑡ℎ + ℎ. 𝑐. + 𝐻𝑏𝑎𝑡ℎ

𝑡𝑘

𝐻𝑏𝑎𝑡ℎ

𝑈

• Solids have regular structure that can be 

modeled as lattices

• The Hubbard model only implements 𝐻𝑝𝑝

and 𝐻𝑝𝑞𝑞𝑝 terms

• This doesn’t cover many of the materials 

we’re interested in

• One can choose a single site in the lattice to 

model

• The effect of the rest of the lattice can be 

modeled in terms of its effect on this site

𝐻ℎ𝑢𝑏 = 𝑈Σ𝑖𝑛𝑖↑𝑛𝑖↓ − 𝑡Σ<𝑖,𝑗>,𝜎𝑐𝑖𝜎
†

𝑐𝑗𝜎

𝑈

𝑡
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Quantum

Classical

ModelFeedback

http://arxiv.org/abs/1012.3609

𝐺𝑛 𝜔 → Δ𝑛(𝜔)

𝐺𝑠𝑜𝑙𝑣𝑒𝑟(𝜔)= ⟨ 𝑐𝑖
†

𝜔  𝑐𝑗 −𝜔 ⟩

𝐺𝑠𝑜𝑙𝑣𝑒𝑟 𝜔 → ∑ 𝜔 → 𝐺 𝑘, 𝜔 →



, the diagram

𝑮𝒊𝒎𝒑 𝜔 −1 = 𝜔 + 𝜇 + 𝑖0± 𝑺 − 𝒉𝒊𝒎𝒑 − 𝚺 𝜔 − 𝚫 𝜔

Mott Insulator

Spin Freezing

HF Solution

http://arxiv.org/abs/1012.4474



• Good

• Bad

http://arxiv.org/abs/1012.3609
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Gates Samps/Pt Samps Evals Energy Overlap Error Hours

1000 91680 4.64E+07 506 -8.40204553 0.97616926 0.07625777 6.4

Measures 89395 4.52E+07 506 -8.44653127 0.98536880 0.03177203 6.3

5 86170 4.36E+07 506 -8.43120304 0.98722563 0.04710026 6.1

Speed 91652 4.64E+07 506 -8.45373504 0.98680546 0.02456826 6.4

1.00E-07 77749 3.93E+07 506 -8.32567973 0.97155555 0.15262357 5.5

eGS 92597 4.69E+07 506 -8.43120606 0.98206797 0.04709724 6.5

-8.4783 92404 4.68E+07 506 -8.42695124 0.98382985 0.05135206 6.5

53207 2.69E+07 506 -8.38545966 0.96754805 0.09284364 3.7

86289 4.37E+07 506 -8.44177206 0.99095627 0.03653124 6.1

89696 4.54E+07 506 -8.43294365 0.98231876 0.04535965 6.3

Average 85084 4.31E+07 506 -8.41775273 0.98138456 0.06055057 6.0



SoL

300 Kelvin - Room

SoL𝑖|⟩

77K-Nitrogen

.02K-𝑯𝒆𝟑/𝑯𝒆𝟒

4K-Helium

CPU Memory

CMOS

CPU Memory

Control Qubits

Quantum

Superconducting
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Op.Unitary

CR Control1 R

QFT

H

CR

• Unitary Operations are defined by their 

matrices

• Meta-operations (control, adjoint) 

understand how to re-write the AST 

(including the classical generators)

• Joint Measurement is a fundamental 

operation (depends on Machine Model 

for implementation)

• Target code will be unrolled at the 

discretion of the target Machine Model

• Adjoint QFT will reverse the code 

order, run the loops backwards and 

adjoint all the unitary operations



• The compiler front end maps the quantum 

algorithm to “quantum intermediate 

language” (QIL) 

• The back end rewrites the QIL for execution on 

actual hardware

• Different quantum computers will require 

different rewrites of the original QIL

• We have designed and built a layered 

architecture to support flexible rewriting

H

CR



Where we are now:

- Igor (based on Alex Johnson code circa 2002)

- QTLab (Delft Python package circa 2008)

- LabVIEW + Mathematica

- MATLAB (various ad-hoc efforts)

- Some other lightweight Python code

QCoDeS



data2 = Loop(c1[-15:15:1], 0.1).each(
Task(c0.set, -10),
qubit1.t1,
fridge.mc_temp,
Loop(c0[-15:15:1], 0.01).each(meter.amplitude),
Task(c0.set, -10),
Wait(0.1),
Loop(c2[-10:10:0.2], 0.01),
Task(c2.set, 5)

).run()

data = Loop(c0[-20:20:0.1], 0.1).run()

QCoDeS



http://StationQ.com

http://StationQ.github.io/Liquid


