
An approach to pose-based action recognition

Chunyu Wang1, Yizhou Wang1, and Alan L. Yuille2

1Nat’l Engineering Lab for Video Technology, Key Lab. of Machine Perception (MoE), Sch’l of EECS,
Peking University, Beijing, 100871, China
{wangchunyu, Yizhou.Wang}@pku.edu.cn

2Department of Statistics, University of California, Los Angeles (UCLA), USA
yuille@stat.ucla.edu

Abstract

We address action recognition in videos by modeling the
spatial-temporal structures of human poses. We start by
improving a state of the art method for estimating human
joint locations from videos. More precisely, we obtain the
K-best estimations output by the existing method and in-
corporate additional segmentation cues and temporal con-
straints to select the “best” one. Then we group the es-
timated joints into five body parts (e.g. the left arm) and
apply data mining techniques to obtain a representation for
the spatial-temporal structures of human actions. This rep-
resentation captures the spatial configurations of body parts
in one frame (by spatial-part-sets) as well as the body part
movements(by temporal-part-sets) which are characteristic
of human actions. It is interpretable, compact, and also
robust to errors on joint estimations. Experimental results
first show that our approach is able to localize body joints
more accurately than existing methods. Next we show that it
outperforms state of the art action recognizers on the UCF
sport, the Keck Gesture and the MSR-Action3D datasets.

1. Introduction

Action recognition is a widely studied topic in com-

puter vision. It has many important applications such as

video surveillance, human-computer interaction and video

retrieval. Despite great research efforts, it is far from be-

ing a solved problem; the challenges are due to intra-class

variation, occlusion, and other factors.

Recent action recognition systems rely on low-level and

mid-level features such as local space-time interest points

(e.g. [14][19]) and dense point trajectories (e.g. [20]).

Despite encouraging results on several datasets, they have

limited discriminative power in handling large and complex

Figure 1. Proposed action representation. (a)A pose is composed

of 14 joints at the bottom layer, which are grouped into five body

parts in the layer above; (b)shows two spatial-part-sets which com-

bine frequently co-occurring configurations of body parts in an

action class. (c)temporal-part-sets are co-occurring sequences of

evolving body parts. (e.g. evolving left and right legs compose a

temporal-part-set(1)). (d)action is represented by a set of spatial-

part-sets(4) and temporal-part-sets(1-3).

data because of the limited semantics they represent [18].

Representing actions by global templates (e.g. [7][2][1])

has also been explored. Efros et al. [7] compare optical

flow based features against templates stored in databases
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and classify them by the k-nearest-neighbor classifier. The

features are computed from figure centric videos obtained

by tracking, which are sometimes unreliable. Bobick et

al. [2] construct motion templates by computing motion

energy/history images. Blank et al. [1] represent actions

as space-time shapes and extract space-time features such

as local space-time saliency. These types of methods lack

the flexibility to handle challenging cases such as dynamic

backgrounds, camera movement and intra-class appearance

variation, which limit their performance on real videos.

An alternative line of work represent actions by se-

quences of poses in time (e.g. [4][26]), where poses refer to

spatial configurations of body joints. These representations

conform to studies of how human understand actions [3].

Some of these work use poses obtained by motion capture

systems [4][26]. However, pose-based action recognition

can be very hard because of the difficulty to estimate high

quality poses from action videos, except in special cases

(e.g., static cameras and simple backgrounds).

In this paper we present a novel pose-based action recog-

nition approach which is effective on some challenging

videos. We first extend a state of the art method [27] to

estimate human poses from action videos. Given a video,

we first obtain best-K pose estimations for each frame using

the method of [27], then we infer the best poses by incorpo-

rating segmentation and temporal constraints for all frames

in the video. We experimentally show that this extension

localizes body joints more accurately.

To represent human actions, we first group the estimated

joints into five body parts (e.g. left arm, see Figure 1.a).

We then apply data mining techniques in the spatial domain

to obtain sets of distinctive co-occurring spatial configura-

tions(poses) of body parts, which we call spatial-part-sets.

