

Hours (on Cray XE6)

State of 𝑁 interacting qubits: ~ 2𝑁 bits of info!

Simulating 250 interacting qubits
requires ~ classical bits!

RSA-2048

Challenge

Problem

Number of bits N

T
im

e
 t

o
 F

a
c
to

r
N

-b
it

 N
u

m
b

e
r

LIQ

Can quantum chemistry be performed on a small quantum

computer: Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B.

Hastings, Matthias Troyer

As quantum computing technology improves and quantum

computers with a small but non-trivial number of N > 100 qubits

appear feasible in the near future the question of possible

applications of small quantum computers gains importance. One

frequently mentioned application is Feynman's original proposal of

simulating quantum systems, and in particular the electronic

structure of molecules and materials. In this paper, we analyze the
computational requirements for one of the standard algorithms to

perform quantum chemistry on a quantum computer. We focus on

the quantum resources required to find the ground state of a

molecule twice as large as what current classical computers can solve

exactly. We find that while such a problem requires about a ten-fold

increase in the number of qubits over current technology, the

required increase in the number of gates that can be coherently

executed is many orders of magnitude larger. This suggests that for

quantum computation to become useful for quantum chemistry

problems, drastic algorithmic improvements will be needed.

http://arxiv.org/abs/1312.1695

Improving Quantum Algorithms for Quantum Chemistry: M. B.

Hastings, D. Wecker, B. Bauer, M. Troyer

We present several improvements to the standard Trotter-Suzuki

based algorithms used in the simulation of quantum chemistry on

a quantum computer. First, we modify how Jordan-Wigner

transformations are implemented to reduce their cost from linear

or logarithmic in the number of orbitals to a constant. Our

modification does not require additional ancilla qubits. Then, we

demonstrate how many operations can be parallelized, leading to

a further linear decrease in the parallel depth of the circuit, at the
cost of a small constant factor increase in number of qubits

required. Thirdly, we modify the term order in the Trotter-Suzuki

decomposition, significantly reducing the error at given Trotter-

Suzuki timestep. A final improvement modifies the Hamiltonian to

reduce errors introduced by the non-zero Trotter-Suzuki timestep.

All of these techniques are validated using numerical simulation

and detailed gate counts are given for realistic molecules.

http://arxiv.org/abs/1403.1539

Quantum Chemistry 𝐻 = ෍ ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
෍ ℎ𝑝𝑞𝑟𝑠 𝑎𝑝

†𝑎𝑞
†𝑎𝑟𝑎𝑠

𝑝𝑞𝑟𝑠

𝑝𝑞

The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry

David Poulin, M. B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doherty, Matthias Troyer

The simulation of molecules is a widely anticipated application of quantum computers. However,

recent studies \cite{WBCH13a,HWBT14a} have cast a shadow on this hope by revealing that the

complexity in gate count of such simulations increases with the number of spin orbitals N as N8,

which becomes prohibitive even for molecules of modest size N∼100. This study was partly based on

a scaling analysis of the Trotter step required for an ensemble of random artificial molecules. Here,

we revisit this analysis and find instead that the scaling is closer to N6 in worst case for real model

molecules we have studied, indicating that the random ensemble fails to accurately capture the

statistical properties of real-world molecules. Actual scaling may be significantly better than this due
to averaging effects. We then present an alternative simulation scheme and show that it can

sometimes outperform existing schemes, but that this possibility depends crucially on the details of

the simulated molecule. We obtain further improvements using a version of the coalescing scheme

of \cite{WBCH13a}; this scheme is based on using different Trotter steps for different terms. The

method we use to bound the complexity of simulating a given molecule is efficient, in contrast to the

approach of \cite{WBCH13a,HWBT14a} which relied on exponentially costly classical exact simulation.

