This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Algorithm-Driven Architectural Design
Space Exploration of Domain-Specific
Medical-Sensor Processors

Mohammed Shoaib, Student Member, IEEE, Niraj K. Jha, Fellow, IEEE, and Naveen Verma, Member, IEEE

Abstract— Data-driven machine-learning techniques enable the
modeling and interpretation of complex physiological signals.
The energy consumption of these techniques, however, can be
excessive, due to the complexity of the models required. In this
paper, we study the tradeoffs and limitations imposed by the
energy consumption of high-order detection models implemented
in devices designed for intelligent biomedical sensing. Based on
the flexibility and efficiency needs at various processing stages
in data-driven biomedical algorithms, we explore options for
hardware specialization through architectures based on custom
instruction and coprocessor computations. We identify the limi-
tations in the former, and propose a coprocessor-based platform
that exploits parallelism in computation as well as voltage scaling
to operate at a subthreshold minimum-energy point. We present
results from post-layout simulation of cardiac arrhythmia detec-
tion with patient data from the MIT-BIH database. After wavelet-
based feature extraction, which consumes 12.28 ©J, we demon-
strate classification computations in the 12.00-120.05 uJ range
using 10000-100000 support vectors. This represents 1170x
lower energy than that of a low-power processor with custom
instructions alone. After morphological feature extraction, which
consumes 8.65 uJ of energy, the corresponding energy numbers
are 10.24-24.51 uJ, which is 1548 x smaller than one based on
a custom-instruction design. Results correspond to V7 = 0.4 V
and a data precision of 8 b.

Index Terms— Biomedical sensor processors, classification
accelerators, embedded machine learning, low-energy design by
voltage and precision scaling, structured hardware specialization,
support-vector machines.

I. INTRODUCTION

IOMEDICAL devices are striving to provide high-value

analysis of physiological signals. Through continuous
analysis of such signals, outpatient monitoring networks,
for instance, promise comprehensive healthcare delivery over
large populations and potentially diverse disease states [1].
The central need, as these systems aim to provide actionable
outputs [2], is the ability to detect specific physiological
states of interest from signals that are available through
minimally invasive and low-power sensors. This poses two
essential challenges: 1) the signal correlations to clinically
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relevant states are often too complex to model based on
physiology and 2) the precise correlations are hard to isolate
in the presence of normal physiologic activity. In the case of
arrhythmia detection based on electrocardiogram (ECG) sens-
ing, for instance, abnormal ECG beat morphologies exhibit
only subtle variations compared to normal waveform activity.
Their discrimination from each other and from normal beats
poses a major challenge for signal detection and analysis.

Both the targeted and background variations are often
expressed through specific manifestations in physiological
waveforms. A potential key to accurate signal detection could
thus lie in the ability to develop models based on representative
or exemplary data. In fact, data-driven modeling techniques are
emerging as a powerful approach for overcoming the men-
tioned challenges [3]. This, in large part, has been prompted
by the recent large-scale availability of data in the healthcare
domain as well as the development of machine-learning tech-
niques that are capable of exploiting large amounts of data to
model specific correlations and then use the models within a
decision function [4]. Furthermore, data-driven modeling often
involves probabilistic methods for model construction and can
thus also tolerate substantial variations due to background
physiologic activity [5].

For the systems of interest, however, the computations
involved must be achieved at very low power levels (e.g.,
1-10 mW for wearable devices and 10-100 uW for
implantable devices [6]). In the recent literature, low-power
processing platforms for biomedical detection have empha-
sized an optimization of signal-processing computations,
largely based on synthesis and analysis operations [7]-[9].
In contrast to these techniques, data-driven methods focus on
modeling and classifying signals by exploiting potentially rich
data that are available. With regard to data-driven methods,
applications have been based not on low-power sensors, but
rather on high-performance computing clusters with substan-
tially relaxed energy constraints [10], [11].