Similarly, in the temporal domain, we obtain sets of distinc-

tive co-occurring pose sequences of body parts, which we

call temporal-part-sets (e.g. the left arm going up is usually

coupled with the right arm going up in “lifting” actions).

These part-sets are obtained using an efficient contrast min-

ing algorithm [6]. For test videos, we first detect these part-

sets from the estimated poses then represent the videos by

histograms of the detected part-sets. We classify the videos

into actions using support vector machines (SVMs)[5].

To summarize, the proposed representation has three ad-

vantages. (i) It is interpretable, because we decompose

poses into parts, guided by human body anatomy, and repre-

sent actions by the temporal movements of these parts. This

high interpretability enables us to efficiently spot why and

where the model may fail. (ii) It is compact. Only 14 joint

locations are encoded for each frame. This has advantages,

compared to high dimensional models (e.g. bag of low-

level features), because it helps prevent overfitting when

training action classifiers. (iii) It is robust to variations, be-

cause our part-sets are local and partially ambiguous joint

locations have limited influence to the final representation.

This boosts action recognition performance compared with

holistic pose features. We demonstrate these advantages by

showing that our proposed method outperforms state of the

art action recognizers on the UCF sport, the Keck Gesture

and the MSR-Action3D datasets.

The paper is organized as follows. Section 2 reviews the

related work. Section 3, 4 introduces pose estimation and

action representation, respectively. Section 5 shows experi-

ment results. Conclusion is in section 6.

2. Related Work
We briefly review the pose-based action recognition

methods in literature. In [4][26], body joints are obtained by

motion capture systems or segmentation. Then, the joints

are tracked over time and the resulting trajectories are used

as input to the classifiers. Xu et al[25] propose to automati-

cally estimate joint locations from videos, and use joint lo-

cations coupled with motion features for action recognition.

Modest joint estimation can degrade the action recognition

performance as shown in experiments.

Given the difficulty of pose estimation, some approaches

adopt implicit poses. For example, Ijuzker et al. [10] extract

oriented rectangular patches from images and compute spa-

tial histograms of oriented rectangles as features. Maji et

al. [16] use “poselet” activation vector to implicitly cap-

ture human poses. However, implicit pose representations

are difficult to relate to body parts, and so are it is hard to

model meaningful body part movements in actions.

Turning to feature learning algorithms, the strategy of

combining frequently co-occurring primitive features into

larger compound features has been extensively explored

(e.g. [22][9][21]). Data mining techniques such as Con-
trast Mining [6] have been adopted to fulfill the task. How-

ever, people typically use low-level features such as optical

flow [22], and corners [9] instead of high-level poses. Our

work is most related to [21] which groups joint locations

into actionlet ensembles. But our work differs from [21] in

two respects. First, we do not train SVMs for individual

joints because they may carry insufficient discriminative in-

formation. Instead, we use body parts as building blocks

as they are more meaningful and compact. Secondly, we

model spatial pose structures as well as temporal pose evo-

lutions, which are neglected in [21].

3. Pose Estimation in Videos
We now extend a state of the art image-based pose es-

timation method [27] to video sequences. Our extension

can localize joints more accurately, which is important for

achieving good action recognition performance. We first

briefly describe the initial frame-based model in section 3.1,

then present the details of our extension in section 3.2.
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3.1. Initial Frame-based Pose Estimation

A pose P is represented by 14 joints Ji: head, neck,

(left/right)-hand/elbow/shoulder/hip/knee/foot. The joint Ji
is described by its label li (e.g. neck), location (xi, yi), scale

si, appearance fi, and type mi (defined by the orientation

of the joint), i.e. Ji = (li, (xi, yi), si, fi,mi). The score for

a particular configuration P in image I is defined by:

S(I, P ) = c(m)+
∑
Ji∈P

ωi · f(I, Ji)+
∑
i,j∈E

ωij · u(Ji, Jj)

(1)

where c(m) captures the compatibility of joint types; the

appearance f(I, Ji) is defined by HoG features extracted

for joint Ji; the edge set E defines connected joints, and

ωij · u(Ji, Jj) captures the deformation cost of connected

joints. The deformation feature u is defined by u(Ji, Jj) =
[dx, dx2, dy, dy2], where dx = xi − xj . The weights ω are

learned from training data. The inference can be efficiently

performed by dynamic programming. Please see [27] for

more details of this approach.

