Peak Dynamic Power Estimation of FPGA-mapped
Digital Designs

Abstract— The Peak Dynamic Power Estimation (P D P E) prob-
lem involves finding input vector pairs that cause maximum
power dissipation (maximum toggles) in circuits. The PDPFE
problem is essential for analyzing the reliability and performance
of digital circuits prior to fabrication. This paper proposes a
methodology for solving the PDPE problem on circuits mapped
onto Field Programmable Gate Arrays (FPGAs). An FPGA-
mapped circuit comprises of a collection of Look Up Tables
(LUTs) connected by interconnects. Hence, the input to the
proposed algorithm is an LUT-level netlist (similar to gate-level
netlists that are generated in the ASIC design flow). To the best
of our knowledge, this is the first such technique reported in the
literature for the PDPFE on LUT-level netists. The proposed
methodology was experimented on the LUT-level netlists of
ISCAS’85 combinational benchmark circuits. A maximum toggle
estimate improvement of 32.05% is observed when compared
to a random estimation method on the same. The paper also
presents interesting observations on the non-correlation between
optimizations at the gate level and the LUT level netlists. These
suggest that low-power design techniques applied at higher levels
of design abstractions need not necessarily result in a design that
is power aware at the LUT level.

I. INTRODUCTION

With the advent of portable and high-density microelectronic
devices, excessive power dissipation is a problem of extreme
propensity. The continuing decrease in feature size, increase
in chip density and clock frequency in recent years have
invigorated concerns about excessive power dissipation in
modern VLSI chips. High power dissipation may lead to
drops in performance or in extreme cases cause burnouts
and damage to circuits. Peak power dissipation of a circuit
determines the thermal and electrical limits of components and
system packaging requirements [2]. Faster Times-To-Market
(I'TM) and expensive redesign cycles necessitate accurate
and efficient power estimation at an early design phase. The
peak power consumption corresponds to the highest switching
activity generated in the circuit during one clock cycle. The
energy per clock cycle (peak power) in the combinational
portion of a circuit can be computed as:

2
Vd d

Pr=—-—%
"= 9% frequency

x Y [toggles(g) x C(g)] (1)

Vg

where, the summation is performed over all gates g,
toggles(g) is the number of times gate g has switched from
0 to 1 or vice versa within a given clock cycle, C(g) is the
output capacitance of gate g and V4 is the supply voltage.
This work assumes that the output capacitance for each gate is
equal to the number of fanouts. Therefore, the total switching

activity (toggles) is the parameter that needs to be maximized
for maximum Ppg. Accurate estimations involve finding a pair
of input vectors which when applied successively to the circuit
maximize the value of Pr among all possible input vector
pairs. Given that the circuit has n primary inputs, there are 4™
possible input vector pairs to be considered for an exhaustive
search. Thus, the search space for the vector pairs is huge even
for reasonably large values of n. Similar to what is attempted
in the case of gate level netlists [3], this paper also assumes the
following abridged definition of the PDPE problem: Given
a LUT-level description L of the input circuit and an initial
input vector Vy, find an input vector Vi such that, the vector
pair Vy and Vi when applied in sequence, lead to maximum
switching activity in L. This reduces the search space to 2.

II. PREVIOUS WORK

The PDPE problem is well studied and reported for
gate-level netlists. In [4], the problem of worst-case power
computation was transformed to a weighted max-satisfiability
problem. Its limitations were constrained scalability and no
provision for delay incorporation. In [6] and [7], switching
time windows were used with partial input enumerations
for correlation resolution. Symbolic transition counts was
introduced in [8]. Automatic Test Generation (AT'G) based
techniques have also been proposed in the literature [9].
Inherently, they are limited by their lack of adaptation to
handle delay parameters. In [4] and [5] a test generation
strategy was devised for finding test patterns that would
produce the maximum power. The technique proposed in [4],
takes exponential times with respect to the number of levels in
the circuit and hence lacks scalability. Static timing analysis
was used in [5] to find the time instants at which the gates
can switch and this information was used to maximize energy
dissipation in a clock cycle. However, this approach requires
complete and specific information about the circuit and has
complexity proportional to the number of gates and fan-in.
Hence, it would take a large computation time to create a
valid sequence. A controllability based approach is reported
for the PDPFE problem in [3]. A detailed survey of the
methods reported in the literature for the PDPE problem
is presented in [3]. However, all the methods reported above
are for the gate-level netlists. This paper proposes a method-
ology for solving the PDPE problem on circuits mapped
onto Field Programmable Gate Arrays (FPGAs). An FPGA-
mapped circuit comprises of a collection of Look Up Tables
(LUTs) connected by interconnects. An FPGA-mapped circuit
comprises of a collection of LUTs connected by interconnects