http://arxiv.org/abs/1406.4920

On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, Nathan Wiebe

Although the simulation of quantum chemistry is one of the most anticipated

applications of quantum computing, the scaling of known upper bounds on the

complexity of these algorithms is daunting. Prior work has bounded errors due to

Trotterization in terms of the norm of the error operator and analyzed scaling with

respect to the number of spin-orbitals. However, we find that these error bounds can

be loose by up to sixteen orders of magnitude for some molecules. Furthermore,

numerical results for small systems fail to reveal any clear correlation between ground

state error and number of spin-orbitals. We instead argue that chemical properties,
such as the maximum nuclear charge in a molecule and the filling fraction of orbitals,

can be decisive for determining the cost of a quantum simulation. Our analysis

motivates several strategies to use classical processing to further reduce the required

Trotter step size and to estimate the necessary number of steps, without requiring

additional quantum resources. Finally, we demonstrate improved methods for state

preparation techniques which are asymptotically superior to proposals in the

simulation literature.

http://arxiv.org/abs/1410.8159

Ferredoxin (𝐹𝑒2𝑆2) used in many metabolic reactions

including energy transport in photosynthesis

 Intractable on a classical computer

 Assumed quantum scaling: ~24 billion years (𝑁11 scaling)

 First paper: ~850 thousand years to solve (𝑁9 scaling)

 Second paper: ~30 years to solve (𝑁7 scaling)

 Third paper: ~5 days to solve (𝑁5.5 scaling)

 Fourth paper: ~1 hour to solve (𝑁3, 𝑍2.5 scaling)

𝐻2 𝐻𝐹 𝐻2𝑂 𝑁𝐻3

𝐶𝐻4 𝐻𝐶𝑙 𝐹2 𝐻2𝑆

Geometries and molecular models from http://www.colby.edu/chemistry/webmo/

𝐻 = ෍ ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
෍ ℎ𝑝𝑞𝑟𝑠 𝑎𝑝

†𝑎𝑞
†𝑎𝑟𝑎𝑠

𝑝𝑞𝑟𝑠

𝑝𝑞

LIQ𝑈𝑖|〉

SoL𝑖|〉 and QCoDeS

http://StationQ.github.io/Liquid

Nitrogen

fixation

100-200 100-200 100s-1000s 100s-1000s

TopologicalQuantum

dots

NV

centers

Linear

optics

Super-

conductors

Ion

traps

Mourik, … Kouwenhoven 2012

http://arxiv.org/abs/1204.2792

• Build experiment as

described

• Measure zero-bias peak

• See that it goes away if we

remove any of the necessary

components

Growth by Diana Car, Sébastien Plissard and Erik
Bakkers

I

V

From: Nick Bonesteel talk at KITP UCSB

After Hyart et al 2013
http://arxiv.org/abs/1303.4379

Data Energy

-15

-19

Data Energy

• Mott Insulators

• Transition Metal Compounds

• Cuprates (e.g., High Tc SC)

• Lanthanides and Actinides

• Kondo Physics (Low temperature

Resistance) from Magnetic

Impurities

• Quantum Dots

𝐻𝑖𝑚𝑝 = 𝑈𝑛↑𝑛↓ − Σ𝑘,𝜎 𝑡𝑘𝑐𝜎
†

𝑎𝑘,𝜎
𝑏𝑎𝑡ℎ + ℎ. 𝑐. + 𝐻𝑏𝑎𝑡ℎ

𝑡𝑘

𝐻𝑏𝑎𝑡ℎ

𝑈

• Solids have regular structure that can be

modeled as lattices

• The Hubbard model only implements 𝐻𝑝𝑝

and 𝐻𝑝𝑞𝑞𝑝 terms

• This doesn’t cover many of the materials

we’re interested in

• One can choose a single site in the lattice to

model

• The effect of the rest of the lattice can be

modeled in terms of its effect on this site

𝐻ℎ𝑢𝑏 = 𝑈Σ𝑖𝑛𝑖↑𝑛𝑖↓ − 𝑡Σ<𝑖,𝑗>,𝜎𝑐𝑖𝜎
†

𝑐𝑗𝜎

𝑈

𝑡

Bath

Impurity

Quantum

Classical

ModelFeedback

http://arxiv.org/abs/1012.3609

𝐺𝑛 𝜔 → Δ𝑛(𝜔)