The estimation results of the model are not perfect. The

reasons are as follows. Firstly, the learnt kinematic con-

straints tend to bias estimations to dominating poses in

training data, which decreases estimation accuracy for rare

poses. Secondly, for computational reasons, some impor-

tant high-order constraints are ignored which may induce

the “double-counting” problem (where two limbs cover the

same image region). However, looking at 15-best poses

returned by the model for each frame, we observe a high

probability that the “correct” pose is among them. This mo-

tivates us to extend this initial model to automatically infer

the correct pose from theK-best poses, using temporal con-

straints in videos. Similar observations have been made in

recent work [12]. We differ from [12] by exploiting richer

temporal cues in videos to fulfill the task.

3.2. Video-based Pose Estimation

The inputs to our model are the K-best poses of each

frame It returned by[27]: {P t
j |j = 1...K, t = 1...L}.

Our model selects the “best” poses (P 1
j1
, ..., PL

jL
) for the L

frames by maximizing the energy function EP :

j∗ = argmax
(j1,...,jL)

EP (I
1, ..., IL, P 1

j1 , ..., P
L
jL)

EP =

L∑
i=1

φ(P i
ji , I

i) +

L−1∑
i=1

ψ(P i
ji , P

i+1
ji+1

, Ii, Ii+1)
(2)

Where φ(P i
ji
, Ii) is a unary term that measures the like-

lihood of the pose and ψ(P i
ji
, P i+1

ji+1
, Ii, Ii+1) is a pairwise

term that measures the appearance, and location consistency

of the joints in consecutive frames.

Figure 2. Steps for computing figure/ground color models.

3.2.1 Unary Term

A pose P essentially segments a frame into figure/ground

pixel sets IF /IB . Hence we compute the unary term by ex-

plaining all pixels in the two sets. In particular, we group the

14 joints of pose P into five body parts(head, left/right arm,

left/right leg) by human anatomy, i.e. P = {p1, ..., p5},
pj = {Jjk |k = 1...zj}. zj is the number of joints in part

pj . Each joint Ji covers a rectangular image region IJi

centered at (xi, yi) with side length si; accordingly, each

part pj covers image regions Ipj
= ∪Ji∈pj

IJi
; image re-

gions covered by the five body parts constitute figure re-

gions IF = ∪5
i=1Ipi , and the remaining regions constitute

the ground regions IB = I− IF . We measure the plausibil-

ity of pose P by “explaining” every pixel in IF and IB with

pre-learnt figure/ground color distributions KF and KB :

φ(P, I) =
∏
x∈IF

KF (x) ·
∏
x∈IB

KB(x) (3)

We automatically learn the figure/ground distributions

KF and KB for each video. Essentially, we create a rough

figure/ground segmentation of the frames in the video, from

which we learn the figure/ground color distributions(color

histogram). We propose two approaches to detect figure re-

gions. We first apply a human detector[8] on each frame

to detect humans as figure regions (see Figure 2.d). How-

ever, the human detector cannot detect humans in challeng-

ing pose. Hence, we also use optical flow to detect mov-

ing figures (see Figure 2.b-c). We assume the motion field

M contains figure motion F and camera motion C, i.e.

M = F + C. Without loss of generality, we assume that

the majority of the observed motion is caused by camera

motion. Since the camera motion is rigid, C is low rank.

We recover F and C from M by rank minimization using

the method described in [23]. We consider regions whose

figure motion F are larger than a threshold as figure regions.

