

Faculty
Summit
2016

Quantum Algorithms: Today and Tomorrow

Dave Wecker Microsoft Research, StationQ

Simulating physical systems

Hours (on Cray XE6)

The promise...

Simulating 250 interacting qubits requires $\sim 10^{80}$ classical bits!

State of N interacting qubits: $\sim 2^N$ bits of info!

Breaking RSA

Time to Factor N-bit Number

Number of bits N

|QUi| Efficient Classical Simulation of Quantum Algorithms

- Only materialize entangled parts of state vector (Skyline Vectors)
- Re-order tensor products of gates to keep gate matrix dense
- Permute state vector to block-diagonalize generated sparse matrix
- Permute gate matrix to keep from re-ordering state vector
- Grow gate matrix to keep from re-ordering state vector
- Keep a running permutation until measurement
- Use measurement to shrink memory usage of state vectors
- Coalesce gates into more efficient larger arrays
- For Hamiltonians only maintain physically achievable states
- Exponentiate system for Trotter and Phase Estimation calculations
- Re-unitarize exponentiated matrices to maintain accuracy

Shor's algorithm results

Quantum Chemistry

 $H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$

computer: Da Imr Hastings, Mat

As quantum c computers wi appear feasib applications c frequently m∈ simulating qu structure of m computationa perform quar the quantum molecule twic exactly. We fir increase in the required incre executed is m quantum con problems, dra

http://arxiv.org/al

Ferredoxin (Fe_2S_2) used in many metabolic reactions including energy transport in photosynthesis

- > Intractable on a classical computer
- > Assumed quantum scaling: ~24 billion years (N^{11} scaling)
- First paper: ~850 thousand years to solve (N^9 scaling)
- > Second paper: \sim 30 years to solve (N⁷ scaling)
- > Third paper: ~5 days to solve $(N^{5.5}$ scaling)
- Fourth paper: ~1 hour to solve $(N^3, Z^{2.5})$ scaling)

tion

an

und

,, als,

red

þ

Molecules simulated in LIQUi)

Geometries and molecular models from http://www.colby.edu/chemistry/webmo/

Simulation Evidence

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

L|QUi|

Soli) and QCoDeS

Initial applications

Nitrogen fixation

Carbon capture

Materials science

Machine learning

100-200 qubits 100-200 qubits

100s-1000s qubits 100s-1000s qubits

Microsoft Research Faculty Summit 2016

Quantum hardware technologies

STATION

2006

MAJORANA PARTICLE GLIMPSED IN LAB.

BBC NEWS

2012

Experimental Results

- Build experiment as described
- Measure zero-bias peak
- See that it goes away if we remove any of the necessary components

Mourik, ... Kouwenhoven 2012 http://arxiv.org/abs/1204.2792

Junctions

Inspiration

From "A topological modular functor which is universal for quantum computation"

Talk given by
Michael Freedman at
"Mathematics of
Quantum Computation",
MSRI, Feb. 2000
(available online).

Braiding

From: Nick Bonesteel talk at KITP UCSB

Proposed Architecture

- Proposed experiment to braid Majoranas
- The same control structure is used for initialization, braiding and measurement
- Instead of moving Majoranas, they are coupled and de-coupled to de-localize them and then get them to appear at the desired location
- Must be done adiabatically
- May be scaled to much larger system

After Hyart et al 2013 http://arxiv.org/abs/1303.4379

Reciprocal Quantum Logic (RQL)

Reciprocal Quantum Logic (RQL)

The Data Path Compiler (DPC)

Quantum Algorithms for Quantum Impurity Problems

- Mott Insulators
- Transition Metal Compounds
 - Cuprates (e.g., High Tc SC)
- Lanthanides and Actinides
- Kondo Physics (Low temperature Resistance) from Magnetic Impurities

Quantum Dots

Materials Modeling

$$H_{hub} = U\Sigma_{i}n_{i\uparrow}n_{i\downarrow} - t\Sigma_{\langle i,j\rangle,\sigma}c_{i\sigma}^{\dagger}c_{j\sigma}$$

$$H_{imp} = Un_{\uparrow}n_{\downarrow} - \Sigma_{k,\sigma}(t_{k}c_{\sigma}^{\dagger}a_{k,\sigma}^{bath} + h.c.) + H_{bath}$$

- Solids have regular structure that can be modeled as lattices
- The Hubbard model only implements H_{pp} and H_{pqqp} terms
- This doesn't cover many of the materials we're interested in
- One can choose a single site in the lattice to model
- The effect of the rest of the lattice can be modeled in terms of its effect on this site

Anderson Impurity Model

- Choose a single place in the lattice to model (the impurity). This may contain a collection of local sites
- The impurity is typically a full two-body model
- The effect of the rest of the lattice can be modeled in terms of its effect on the impurity (the bath) via a Dynamic Green's function $G(\omega)$
- The bath may have many sites and interconnections

$$H = \left(\sum_{ij} t_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl} w_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + \left(\sum_{ip} V_{ip} (a_i^{\dagger} a_p + a_p^{\dagger} a_i)\right) + \left(\sum_{pq} \epsilon_p a_p^{\dagger} a_q\right)\right)$$

Dynamical Mean Field Theory (DMFT)

$$G_{solver}(\omega) \to \Sigma(\omega) \to G(k,\omega) \to G_n(\omega) \to \Delta_n(\omega)$$