which are generated based on a gate level or behavioral level
description of the circuit. The PDPE estimates on the circuit
can hence be an early gate level (description) estimate or a late
LUT level (post technology mapping) estimate. The LUT level
estimate is important when a design is realized on the FPGA,
as it reflects the dynamic power dissipated by the circuit on
the field. The input to the proposed algorithm is an LUT-
level netlist (similar to gate-level netlists that are generated in
the ASIC design flow). A k-input LUT is a 2* x 1 memory
with 2% bits capable of storing the truth-table of any k-input
Boolean function. Modern FPGAs have several such LUTs
which are programmed to realize different k-input functions
as required. To the best of our knowledge, this is the first such
technique reported in the literature for the PDPFE on LUT-
level netists. The proposed methodology was experimented on
the LUT-level netlists of ISCAS’85 combinational benchmark
circuits. A maximum toggle estimate improvement of 32.05%
is observed when compared to a random estimation method on
the same. The paper also presents interesting observations on
the non-correlation between optimizations at the gate level and
the LUT level netlists. These suggest that low-power design
techniques applied at higher levels of design abstractions need
not necessarily result in a design that is power aware at the
LUT level.

The rest of this paper is organized as follows. Section
III details the proposed algorithm. Section IV presents the
experimental results. Section V concludes the paper.

I1II. PDPFE PROBLEM ON LUT-LEVEL NETLISTS

This section presents the proposed methodology for solving
the PDPE problem on LUT-level netlists. The solution is
based on the traditional D-algorithm for test vector genera-
tion [1]. The proposed algorithm is similar to what is presented
in [3], but deals with LUTs instead of gate-level netlists. The
crucial step is the calculation of controllability values for the
LUTs in the given input netlist. The controllability values thus
calculated guides the D-algorithm. As mentioned earlier, the
methodology presented in this paper identifies an initial vector
Vb and computes another vector V71, such that applying V{, and
V7 are in order on the given LUT-level netlist L shall cause
maximum toggles on the interconnects of L. Following are the
important steps in the proposed algorithm.

Algorithm (LUT_Power_Virus)
begin
1) Initial Input Vector (V) Identification and Implication:
The selection of the initial input vector and the values as-
signed to the primary outputs for justification play a role
in affecting the performance (both speed and quality) of
the technique. In the proposed method, random vector
pairs are generated till every pair of the primary inputs
are assigned all possible sixteen combinations of binary
values. This is done to account for signal correlations
among at least every two primary inputs. Empirically,
the number of generated vector pairs needed to satisfy
the above property was close to n? , where, n is the

number of primary inputs of the circuit. Among these
n? pairs, the pair (P,(Q) which yields the maximum
switching activity is selected. The first input vector P
in this pair is used as the initial vector Vj. The initial
vector is applied to the circuit (implication) that results
in each of the wires in the circuit being assigned a 0 or
a 1. This value is denoted as the old-value of the wires.

2) Primary Output Assignment: The vector () computed
above is applied to the circuit and the values of the
primary outputs got by the application of the same are
computed. The primary outputs are assigned the com-
puted values, while all the other wires are unassigned.

3) Calculation of the Second Input Vector (V1): The vector
V) is calculated using the modified D-algorithm stated
in this section, such that on application of the same to
the input circuit shall result in

a) the primary outputs to take the values as calculated
in step (2) above; and,

b) maximize the number of wires that are assigned
a value different from the old-value computed in
step (1) above.

end. (LUT_Power_Virus)

It is straightforward to see that the above steps attempt to
generate a vector pair (Vy, V1) such that applying V; followed
by Vi in order to the input circuit shall attempt in maximizing
the number of toggles in the circuit and hence increase its
dynamic power dissipation. The remaining part of this section
shall present the modified D-algorithm used by step (3) above.