In the biomedical domain, chronic patient monitoring
devices are beginning to exploit data-driven techniques, but
have thus far been limited in their ability to incorporate the
complete computation [2], [12], [13]. It has been shown,
for instance, that local feature computations can be per-
formed on the signal, reducing the communication data so
that computationally intensive data-driven classification can
be performed on a separate device [12]. Another direction
for medical sensors has been to employ application-specific
architectures for low energy [14], [15]. Such systems, however,
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lack applicability to a broader range of detection problems.
In [16], we presented a specialized computational platform for
data-driven biomedical monitoring. In this paper, we inves-
tigate the principles behind a hardware-specialized architec-
ture for data-driven biomedical algorithms by quantitatively
evaluating various platform options, from general-purpose
CPUs to custom instructions to hardware coprocessors. For
the coprocessor approaches, we also evaluate the potential
of microarchitecture and circuit-level opportunities, such as
dynamic voltage and precision scaling. We thus propose an
algorithm-driven methodology that takes advantage of the
computational structure and the characteristics of data-driven
patient monitoring algorithms. Our specific contributions are
as follows.

1) We present an energy analysis of representative
biomedical detection applications (cardiac arrhythmia
detection is considered in detail). The analysis is
based on patient data from the MIT-BIH database
[17] and shows that classification, the complexity of
which depends on the characteristics of the data, poses
the primary energy limitation. We also show that the
computational structure of classification limits the
energy savings attainable through the use of custom
instructions.

Based on the energy analysis and the computational
requirements of various parts of the algorithm, we
propose a generalized architecture for a biomedical
computation platform. This attempts to employ
programmability where computational flexibility is
required, while leveraging hardware specialization for
classification, where set computations are required at
very high energy efficiency.

We propose a transistor-level design of a classifica-
tion coprocessor that leverages a low-power technology
(i.e., low-leakage FD-SOI). Specific requirements for
computational flexibility are identified and incorporated
through hardware scalability in a parallelized subthresh-
old implementation that operates at the minimum-energy
supply voltage.

2)

3)

The rest of this paper is organized as follows. In Section II,
we present an analysis of the data-driven biomedical algo-
rithms and identify the computational steps involved. In
Section III, we explore the architecture of a low-energy data-
driven computational platform through custom instructions and
a coprocessor. In Section IV, we describe specialized circuits
at the transistor level, including a variable-precision multiply-
accumulate (MAC) unit for the coprocessor-based implemen-
tation. In Section V, we present post-layout simulation results
for the coprocessor. Finally, we conclude in Section VI.

II. APPLICATION-DOMAIN ALGORITHMIC STUDY

In this section, we describe the general computational struc-
ture of algorithms used for analyzing physiological signals. We
focus on arrhythmia detection, which employs morphological
and wavelet features and performs detection computations
based on a support vector machine (SVM) classifier.
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Fig. 1. Structure of data-driven biomedical detection algorithms, including
offline training and online detection (employing biomarker extraction and
interpretation).

A. General Structure of Algorithms

Cardiac arrhythmias refer to abnormal heart beats that are
indicative of a range of cardiovascular conditions. We focus on
arrhythmia detection as an example in our algorithmic study.

Fig. 1 illustrates the structure of a typical machine-
learning-based data-driven analysis algorithm. In the arrhyth-
mia detection case study, ECG data are preprocessed for
noise removal (band-pass filtering), QRS-complex detection
[18], and beat segmentation [19]. Subsequently, the detection
process involves the following two primary steps, namely,
biomarker extraction, and biomarker interpretation (through a
classifier) [20]. Biomarkers refer to specific signal parameters
that are indicative of the physiological state of interest [21],
[22]. For arrhythmia detection, a range of biomarkers have
been used, including ECG morphology, beat intervals, and
spectral features [23]-[26]. The diversity in the choice of
biomarkers is due to the various clinical tradeoffs introduced
by each, which can also be variable across patients [27], [28].
In this paper, we use two prominent biomarkers: waveform
morphology [23] and spectral wavelets [29]. The associated
processing steps, including segmentation (to isolate individual
beats), are then implemented in software (enabling the energy
analysis presented next). The outputs from these stages form
the feature vectors that are used for classification.