See Figure 2.c. We learn figure color distributionsKF from

figure pixels detected by the human detector and by opti-

cal flow. Similarly, ground color distribution is learnt from

remaining pixels of the video.
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Figure 3. Overall framework for action representation. (a)we start by estimating poses for videos of the two action classes, i.e. turn left(left-

column) and stop-left(right column). (b)then we cluster poses of each body part in training data and construct a part pose dictionary as

described in Section 4.1. The blue, green and red dots in arms are the joints of shoulders, elbows and hands. Similarly, they are the

joints of hip, knee and foot for legs. (c)we extract temporal-part-sets(1-2) and spatial-part-sets(3) for the two action classes as described in

Section 4.2-4.3. (d)we finally represent actions by histograms of spatial- and temporal- part-sets. (1)shows two histograms of two different

humans performing the same action. The histograms are similar despite intra-class variations. (2)and(3) show the histograms of turn left
vs. stop-left, and turn left vs. stop-both, respectively. The histograms differ a lot although they share portions of poses.

3.2.2 Temporal Consistency

ψ(P i, P i+1, Ii, Ii+1) captures appearance and location co-

herence of the joints in consecutive frames. We measure

the appearance coherence by computing Kullback-Leibler

divergence of the corresponding joints’ color distributions:

Ea(P
i, P i+1) = −

5∑
k=1

∑
J∈pk

KL(f iJ , f
i+1
J ) (4)

f iJ is the color histogram computed for the rectangular im-

age region around joint J i. For location coherence, we

compute the Euclidean distance (discretized into 10 bins)

between the joints in consecutive frames:

El(P
i, P i+1) = −

5∑
k=1

∑
J∈pk

d((xiJ , y
i
J), (x

i+1
J , yi+1

J ))

(5)

Finally we define ψ as the sum of Ea and El.

3.2.3 Inference

The global optimum of the model can be efficiently inferred

by dynamic programming because of its chain structure(in

time). In implementation, we first obtain the 15-best poses

by[27] for each frame in the video. Then we identify the

best poses for all frames by maximizing the energy func-

tion( see equation 2).

4. Action Representation
We next extract representative spatial/temporal pose

structures from body poses for representing actions. For

spatial pose structures, we pursue sets of frequently co-

occurring spatial configurations of body parts in a sin-

gle frame, which we call the spatial-part-set, spi =
{pj1 , ..., pjni

}. For temporal pose structures, we pursue

sets of frequently co-occurring body part sequences ali =
(pj1 , ..., pjmi

), which we call temporal-part-sets, tpi =
{alk1 , ..., alkli

}. Note that body part sequence ali captures

the temporal pose evolution of a single body part (e.g. left

arm going up). We represent actions by histograms of ac-

tivating spatial-part-sets and temporal-part-sets. See Figure

3 for the overall framework of the action representation.

4.1. Body Part

A body part pi is composed of zi joint locations pi =
(xi1, y

i
1, ..., x

i
zi , y

i
zi). We normalize pi to eliminate the in-

fluence of scale and translation. We first anchor pi by

the head location (x11, y
1
1) as it is the most stable joint to

estimate. Then we normalize its scale by head length d,

pi =
pi−(x1

1,y
1
1)

d .

We learn a dictionary of pose templates Vi =
{v1i , v2i , ..., vki

i }, for each body part by clustering the poses

of training data. ki is the dictionary size. Each tem-

plate pose represents a certain spatial configuration of body

parts(See Figure 3.b). We quantize all body part poses pi
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Figure 4. Spatial-part-sets and temporal-part-sets pursued by con-

trast mining techniques. (a)shows estimated poses for videos of

turn-left and stop-left actions. The numbers in the right of each fig-

ure are indexes of quantized parts in the dictionaries. (b)shows two

transaction databases for mining spatial-part-sets(1) and temporal-

part-sets(2) respectively. Each row in(1) is a transaction composed

by five indexes of quantized body parts. Each row in(2) is an item,

i.e. sub-sequences of body parts of order three(left) and two(right).

All items in one video(e.g. top five rows) compose a transaction.