A. Modified D-Algorithm for LUT Netlists

The algorithm works on the LUT level representation of
the circuit and involves many of the D-Algorithm modules
discussed in [1]. The algorithm starts with all the LUTSs
which drive primary outputs as the J-Frontier (Justification
Frontier). Note that the primary outputs are assigned binary
values by the step (2) of Algorithm LUT_Power_Virus. During
the execution of the modified D-algorithm the J-frontier has
all the LUTs whose outputs are assigned and one or more of
its inputs are unassigned, as defined in step (2) of Algorithm
LUT_Power_Virus.

1
1
a output
b — O
1
Fig. 1. 2-input LUT

The main step in the modified D-algorithm is to justify

the LUTs in the J-Frontier. The justification step as follows:
To justify (set the value of) the output of the 2-input LUT
in the Figure 1 to 0, the inputs (a,b) are set to (1,0). To
justify a value of 1 at the output of the LUT, the inputs may
be set to either (0,0), (0,1) or (1,1). Justifying one LUT
L may assign values to the outputs of other LUTs driving
the inputs of L, hence adding them to the J-Frontier. The
above step is repeated till the J-Frontier has no more LUTS.
The justification step may cause inconsistencies, specifically in
the case of reconvergent fanouts [1], as illustrated in Figure .
In this case, the LUT B is justified for O at its output, by
assignment of (1,1) to its input. This results in LUT A
entering the .J-Frontier with a requirement to justify its output
as 1. The algorithm choses (0,0) as inputs to LUT A. Note
that one of the inputs of A is already assigned 1 leading to
an inconsistency. This consistency check is performed by the
imply_and_check() procedure after very justification step. If
this procedure returns a consistency check failure, the last
decision is backtracked. The input assigned to the LUT is
marked as forbidden. In the Figure 2 the next decision would
be to assign (1,1) to the inputs of LUT A to justify its output
with the value 1. This shall not lead to an imply_and_check
violation. The variable Back_Threshold is used to control the
number of backtracks at an LUT. If the number of backtracks
exceeds this limit on a particular LUT, then of all the inputs
tried at the LUT, that forbidden input that caused the maximum
toggles in the given netlist is assigned as input. This shall cause
inconsistency on some of the nets which were earlier assigned
to some binary values. The new values are forced on them
to resolve the inconsistency. This is done by the procedure
imply_and_force().

b 1| LUTB
1 0
0 ’
LUTA
1 1
L e
0
a 0
—>
1
Fig. 2. Inconsistency due to Reconvergent Fanouts

The next important step in the modified D-algorithm is to
select the LUTs for justification and justify the same. This is
performed by the function justify_best(). The following steps
explain the working of the function justify_best().

1) Of several LUTs in the J-Frontier, select the next one
for justification. The order does matter as justifying
one LUT may influence the others due to presence
of reconvergent fanouts that may commit some of the
inputs of the LUTs in the J-Frontier. A controllability
measure introduced later in this paper is used for this
purpose. There are two controllability measures defined

later, namely, the O-controllability and 1-controllability.
The measures are defined in such a way that if the output
of an LUT has a high value of 0- (1)-controllability then
it is easy to justify O (1) on it. Therefore, of all the
LUTs L with a need for justifying ¢ on its output, the
one with the highest ¢-controllability value is selected
for justification.

2) As seen in Figure 1, there are more than one way for
justifying 1 on the output of the LUT. For a given LUT,
of all the possible inputs that shall justify the required
binary value on its output, the one that is not forbidden
(already tried) and that which causes the maximum
toggle at its input shall be selected. In other words, let
the inputs of LUT B in Figure 2 were assigned (1, 1)
by the step (1) of Algorithm LUT_Power_Virus, that is
their old_value is (1,1). Now, the output of LUT B is
to be justified with 1. For this there are two choices of
inputs, namely, (0,0) and (1,0) as seen from Figure 2.
The function will choose (0,0) in this case, as that
shall cause two toggles at the inputs of LUT B, while
choosing (1, 0) shall cause only one toggle at the inputs
of LUT B.

The Algorithm 1 presents the modified D-algorithm. The
Algorithm LUT_Power_Virus calls Algorithm 1 in Step (3)
after initializing the J-Frontier with the LUTs that drive
primary outputs.