Following the feature extraction process, an SVM is used
for data-driven modeling and classification. SVMs are popular
machine-learning classifiers that can be efficiently trained
offline. This process results in a set of vectors, called support
vectors (SVs), which are used to model the data by repre-
senting a decision boundary. Although training can be done
offline, classification, through the application of the SV model,
must be performed in real time for chronic detection. The
actual classification computation is shown below for radial
basis function (RBF) and polynomial transformation kernels

Nsv
DATA CLASS = sgn | > K (X-sVi)a;yi — b 1)
i=1
where
K& %) = exp(—y ||IX — svi||*) RBF kernel

F(X-svi + p)¢ Poly. kernel.
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accuracy of classification for (a) RBF and polynomial kernels of order 3 and
(b) polynomial kernels of order 2 and 4.

TABLE I
XTENSA CUSTOM PROCESSOR CONFIGURATION

Parameter Configuration
Instruction width 24 b
Pipeline length 5 stages
Pipeline type Uniscalar
General-purpose registers 16
ALUs 1
Branch units 1
Core frequency 10 MHz
Instruction RAM 2 kB
Data RAM 4 kB
Datapath width 32 b

Disabled Options

Multipliers (MUL32/MUL16), Viterbi unit,
Single-cycle MAC, zero-overhead loop,
Normalized shift, min/max unit,
ICache/DCache associativity

Here, sgn[] is the signum function, X is the feature vector to
be classified, and sv; is the ith support vector (b, d, a;, B, y,
and y; are training parameters).

As the number of support vectors (Ngy) and the feature-
vector dimensionality (Dgy) scale, the classification com-
putations are dominated by the dot product between X and
svi. Further, in (2), K represents a kernel function, whose
choice, along with Ngy and Dgy, can have a major impact
on classifier complexity.

B. Need for Advanced Classification Models

In this section, we present the limitations of using simple
classification models (which would address the complexity
challenge described above). Experimental results show that,
as the model complexity reduces, the classifier performance
degrades, necessitating high-order models. The detection algo-
rithms illustrated in Fig. 1 are implemented using SVM-
Light [30], which is an open-source implementation of an
SVM, for the classifier. To correctly analyze the computational
complexities and tradeoffs imposed by the model, we use
patient data from the MIT-BIH database [17].

If the feature vectors were linearly separable, a linear
kernel function (k) could be used for classification [31]. The
test vector could then be pulled out of the summation in
(2), enabling precomputation of a single decision vector. As
a result, even when Ngy scales, the classification energy

dominate those of feature extraction. (b) Classification energy scales with
Dgy. Ngy and Dgy represent classification complexity.

can remain constant. However, biomedical applications have
shown to perform poorly when linear decision functions are
used with medical datasets [32]. Nonlinear functions, such as
high-order polynomials, RBFs, or sigmoidal kernels, are thus
needed for acceptable classifier accuracies [33]. Several bio-
medical detection systems in the literature employ nonlinear
kernels for classification. For instance, using polynomial and
RBF kernels, 15.8% and 47.4% improvements in detection
accuracy are reported in [34] and [35], respectively.

The performance of the classifier depends on the SV model
and the characteristics of the application data. Figs. 2(a)
and (b) show how the sensitivity and specificity for arrhythmia
detection degrade as Ngy is reduced.! In order to reduce Ny,
the training parameters b, d, a;, 5, y, and y; are adjusted
along with the choice of the data subset used for training.
Thus, the model complexity depends on the characteristics
of the application data and introduces an unavoidable trade-
off with respect to accuracy performance. We next present
an energy analysis of the end-to-end arrhythmia detection
algorithm, which employs high-order detection models for
accurate signal classification. This analysis will enable an
architectural study toward a low-energy application-domain
processor.