(c).(1) shows one pursued spatial-part-set which is a typical con-

figuration of “turn-left” action. (c).(2)shows one typical temporal-
part-set of “turn-left” action.

by the dictionaries to consider pose variations. Quantized

poses are then represented by the five indexes of the tem-

plates in the dictionaries.

4.2. Spatial-part-sets

We propose spatial-part-sets to capture spatial configu-

rations of multiple body parts: spi = {pj1 , ..., pjni
}, 1 ≤

ni ≤ 5. See Figure1.b for an example. The compound

spatial-part-sets are more discriminative than single body

parts. The ideal spatial-part-sets are those which occur fre-

quently in one action class but rarely in other classes (and

hence have both representative and discriminative power).

We obtain sets of spatial-part-sets for each action class us-

ing Contrast Mining techniques[6].

We use the notation from [6] to give a mathematical def-

inition of contrast mining. Let I = {i1, i2, ..., iN} be a

set of N items. A transaction T is defined as a subset of

I . The transaction database D contains a set of transac-

tions. A subset S of I is called a k-itemset if ||S|| = k.

If S ⊆ T , we say the transaction T contains the itemset S.

The support of S in a transaction databaseD is defined to be

ρDS = countD(S)
||D|| , where countD(S) is the number of trans-

actions in D containing S. The growth rate of an itemset S
from one dataset D+ to the other dataset D− is defined as:

T
D+→D−
S =

⎧⎪⎪⎨
⎪⎪⎩

0 if ρ
D−
S = ρ

D+

S = 0

∞ if ρ
D−
S �= 0, ρ

D+

S = 0
ρ
D−
S

ρ
D+
S

if ρ
D−
S �= 0, ρ

D+

S �= 0

(6)

An itemset is said to be a η-emerging itemset from D+ to

D− if T
D+→D−
S > η.

We now relate the notations in contrast mining to our

problem of mining spatial-part-sets. Recall that the poses

are quantized and represented by the five indexes of pose

templates. Each pose template is considered as an item.

Hence the union of the five dictionaries V composes the

item set, V = V1 ∪V2...∪V5. A pose P represented by five

pose templates is a transaction. All poses in the training

data constitute the transaction database D(See Figure 4.b).

We now mine η-emerging itemsets, i.e. spatial-part-sets,

from one action class to the others. See Figure 4 for an

illustration of the mining process.

We pursue sets of spatial-part-sets for each pair of ac-

tion classes y1 and y2. We first use transactions of class y1
as positive data D+, and transactions of y2 as negative data

D−. The itemsets, whose support rates for D+ and growth

rates from D− to D+ are above a threshold, are selected.

Then we use y2 as positive data and y1 as negative data and

repeat the above process to get another set of itemsets. We

combine the two sets as spatial-part-sets. We need to spec-

ify two threshold parameters, i.e. the support rate ρ and the

growth rate η. By increasing the support rate, we guarantee

the representative power of the spatial-part-sets for the pos-

itive action class. By increasing the growth rate, we guaran-

tee the spatial-part-sets’ discriminative power. The mining

task can be efficiently solved by [6].

4.3. Temporal-part-sets

We propose temporal-part-sets to capture joint pose evo-

lution of multiple body parts. We denote pose sequences

of body parts as ali = (pj1 , ..., pjni
), where ni is the

order of the sequence. We mine a set of frequently co-

occurring pose sequences, which we call temporal-part-sets,

917917917919919
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Figure 5. The confusion matrix of our proposed approach on the

UCF Sport Dataset.

tpi = {alj1 , ..., aljnj
} (e.g.left arming going up is usually

coupled with right arm going up in “lifting” action). We

also use contrast mining to mine temporal-part-sets.

In implementation, for each of the five pose sequences

(p1i , ..., p
L
i ) of a training video with L frames, we generate a

set of sub-sequences of order n, i.e. {(pki , ..., pk+n−1
i )|1 ≤

k ≤ L − n + 1}. We set n = {2, 3, ..., L}. Each sub-

sequence is considered as an item, all the sub-sequences of

the video compose a transaction, and the transactions of all

videos compose the transaction database. We mine a set of

co-occurring sub-sequences for each pair of action classes

as spatial-part-sets mining. See Figure 4 for illustration of

the mining process.