𝐺𝑠𝑜𝑙𝑣𝑒𝑟(𝜔)= ⟨ 𝑐𝑖
†

𝜔 𝑐𝑗 −𝜔 ⟩

𝐺𝑠𝑜𝑙𝑣𝑒𝑟 𝜔 → ∑ 𝜔 → 𝐺 𝑘, 𝜔 →

, the diagram

𝑮𝒊𝒎𝒑 𝜔 −1 = 𝜔 + 𝜇 + 𝑖0± 𝑺 − 𝒉𝒊𝒎𝒑 − 𝚺 𝜔 − 𝚫 𝜔

Mott Insulator

Spin Freezing

HF Solution

http://arxiv.org/abs/1012.4474

• Good

• Bad

http://arxiv.org/abs/1012.3609

𝐸𝑔𝑠 = ෍ 𝐻𝐹𝐹 + ෍ ෍ 𝜃𝑖𝑗𝐻𝑗

𝑗

𝑖

+ 𝑀(𝐻𝑘)

𝑘

Quantum

Classical

ModelFeedback

Gates Samps/Pt Samps Evals Energy Overlap Error Hours

1000 91680 4.64E+07 506 -8.40204553 0.97616926 0.07625777 6.4

Measures 89395 4.52E+07 506 -8.44653127 0.98536880 0.03177203 6.3

5 86170 4.36E+07 506 -8.43120304 0.98722563 0.04710026 6.1

Speed 91652 4.64E+07 506 -8.45373504 0.98680546 0.02456826 6.4

1.00E-07 77749 3.93E+07 506 -8.32567973 0.97155555 0.15262357 5.5

eGS 92597 4.69E+07 506 -8.43120606 0.98206797 0.04709724 6.5

-8.4783 92404 4.68E+07 506 -8.42695124 0.98382985 0.05135206 6.5

53207 2.69E+07 506 -8.38545966 0.96754805 0.09284364 3.7

86289 4.37E+07 506 -8.44177206 0.99095627 0.03653124 6.1

89696 4.54E+07 506 -8.43294365 0.98231876 0.04535965 6.3

Average 85084 4.31E+07 506 -8.41775273 0.98138456 0.06055057 6.0

SoL

300 Kelvin - Room

SoL𝑖|⟩

77K-Nitrogen

.02K-𝑯𝒆𝟑/𝑯𝒆𝟒

4K-Helium

CPU Memory

CMOS

CPU Memory

Control Qubits

Quantum

Superconducting

R
Op.Unitary

CR Control1 R

QFT

H

CR

• Unitary Operations are defined by their

matrices

• Meta-operations (control, adjoint)

understand how to re-write the AST

(including the classical generators)

• Joint Measurement is a fundamental

operation (depends on Machine Model

for implementation)

• Target code will be unrolled at the

discretion of the target Machine Model

• Adjoint QFT will reverse the code

order, run the loops backwards and

adjoint all the unitary operations

• The compiler front end maps the quantum

algorithm to “quantum intermediate

language” (QIL)

• The back end rewrites the QIL for execution on

actual hardware

• Different quantum computers will require

different rewrites of the original QIL

• We have designed and built a layered

architecture to support flexible rewriting

H

CR

Where we are now:

- Igor (based on Alex Johnson code circa 2002)

- QTLab (Delft Python package circa 2008)

- LabVIEW + Mathematica

- MATLAB (various ad-hoc efforts)

- Some other lightweight Python code

QCoDeS

data2 = Loop(c1[-15:15:1], 0.1).each(
Task(c0.set, -10),
qubit1.t1,
fridge.mc_temp,
Loop(c0[-15:15:1], 0.01).each(meter.amplitude),
Task(c0.set, -10),
Wait(0.1),
Loop(c2[-10:10:0.2], 0.01),
Task(c2.set, 5)

).run()

data = Loop(c0[-20:20:0.1], 0.1).run()

QCoDeS

http://StationQ.com

http://StationQ.github.io/Liquid