III. APPLICATION-DOMAIN ARCHITECTURAL STUDY

We take three approaches in our architectural study. First,
we implement the entire arrhythmia detection algorithm on an
embedded low-power base processor. We find that classifica-
tion poses the energy bottleneck due to the complexity of the
models required. We then explore opportunities for hardware
specialization through custom instructions and finally through
a coprocessor.

For the base processor, we use the Xtensa processor from
Tensilica, which is a customizable and extensible platform
[36]. A family of processors can be built around the base
instruction set architecture (ISA) of the synthesizable Xtensa
processor core [37], [38]. As a result, custom processor
configurations can be obtained with optimized performance,
power dissipation, code size, and die size. Design automation
algorithms and tools for extensible and configurable processors
are discussed in [39] and [40]. Design-space exploration of the

1Sensitivity = (Tp/Tp + Fy) and specificity = (Tyy/Ty + Fp), where
T(F)n(p) is the number of true (false) negatives (positives).
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TABLE 11
SOFTWARE ENERGY (PER TEST VECTOR) FOR PREPROCESSING AND
FEATURE EXTRACTION ON THE BASE XTENSA PROCESSOR CORE

Computational Step Energy/Test Vector
Preprocessing segmentation 84.02 uJ
Morphology feature extraction 2.61 ul
Wavelet feature extraction 29.28 ul
Tensilica processor parameters allows customizing the

base processor to achieve minimum-energy consumption.
The major parameters include the choice of multipliers
(MUL32/MULI16), instruction/data cache sizes and
associativities (range of 0-16 kB and 2-16), and
datapath/instruction path widths (range of 8-32 b). We
pick the design parameters that lead to minimum-energy
consumption based on an initial parameter-space exploration.
The configuration obtained for the base processor is shown in
Table I. We present energy profiling results of the arrhythmia
detector on the configured base processor.

A. Implementation on the Base Processor

In this section, we present energy analysis of a software
implementation of the arrhythmia detector on the Tensilica
base processor; initial design profiling leads to the configu-
ration parameters shown in Table I. Note that even though
classification involves dot product computations, including
multipliers (MUL16 and MUL32) in the base processor leads
to higher energy consumption. In Section III-B, we show that
this energy increase is due to the overhead of fetching high-
dimensional data for the multipliers.

The energy profiling results for the preprocessing and
feature extraction steps are shown in Table II (results are
shown at the operating frequency of 10 MHz and supply
voltage of 1.2 V). A feature vector is derived every heart
beat and consumes 84.02 uJ for segmentation, which includes
the process of isolating individual heartbeats along with the
filtering of noise and other interference sources. Subsequently,
2.61 and 29.28 uJ of energy is consumed for morphological
and wavelet feature extraction, respectively.

Fig. 3(a) and (b) shows the energy of classification versus
Nsy and Dgy, respectively. Both the number and dimension-
ality of the SVs are representative of the model complexity.
It can be seen that, because of energy scaling, classification
energy rapidly dominates that of feature extraction. Nsy
10000, using wavelet features and a fourth-order polynomial
kernel, for instance, leads to an energy consumption ratio of
941:3:1 for classification, preprocessing, and feature extrac-
tion, respectively. At Ngy = 100000, the ratio increases to
5172:3:1. As described in Section II-B, to avoid compromising
accuracy, biomedical applications generally require complex
models, causing the classification energy to be dominant.
The energies reported in other biomedical applications exhibit
a similar trend (e.g., seizure detection based on electroen-
cephalograph classification [12]).

The output of the Xtensa profiling tool for classification
computations is shown in Table III. The dot product computa-
tions required in (2) are shown in bold (sprod_ns and kernel).
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These functions correspond to the Ngy and Dgy analysis
presented in Section II-B, and constitute over 70% of the
computations. Thus, classification is the energy-intensive com-
putational step and is targeted next for hardware specialization
through custom instructions and a coprocessor.