- We can posit an initial model for a material
- Measure quantum simulations at many sites and frequencies deriving a dynamical Green's function
- Use feedback to update model
- Repeat until converged
- The resulting model is defined classically and may be used to efficiently investigate <u>many</u> questions about the material

http://arxiv.org/abs/1012.3609

$$G_{solver}(\omega) = \langle c_i^{\dagger}(\omega) c_j(-\omega) \rangle$$

Dynamical Mean Field Theory (DMFT) $G_{imp}(\omega)^{-1} = (\omega + \mu + i0_{\pm})S - h_{imp} - \Sigma(\omega) - \Delta(\omega)$

$$G_{imp}(\omega)^{-1} = (\omega + \mu + i0_{\pm})S - h_{imp} - \Sigma(\omega) - \Delta(\omega)$$

- Cubic Hydrogen (H_2 crystal structure)
- Simulate at 2.5 Å with a bath of 9 orbitals
- Density of States plot for different frequencies. Red curve is the Hartree-Fock solution (used as initial guess). DMFT Converges after 7 iterations
- 5-7 total orbitals for a <u>single</u> site is state-of-the-art.
- Example from Troyer et al the diagram shows a 3 shell degenerate solution (need 5 for D and 7 for F)
- A Quantum Computer could do a 4x larger impurity or 4x more orbitals than state-of-the-art with 200 qubits

http://arxiv.org/abs/1012.4474

Variational Eigensolver

$$E_{gs} = \sum_{k} \left(H_{FF} + \sum_{i} \sum_{j} \theta_{ij} H_{j} + M(H_{k}) \right)$$

- Good: Only need to stay coherent for prep, evolution and measurement
- Bad: Parameters discovered by sampling (quadratically worse than PE)
- Useful for small machines with physical qubits that have relatively short coherence times.
- Only needs few thousand gate executions before losing coherence

http://arxiv.org/abs/1012.3609

Two Hubbard Plaquettes (16 qubits)

Gates	Samps/Pt	Samps	Evals	Energy	Overlap	Error	
1000	91680	4.64E+07	506	-8.40204553	0.97616926	0.07625777	6.4
Measures	89395	4.52E+07	506	-8.44653127	0.98536880	0.03177203	6.3
5	86170	4.36E+07	506	-8.43120304	0.98722563	0.04710026	6.1
Speed	91652	4.64E+07	506	-8.45373504	0.98680546	0.02456826	6.4
1.00E-07	77749	3.93E+07	506	-8.32567973	0.97155555	0.15262357	5.5
eGS	92597	4.69E+07	506	-8.43120606	0.98206797	0.04709724	6.5
-8.4783	92404	4.68E+07	506	-8.42695124	0.98382985	0.05135206	6.5
	53207	2.69E+07	506	-8.38545966	0.96754805	0.09284364	3.7
	86289	4.37E+07	506	-8.44177206	0.99095627	0.03653124	6.1
	89696	4.54E+07	506	-8.43294365	0.98231876	0.04535965	6.3
Average	85084	4.31E+07	506	-8.41775273	0.98138456	0.06055057	6.0

$SoLi\rangle$ - Son of $LIQUi\rangle$

 $SoLi|\rangle$

300 Kelvin - Room

Understanding of Classical + Quantum

```
let R (k:int) (q:Qubit) =
    Op.Unitary <-
                    = (2.0*Math.PI)/(pown 2.0 k)
        let phi
        let phiR = Math.Cos phi
        let phiI = Math.Sin phi
        CSMat(2,[(0,0,1.,0.);(1,1,phiR,phiI)])
let CR (k:int) (c:Qubit) (t:Qubit) = Control1 R c k t
let QFT (qs:Qubits) =
   let n = qs.Length
for aIdx in n-1..-1..0 do
        let a
                  = qs.[aIdx]
        H a
        for k in 2..aIdx+1 do
            let c = qs.[aIdx-(k-1)]
            CR k c a
```

- Unitary Operations are defined by their matrices
- Meta-operations (control, adjoint)
 understand how to re-write the AST
 (including the classical generators)
- Joint Measurement is a fundamental operation (depends on Machine Model for implementation)
- Target code will be unrolled at the discretion of the target Machine Model
- Adjoint QFT will reverse the code order, run the loops backwards and adjoint all the unitary operations

Compilation

- The compiler front end maps the quantum algorithm to "quantum intermediate language" (QIL)
- The back end rewrites the QIL for execution on actual hardware
- Different quantum computers will require different rewrites of the original QIL
- We have designed and built a layered architecture to support flexible rewriting

```
Push symbol n =
        Property: qs.Length
Push symbol inputSequence =
        Call function Operators.op_RangeStep
           Args:
             Call function Operators.op_Subtraction
               Args:
                 Var: n
                 Int: 1
             Int: -1
             Int: 0
For each aldx
        In: inputSequence
        Do:
           Push symbol a =
             Property: qs.Item[aIdx]
           Invoke operation H with args:
             Var: a
           For k
             From: 2
             To:
               Call function Operators.op_Addition
                 Args:
                    Var: aIdx
                   Int: 1
             By: 1
               Push symbol c =
               Property: qs.Item[(expr)]
Invoke operation CR with args:
```


QCoDeS

Where we are now:

- Igor (based on Alex Johnson code circa 2002)
- QTLab (Delft Python package circa 2008)
- LabVIEW + Mathematica
- MATLAB (various ad-hoc efforts)
- Some other lightweight Python code

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SOON:

SITUATION:

THERE ARE

15 COMPETING

STANDARDS.

QCoDeS Measurement Syntax

```
data = Loop(c0[-20:20:0.1], 0.1).run()
data2 = Loop(c1[-15:15:1], 0.1).each(
    Task(c0.set, -10),
    qubit1.t1,
    fridge.mc_temp,
    Loop(c0[-15:15:1], 0.01).each(meter.amplitude),
    Task(c0.set, -10),
    Wait(0.1),
    Loop(c2[-10:10:0.2], 0.01),
   Task(c2.set, 5)
).run()
```


More information...

http://StationQ.com

http://StationQ.github.io/Liquid