4.4. Classification of Actions

We use the bag-of-words model to leverage spatial-part-

sets and temporal-part-sets for action recognition. In the

off-line mode, we pursue a set of part-sets for each pair of

action classes. Then, for an input video, we first estimate

poses and then quantize them using the proposed method.

We count the presence of part-sets in the quantized poses

and form a histogram as the video’s features(see Figure 3.d).

We train one-vs-one intersection kernel SVMs for each pair

of classes. In the classification stage, we apply the learnt

multiple one-vs-one SVMs on the test video and assign it

the label with maximum votes.

5. Experiments
We evaluate our approach on three datasets: the UCF

sport [17], the Keck Gesture [11] and the MSR-Action3D

[15]. We compare it with two baselines and the state of the

art methods. For the UCF sport and Keck Gesture datasets,

we estimate poses from videos by our proposed approach.

We report performance for both pose estimation and action

recognition. For the MSR-Action3D dataset, we bypass
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Figure 6. The confusion matrix of our proposed approach on the

Keck Gesture Dataset(training subset).

pose estimation and use the provided 3D poses (because the

video frames are not provided) to recognize actions. We

also evaluate our approach’s robustness to ambiguous poses

by perturbing the joint locations in MSR-Action3D.

5.1. Datasets

The UCF sport dataset [17] contains 150 videos of ten

human actions. We use the standard leave-one-out crite-

ria for evaluation. The Keck gesture dataset [11] contains

14 different gesture classes. There are three or four per-

sons performing the same gestures in the training and test-

ing datasets. We use leave-one-person strategy as [11]. The

MSR-Action3D dataset [15] contains 20 actions, with each

action performed three times by ten subjects. We use the

cross-subject test setting as in [15][21]

5.2. Comparison to two baselines

We compare our proposed representation with two base-

lines: holistic pose features and local body part based fea-

tures. A holistic pose feature is a concatenated vector of

14 joint locations. We cluster holistic pose features using

the k-means algorithm and obtain a prototype dictionary of

size 600. We describe each video with “bag-of-holistic pose

features” and use intersection kernel SVM classifier.

For local body part based features, we compute a sep-

arate pose dictionary for each body part, extract “bag-of-

body part” features, and concatenate them into a high di-

mensional vector. We use the intersection kernel SVM clas-

sifier. We set dictionary sizes to (8, 25, 25, 25, 25) for the

five body parts by cross validation. The approach is not

sensitive to dictionary sizes. Generally, the performance

improves as dictionary size increases but begins to degrade

after exceeding a threshold.

For our part-sets based representation, the support rate

and growth rate are set to 10% and 3 by cross validation.
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Table 1. Comparison of our method with the state-of-the-arts on

the UCF sport dataset. Sadanand et al [18] achieves the highest

recognition rate. But they manually constructed their Action bank
which makes it incomparable to automatic methods like ours.

Approach Year Accuracy(%)

Kovashka[13] 2010 87.27

Wang[20] 2011 88.20

Wu[24] 2011 91.30

Sadanand[18] 2012 95.00

Our method 90.00

Table 2. Comparison of our method with the state-of-the-arts on

the MSR-Action3D dataset.

Approach Year Accuracy(%)

Li[15] 2010 74.70

Wang[21] 2012 88.20

Our method 90.22

We obtain 1700, 513, 1630 spatial-part-sets and temporal-

part-sets in total for the UCF sport, Keck Gesture and MSR-

Action3D datasets respectively. We use intersection kernel

SVM classifiers as described in section 4.4.

On the UCF sport dataset, the holistic pose features and

the local body part based features get 69.33% and 78.67%
accuracy respectively. Our approach achieves 90% accu-

racy which is a big improvement over the baselines. Figure

5 shows the confusion matrix of our approach.