B. Custom-Instruction-Based Platform

In this section, the use of custom instructions is explored as
a hardware-specialization option. We primarily focus on the
classifier because of its importance in determining the total
energy. We find that the custom instructions are insufficient for
achieving significant classifier energy savings. This is due to
the overheads that remain for fetching high-dimensional data
from memory. Thus, the energy reductions achievable through
the use of custom instructions for classification are limited
because of the large number of operands involved in the dot
product computation.

The Tensilica Xpress compiler [36] is used to optimize the
software implementation. This involves an automatic design
space exploration of the potential custom instructions. SVM
classification, wavelet transform with Daubechies wavelets of
order four, and morphological feature extraction functions
(including threshold selection and QRS isolation) are cho-
sen for implementation as custom instructions. We perform
Xpress synthesis using FLIX, Fusion, and SIMD instructions
provided by Tensilica [36]. These design options provide
optimization techniques, including automatic vectorization in
the custom processor. Fusion instructions enable the lowest
energy implementation. Table IV shows the top three custom
instructions obtained for the feature-extraction and classifi-
cation computations. The number of calls to each custom
instruction is also shown as a percentage of the total instruc-
tions. We observe that there is no commonality in the custom
instructions across feature-extraction and classification compu-
tations. Figs. 4(a) and (b) show the classification energy after
a custom-instruction-based optimization (corresponding to
wavelet and morphological features, respectively). The energy
consumption is still substantially dominated by classification.
At Ngy = 10000, for a fourth-order polynomial kernel, the
ratios of energy consumption for classification, preprocessing,
and feature extraction computations are 4432:3:1 and 720:3:1,
for the wavelet and morphological features, respectively.
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TABLE III
TENSILICA CODE PROFILER OUTPUT FOR THE SVM CLASSIFIER

Morphological Features, Dgy = 26, Ngy = 10000, Frequency = 10 MHz

Function Percentage Self Cumulative Number of
Name Time (%) Secs. Secs. Cycles
sprod_ns 59.12 0.09 0.09 925748
kernel 11.67 0.02 0.11 182738
smult_s 7.95 0.01 0.12 124487
add_vector_ns 6.54 0.01 0.13 102408
Wavelet Features, Dgy = 256, Ngy = 10000, Frequency = 10 MHz
Function Percentage Self Cumulative Number of
Name Time (%) Secs. Secs. Cycles
sprod_ns 63.30 0.57 0.57 5688984
kernel 12.89 0.12 0.69 1158467
smult_s 8.34 0.08 0.77 753113
add_vector_ns 6.60 0.06 0.83 593164

Self Secs. is the number of seconds accounted for by a particular function alone.
Cumulative Secs. is a running sum of the number of seconds accounted for by a function and those listed above it.

TABLE IV
CUSTOM INSTRUCTIONS FROM THE XPRESS COMPILER AT Ngy = 10000

Custom Instruction % of Total Instr.

Preproc. + Morphology

fusion.nop.loopgt.extui 32.6
fusion.abs.add8 x 8.extui 11.4
fusion.nop.neg8.extui 9.0
Preproc. + Wavelet
fusion.ssl.mul8x 16_0.extui 21.9
fusion.18rzl.extai 17.2
fusion.movt.z.extui 8.4
Classification
fusion.movi8 x 16.extui 13.1
fusion.add.sdd8 x 16.simcw.extui 54
fusion.sll.sub16x 16_0.extui 5.3

Table V summarizes the resulting energy savings obtained
through custom-instruction-based optimization. This optimiza-
tion leads to roughly 10x energy improvement for the
preprocessing and feature-extraction operations. However,
optimization of classification computations leads to roughly
only 2x reduction in energy. The limited energy reduction
for classification is due to the large amount of data, which
need to be fetched from memory, involved in the dot product
computations (i.e., large Ngy and Dgy) [37], [39]. This limi-
tation is not adequately addressed by custom-instruction-based
optimization. To gain further intuition, consider [37], which is
used to rank candidate templates for custom-instruction-based
implementation