B. Calculation of Controllability Values

This section defines the controllability values for the inter-
connects in a given LUT-level netlist. As mentioned earlier,
the controllability values guide the modified D-algorithm for
selecting the next LUT in the J-Frontier for justification.
Two controllability values are defined for every interconnect
I, namely, the 0- and 1- controllability values, denoted by Cé
ad C{ respectively. The C{ (C¥) is a measure of the ease
with which a line I shall take a value 0(1). The controllability
values are in the range [0..1]. Higher ¢-controllability value
on an interconnect I implies that it is more easy to justify the
value t on I. The 0- and 1- controllability values of primary
inputs are 1. For an m-input LUT, driven by at least one
primary input, the controllability values for its output I is
given as follows:

C! = number of zeroes stored in the LUT/2™ ()

C{ = number of ones stored in the LUT/2™ 3)

Note from the above equations that C{ + Cf = 1 for
the outputs I of all LUTs that are driven by at least one
primary input. For the other LUTSs the controllability values
are calculated as explained through the following example.
Consider a 3-input LUT with wires N1, N2 and N3 as its
inputs (in that order) and none of them are primary inputs. Let
NO be its output. Assume that the 8-bits stored in the LUT are
01010100. Let CN1,CN? and C? be the one controllability

Algorithm 1 MODIFIEDLUTDALGORITHM

—_

MODIFIED LUT D_ALGORITHM()

2: if Imply_and_check() # TRUE then

3: return false;

4: end if

5: if J-Frontier = ¢ then

6: return true;

7. end if

8: while J-Frontier # ¢ do

9: justify_best();

10: Let it return LUT L and inputs F' to L.

11: Assign F to L and modify J-Frontier;

12: Let R be the set of new LUTSs added to J-Frontier;

13: if Modified LUT D_Algorithm() = true then

14: return true;

15: else

16: if backtrack_counter(L) = Back_Threshold then

17: Imply_force()

18: backtrack_counter(L) = 0; // reset counter

19: else

20: Mark input F' as forbidden to L;

21: Remove all LUTS in R from J-Frontier
and Add L to the J-Frontier;

22: Make all inputs of L assigned by the func-
tion justify_best() as unassigned,

23: end if

24: end if

25: end while

values and C{'',C{"? and C{¥3 be the zero controllability
values of input wires N1, N2 and N3 respectively. The
one/zero controllabilies C{¥°/C{N0 of output N0, is calculated
as follows:

o One Controllability: A one can occur on the output wire
NO due to three of the eight possible input combinations -
the cases are when {N1 =0, N2=0,N3 =1}, {N1=
0,N2=1,N3=1},0or {N1 =1,N2=0,N3 = 1}.
Hence

CiNO:CéVlcéVZCiN3+OéV1017V20i7V3+011V106V20i7V3

o Zero Controllability: The zero controllability of NO can
be calculated using a similar approach as the that for the
one controllability. However, an easier method would be

Cp?=1-CN°

This follows from the fact that C{! + CN! = 1, and
similarly for N2 and N3. The above equality can be
inferred easily using a simple induction with the base
case as the controllability values of outputs of LUTs that
have at least one input driven by primary inputs.
The same can be easily extended to calculate the controllability
values of the output of any general m-input LUT storing any
arbitrary 2" bits.

IV. EXPERIMENTAL RESULTS

The proposed technique was employed on ISCAS’85 combi-
national benchmark circuits. These circuits were synthesized
using the Xilinx ISE synthesis tool to generate a LUT-level
netlist. Table I compares the number of toggles estimated by
the proposed technique with that obtained by simulating the
LUT-level netlist with 10* random pairs and selecting the one
that yielded the maximum number of toggles. From Table I it is
clear that in all the cases, the proposed technique has generated
vector pairs that cause more toggles than the ones generated
by the random method. In the case of the c2670 circuit the
proposed method has computed a vector pair that produces
32.05% more toggles than the ones produced by the random
vector pair. The Back_Threshold was set to 50 in Algorithm 1.
All results reported in this section are for weighted toggles
which account for the fanout of the switching gates as defined
in Equation (1) in Section I.