On the Keck Gesture dataset, the holistic pose features

achieve 76.30%/72.30% accuracy on training/testing sub-

sets, respectively, while local body part based features get

87.30%/81.50%. Our approach achieves highest accuracy

with 97.62% and 93.40%. The confusion matrix (see Fig-

ure 6) on the Keck Gesture dataset shows that our approach

can correctly differentiate almost all classes even for go
back and come near. Note that go back and come near ac-

tions have very similar poses but in reverse temporal order.

Temporal-part-sets play an important role here.

On MSR-Action3D, the three methods get 64.84%,

71.22% and 90.22% respectively. Our approach is shown

to boost the performance for both 2D and 3D poses.

5.3. Comparison to state-of-the-art performance

Table 1 summarizes the state-of-the-art performance on

the UCF sport dataset. We outperform [13]and [20], and

achieve comparable performance to [24]. Sadanand’s action

bank [18] achieves the highest recognition rate. But their

action bank is constructed by manually selecting frames

from training data, so it is not appropriate to compare our

fully automatic method to their’s.

To our best knowledge, the best results on the Keck

Gesture dataset are 95.24% and 91.07% [11] accuracy on

training and testing subsets respectively. We outperform it

Table 3. Comparison of action recognition using poses estimated

by [27] and by our method. The numbers in bold are the results of

our method and numbers above are the results of [27].

Dataset Holistic Body Part Our approach

UCF sport
60.67%

69.33%
70.00%

78.67%
85.33%

90.00%

Keck Gesture
56.35%

76.30%
72.22%

87.30%
82.54%

97.62%

with 97.62% and 93.40%. In particular, the most confusing

classes in [11], i.e. come near and go back, are well handled

in our representation. See Figure 6.

For the MSR-Action3D dataset, we achieve 90.22% ac-

curacy and outperform the state of the arts [21] by about

2%. See Table 2 for results on this dataset. The results val-

idate our representation’s applicability on 3D poses which

can be easily obtained by depth sensors.

5.4. Evaluation for Pose Estimation

We also evaluated the proposed pose estimation method.

We annotated 352 frames, which are randomly sampled

from the Keck Gesture dataset, for evaluation. We use stan-

dard evaluation protocol based on the probability of a cor-

rect pose(PCP)[27], which measures the percentage of cor-

rectly localized body parts. These experiments gave perfor-

mance of 88.07% for [27] and 92.39% for our method.

We also evaluated the pose estimation method in the con-

text of action recognition. Table 3 compares the action

recognition accuracy using poses obtained by different pose

estimation methods. The tables shows that using the poses

obtained by our method (which are more accurate) does im-

prove the action recognition performance compared to us-

ing the poses obtained by[27]

5.5. Evaluation on Model Robustness

Under challenging situations – such as cluttered back-

ground and video quality degradation – the estimation of

joint locations can be very ambiguous. We evaluated the

robustness of our proposed method as follows. We synthe-

sized a set of data by randomly perturbing up to 20% of the

3D joint locations in the MSR-Action3D dataset. Figure 7

shows the experiment results. The performance of holistic
pose features drop dramatically as the perturbation gets se-

vere, which is expected since the accuracy of joint locations

has large impact on holistic pose features. However, our

method outperforms the two baseline methods even with

perturbations of more than 10% of the joint locations.

6. Conclusion
We proposed a novel action representation based on hu-

man poses. The poses were obtained by extending an ex-

isting state-of-the-art pose estimation algorithm. We apply
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Figure 7. Recognition accuracy on MSR-Action3D when 0% −
20% of joint locations are perturbed.

data mining techniques to mine spatial-temporal pose struc-

tures for action representation. We obtained state-of-the-art

results on three datasets. Another advantage of our method

is that it is interpretable, compact and computationally effi-

cient. In future work, we intend to exploit this interpretabil-

ity and extend our method to more challenging data, includ-

ing dealing with significant occlusions and missing parts,

and to the recovery of poses in three-dimensions.
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