oT
max (In — @, 0) + max (Out — g, 0) + p

Priority =

In the above equation, OT is the fraction of the total execution
time of the original program spent in the template, In and
Out are the number of inputs and outputs of the template,
respectively, w is the number of inputs that can be encoded in
the instruction, ¢ is the number of outputs that can be encoded,
and p is the number of cycles required by the template when
implemented as a custom instruction. For custom instruction
candidate templates for classification computations, OT has
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a large value of 0.70 (according to Table III). However,
the high-dimensional input vectors (corresponding to Dgy)
and the large number of cycles p required to fetch a high-
order decision model (corresponding to Ngy) reduce the
priority as a potential choice for custom-instruction-based
implementation. Choosing custom instructions for the dot
product computation based on an alternate priority function
would still result in suboptimal energy savings. This is because
the processor architecture would limit the data width in the
classifier custom instructions, necessitating additional cycles
for load-store operations. Thus, system memory overheads
offset the benefits of custom-instruction-based speedup in
classification.

The use of a vector processor core for handling high-
dimensional input data can thus provide a potential solu-
tion for the classification computations. However, since the
application data are not inherently vector in nature, such an
architecture incurs unnecessary overheads for the general-
purpose computations required, i.e., the feature-extraction
computations required across clinical applications. Rather,
the representation of data in a vector form is a specific
transformation introduced by the classification framework.
Thus, the complexity and associated energy overheads [41]
incurred by a vector-processor-based implementation of the
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TABLE V

SPEEDUP AND ENERGY SAVING USING CUSTOM INSTRUCTIONS WITH A BASE XTENSA
PROCESSOR RUNNING AT Vg = 1.2 V AND 10 MHZ, WITH Ngy = 10000

Processor Preproc. + Preproc. + Classification
Configuration Morphology Wavelet Dsy =26 | Dgy = 256

No. Cycles 27.56k 36.04k 1.57M 8.99M

Base Xtensa
Energy (uJ) 86.62 113.29 4935.2 27574
Base Xtensa No. Cycles 2.75k 3.91k 0.78M 4.58M
+ Custom Instr. Energy (uJ) 8.65 12.28 2455.3 14068
ENERGY IMPROVEMENT 10.01x 9.23x 2.01x 1.96 x
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Fig. 6. Architecture and layout of the classification coprocessor designed in an FD-SOI process. The coprocessor architecture comprises an array of MAC
units to compute the dot product of SVs and TVs. The output is then transformed by a kernel function in order to evaluate the classification result.

preprocessing and feature-extraction steps are best avoided
for a platform-level design. To exploit both the canonical
computations and data structuring required in the classification
framework, we next turn our attention to coprocessor-based
hardware specialization.

C. Coprocessor-Based Platform

In this section, we discuss a coprocessor-based special-
ization that allows the data structures used by the classifier
to be efficiently handled, yielding substantial energy savings.
Further, this degree of specialization raises the opportunity for
microarchitectural optimizations based on parallelism, which
can be readily exploited in the computation.

The architecture proposed in Fig. 5 aims to take advantage
of the structure of biomedical algorithms where a high degree
of flexibility is primarily required in the feature computa-
tions. The need for flexibility arises because of the range
of feature computations involved in various applications. For
instance, morphological and wavelet features are employed in
arrhythmia detection [23], [29], proteomic classification [42],
and heart-rate estimation [43]; spectral features are employed
in seizure detection [12], brain—machine interfaces [44], and
sleep disorder analysis [45].

Thus, a general-purpose processor is employed for feature
computation, while an optimized coprocessor is employed
for kernel-based SVM classification. The feature-extraction
computations are optimized through custom instructions, pro-
viding significant energy savings, as shown in Table V. These
computations involve floating-point operations in the Tensilica