TABLE I
PDPE USING RANDOM AND CONTROLLABILITY BASED ESTIMATES

LUT Cul Est | LUT Rand Est Toggle Count
Circuit LUT Sim Gate Sim % Improvement
C432 236 184 28.26
C499 147 118 24.58
C880 242 191 26.70
C1355 183 157 16.56
C1908 219 181 20.99
C2670 581 440 32.05
C3540 749 699 07.15
C5315 934 780 19.74
C6288 1352 1344 00.59
C7552 1075 997 07.82

A. Correlation with Gate Level Estimates

The results presented in Table II lead to some interesting
observations that are discussed further in the rest of this
section. The column 2 of Table II presents the peak toggles
on gate-level netlists as reported in [3]. These were got
by generating random vector pairs and using that pair that
generated the maximum number of toggles. The toggles in
column 3 are again reported in [3] that used a controllability-
driven method on gate-level netlists. Columns 4 and 5 are
the results got by employing the proposed technique on LUT-
level netlists and are same as reported in Table I. The vector
pair that yielded the maximum number of toggles in the LUT-
level netlist as reported in column 4 (random simulation) was
input to the corresponding gate-level netlist; the toggles were
calculated and the results are reported in column 6 of Table II.
Similarly, the vector pair that yielded the maximum number
of toggles in the LUT-level netlist as reported in column 5
(method proposed in this paper) was input to the corresponding
gate-level netlist; the toggles were calculated and the results
are reported in column 7 of Table II. Here are the interesting
observations based on the results reported in Table II.

1) There is no correlation between the peak toggles at
the Gate-level and the corresponding LUT-level netlists:

2)

TABLE I
COMPARISON OF POWER RESULTS FOR ISCAS’85 COMBINATIONAL BENCHMARK CIRCUITS

Number of Weighted Toggles
Circuit | Gate Rand Est | Gate Ctrl Est | LUT Rand Est | Lut Ctrl Est | LUT Rand Est | LUT Ctrl Est
Gate Sim [3] Gate Sim [3] LUT Sim LUT Sim Gate Sim Gate Sim
C432 201 270 184 236 227 160
C499 272 303 118 147 306 276
C880 437 582 191 242 516 394
C1355 530 610 157 183 583 601
C1908 858 973 181 219 1001 1113
C2670 1332 1516 440 581 1427 1351
C3540 1531 1727 699 749 1947 1579
C5315 2570 3007 780 934 2603 2678
C6288 2558 2684 1344 1352 3411 3352
C7552 3591 3670 997 1075 4426 4240

For example, consider the case of C432 as reported
in Table II. The vector pair that generated 184 tog-
gles in the LUT-level netlist (Column 4 of Table II)
generated 227 toggles on the corresponding gate-level
netlist (Column 6 of Table II), while the vector pair
that generated 236 toggles on the LUT-level netlist
(Column 5 of Table II) generated only 160 toggles on
the gate-level netlist (Column 7 of Table II). Similar
is the case for the other circuits too as seen from
Table II. This lack of correlation between the gate-level
and LUT-level peak power estimates are also apparent
from Figure 3. The plots were made by generating 103
random vector pairs; applying each of them on both
the LUT-level and Gate-level netlists; and counting the
toggles at the gate and the LUT-level. In the figure,
the sorted LUT values are plotted on the X-axis and
the corresponding gate level estimates are on the Y-axis
for five benchmark circuits - c432, c880, c1908, ¢3540,
¢5315 and ¢7552. If there existed a correlation between
the the two estimates, a regular variation relationship
among these would have been observed in the plot.
The variation should have been along a straight line.
However, there is a rugged dependancy proving the
lack of correlation. The results presented in Table III
show some interesting anomalies for two ISCAS’85
benchmark circuits, namely, the c1908 and c1355. For
the c1908 circuit there are two vector pairs that produce
145 toggles when applied to the LUT-level netlist, but
the same vector pairs produce 570 and 1523 toggles
respectively when applied on the corresponding gate-
level netlist. For the c1355 circuit, there is a vector pair
that produces lesser number of toggles on the gate-level
netlist than the LUT-level netlist.

LUT level estimates lead to better gate level estimates:
As seen in Table II, for the c6288 and ¢7552 benchmark
circuits the vector pair generated for the LUT-level
netlists yielded better number of toggles when applied
to the corresponding gate-level netlists than what was
reported in [3]. Compare columns 2 and 3 with 6 and
7 respectively in Table II. An intuitive reasoning for the

same could be that the LUT level netlists are lesser in
size than the corresponding Gate level netlists. This may
lead to a better exploration of the search space resulting
in better estimates. However, the above reasoning is not
valid in general, due to the lack of correlation in power
estimation between the gate-level and the corresponding
LUT-level netlists.

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

RANDOM PEAK TOGGLES FROM GATE NETLIST

500

o i
0 100 200

300 400 500 600 700
RANDOM PEAK TOGGLES FROM LUT NETLIST

800 900 1000

Fig. 3. LUT and gate net toggles for identical random vector inputs.