CPU, incurring somewhat higher energy than a fixed-point
implementation. However, as explained in the previous section,
the contribution of the feature-extraction energy to the overall
processor energy is very small. Thus, we focus on optimizing
the coprocessor. Here, in addition to hardware specialization,
circuit and microarchitectural enhancements aim to achieve
minimum-energy operation [46] through voltage scaling and
parallelism, whereby the throughput constraints for real-time
detection can be met. In addition to energy efficiency, the need
for selective flexibility is also recognized so that the classifi-
cation needs across a wide range of biomedical applications
can be supported. For example, the rate of processing mass
spectrometry data [42] could be different from EEG [12] or
ECG signals [23], [29]. For these applications, Ngy, Dsy, data
precision, as well as the kernel functions will also be different.
The coprocessor thus introduces this flexibility through a
precision-scalable multiplier. It also yields programmability
in the classification model, computation precision, and the
choice of kernel transformation function. These aspects are
summarized in the block diagram of Fig. 5.

IV. Low-ENERGY CLASSIFICATION COPROCESSOR

In this section, we describe the architecture of the classifi-
cation coprocessor in further detail.

A. Coprocessor Microarchitecture

Fig. 6 shows the architecture and layout of the classifi-
cation coprocessor. It has three major functional blocks: 1)
SV and test vector (TV) buffers; 2) MAC engine; and 3)
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a programmable polynomial kernel core. Following offline
training, SVs are loaded into the SV preload buffers. The TVs,
produced through feature extraction by the general-purpose
processor, are loaded into the TV line buffer. TVs and SVs
are then fed dimension by dimension to the MAC array in
order to perform the dot product operations in (2). Readout
from these buffers is optimized using a multiplexer-based
array decoder. Hardware parallelism is employed through an
array of MAC units: MAC_1 to MAC_N, each of which
is associated with an SV preload buffer. The coprocessor
operates on integer data. Once multiplication over all the
dimensions is complete, the dot products are multiplexed to the
kernel transformation block, where a second-, third-, or fourth-
order polynomial transformation is computed. Furthermore, a
CORDIC module in the kernel block would potentially accom-
modate additional transformation functions, such as RBF,
sigmoid, etc. The results are scaled and summed by a final
accumulator whose output sign determines the classification
result.

B. Voltage Scaling and Paralellism

In this section, we describe the energy optimization pursued
for the coprocessor through voltage scaling. Since the dot
product derivation (in the MAC array) dominates the com-
putation, we focus on optimizing its energy.

The total energy is determined primarily by the sum of
active switching (E,¢;) and subthreshold leakage (Ej). The
reduction in E,; due to V4 scaling is opposed by the increase
in leakage energy (due to the longer resulting leakage current
integration time Tymac). The energy-optimal point thus typi-
cally occurs in the subthreshold region, since here the circuit
speed begins to degrade rapidly [46]. Although this implies
that energy optimization leads to low circuit performance,
computational throughput constraints can be efficiently met if
the required computations can be performed in parallel without
imposing substantial overheads due to parallelization [47]. We
can thus exploit the parallelism possible in the classifier dot
product computation (i.e., MAC array) to achieve minimum-
energy operation for real-time biomedical detection. To do this,
we first determine the minimum-energy V;; of a MAC unit.
We then determine its performance at this Vg4 (i.e., seconds
per MAC operation, Tysac). The total rate of MAC operations
(RT.Mmac) required in the classifier computation [of (2)] is
given by

Ry mac = [Nsv x Dsy X RcLass] (2)

where Rcrass is the classification rate. The required paral-
lelism is then R7 aprac X Tarac- For the application considered,
the R prac required ranges from 2.7 M to 7.7 M MACs per
second [16].