V. CONCLUSION

In this paper, we have looked at the PDPE problem at the
LUT level. For this, we make use of a modified version of
a D-Algorithm to guide the toggle maximization, similar to
that proposed in [3]. To the best of our knowledge, this work
is the first of its kind which addresses the PDPE problem
at the LUT level. From our experiments using the proposed
controllability based methods, we have shown a maximum im-
provement of 32.05% in the PDPE toggle estimate over the
random approach. Besides the new methodology for PDPE,
a very interesting conclusion which can be drawn from these
experiments is that the PDPE relationship between LUT
and Gate level estimates are uncorrelated. An optimized
D-Algorithm estimation at the LUT level maximizing the

TABLE III
EXEMPLARY ANOMALIES IN LUT VS GATE LEVEL POWER ESTIMATES

1908 LUT level | Gate level
V1=000011000110001011001101011110100
V5=110111000001111010000001101000100 128 615
V1=011111101000111111011111010011110
V2=011011100011110011101100111011000 145 570
V1=101110000101001010000001111011111
V2=101000100100111001101000010011100 128 555
V1=101101101100010110100000011100101
V5=010010000011011000010010011010110 145 1523

c1355 LUT level | Gate level

V1=01101110000000000000000000000000000000000
V2=11101000000000000000000000000000000000000 132 193
V1=10001111000000000000000000000000000000000
V2=00111011000000000000000000000000000000000 141 224
V1=10000110000000000000000000000000000000000
V2=00001110000000000000000000000000000000000 129 90
V1=10001111000100000000000000000000000000000
V2=00111011010011010000000000000000000000000 103 277

wire toggles does not necessarily reflect in a corresponding
maximization at the gate level. A possible explanation for
this would be that there is hardware abstraction in LUTSs
which hide gate level details and collapse logic blocks (after
optimizations sometimes) to lead to lower number of LUT
nets. Hence, an PDPFE optimization at the LUT level may
not necessarily mean an optimization at the gate level and
vice versa. This point is furthered by the illustrations shown
in Figure 3. They clearly show an irregular trend and hence
a skewed relationship between the gate-level and LUT-level
estimates for peak power in digital circuits. From this it can be
inferred that it is not enough to address the power-aware issues
for FPGA-targetted designs at the higher levels of abstraction
(that includes gate-level), and is necessary to address the same
at the technology-mapping stage of the FPGA design flow.

REFERENCES

[1] M. Abromovici, M. A. Breuer and A. D. Friedman, Digital Systems
Testing and Testable Design, Jaico Publishing House, Mumbai, 2002.

[2] W. Wenzel and K. Hamacher, Stochastic Tunneling Approach for Global
Minimization of Complex Potential Energy Landscapes Physical Review
Letters 82, Issue 15, pp.3003-3007, April 1999.

[3] K. Najeeb, K.Gururaj, V. Kamakoti and V.M Vedula Controllability-
Driven Power Virus Generation for Digital Circuits Journal of Low
Power Electronics, Vol. 3., pp.280-292, 2007.

[4] S. Devadas, K. Keutzer and J. White, Estimation of Power Dissipation in
CMOS Combinational Circuits Using Boolean Function Manipulation
IEEE Trans. on CAD,, Vol.11, No.3, pp.373-383, March 1992.

[5]1 C.Y Wang and K. Roy, Maximization of Power Dissipation in Large
CMOS Circuits Considering Spurious Transitions ~ IEEE Tran. on
Circuits and Systems, Vol.47, No.4, pp.483-490, Apr 2000.

[6] H Kriplani, Worst Case Voltage Drops in Power and Ground Buses of
CMOS VLSI Circuits PhD. Thesis, University of Illinois, 1992.

[7]1 H Kriplani, F. Najm and 1. Hajj, Resolving Signal Correlations for
Estimating Maximum Currents in CMOS Combinational Circuits Proc.
of the Design Automation Conference, pp.384-383, 1993.

[8] S. Manne, et.al, Computing the Maximum Power Cycles of a Sequential
Circuit Proc. of the Design Automation Conference, pp.23-28, 1995.

[9] C.Y Wang, K. Roy and T. Chou, Maximum Power Estimation for
Sequential Circuits Using a Test Generation Based Technique Proc. of
Custom Integrated Circuits Conf. 1996.