Fig. 7 shows E, and Ej of a MAC unit (based on a
transistor-level simulation) implemented in the target 150-nm
FD-SOI CMOS process (described further in Section IV-D).
The total energy Eioa) is minimized at a Vg4 of 0.4 V, which
is in the subthreshold region for the technology. Fig. 8 shows
the performance achieved by a MAC unit as Vg, is scaled.
Under worst case process and temperature conditions (i.e., low
temperature in subthreshold), the maximum frequency at the
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Fig. 7. Egq¢r and Eji profiles for a MAC unit with the minimum total energy
occurring at Vg = 0.4V.
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Fig. 8. Operating frequency at Vg = 0.4V is 520 kHz at 285 K (low

temperature is slowest in subthreshold).

minimum-energy V4 is 520 kHz (i.e., Tyyac = 1.92 us). The
level of parallelism required is thus 6—15 MAC units. Fig. 7,
however, shows that the energy minimum is shallow, partic-
ularly if V44 is increased slightly. For instance, to increase
the MAC performance by a factor of three (in order to cover
the target R pac range), Vgq must be increased by less than
50 mV (based on Fig. 8), causing a negligible increase in
total energy (based on Fig. 7). We thus optimize for the lower
performance (by employing six MAC units) and use voltage
scaling, with minimal impact on the optimization, to elevate
the performance when required.

C. Circuit-Level Optimization

In this section, we describe how the scalability desired in
the classification coprocessor is achieved.

1) SV and TV Buffers: The energy of the buffers is
optimized for read operations since the SVs are loaded
infrequently (i.e., only when a new classification model is
required). The coprocessor buffers support a Dgy x Ngy of 64.
If additional storage is required to represent the classification
model, the control block permits expansion by allowing up
to 16 384 write sequences from the processor cache or from
off-chip memory to the local buffers. As an example, 4095
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SVs and 256 feature dimensions can be supported, along with
any other combination that results in the same product.

2) Variable-Precision MAC: Due to the wide range of
SVs and feature dimensions across applications, the precision
requirements of the classifier computation are variable. Sev-
eral approaches for scalable-precision multipliers have been
reported (e.g., [46]). The approach used here exploits the
efficiency of the Booth encoding algorithm [48].

Fig. 9 shows the architecture of the variable-precision MAC
unit. In the MAC unit, the BOOTH ENC blocks compute the
partial products based on the select bits of the multiplier (y).
The shifted partial products are output as P P;, i € [0, 5]. This
allows a maximum precision of 12 b for the input operands
(corresponding to six partial products). In Fig. 9, PPy and
P Py are the partial products used when precisions of 12 and
10 b, respectively, are required; otherwise the precision is 8
b. The carry-bypass adders (CBAs) consist of M = 4-bit full
adder chains, and N represents the total input bit width of
each adder. The common partial products required for the
8/10/12 precision bits are added using 3:2 and 2:1 compressors
in a Wallace tree. The outputs of CBA-0/1/2 are read out
via a precision-selection multiplexer (for 8/10/12-bit preci-
sion, respectively). The unused CBAs can be power-gated.

PRO PR1

TRO TR1

Variable-precision MAC unit. Partial product additions can be terminated at CBA-0/1/2 to scale the precision for 8/10/12-bit inputs.

Fig. 10 shows the energy reductions due to precision scaling.
Although the minimum-energy V4 remains the same, scaling
the precision from 12 to 8 b reduces the energy per multi-
plication by 17.6%. Following precision selection, the output
of the multiplier has either a 24-, 20-, or 16-bit output. The
truncation-selection multiplexer selects a level of truncation
(to 12, 10, or 8 b, programmable via the status register). The
output of the truncation-selection multiplexer is accumulated
into an output register using a 16-bit final CBA.

3) MAC Delay Estimation: Based on the proposed MAC
architecture (Fig. 9), the critical path delay through a MAC
unit can be estimated as follows:

Taelay = Tco + TootH + TwaL + TcBa, 194 + TcBA,234
+2TanD + 3Tmux + Tca,164 + Tsu

where Tcpa,N-m is the delay of a CBA, which has a segment
length of M and an operator bit length of N; TpoorH i
the delay through the Booth encoder unit; Twar is the delay
through the Wallace-tree compressor chain; Tcg and Tsy are
the clock-to-output and clock setup delays, respectively; and
Tanp and Tmux are the AND gate and multiplexer delays,
respectively. Further, these delays can be simplified using a
sum of delays through basic subblocks as follows:

N
TceanM = Tsy + MTc (M — 1) Tmux
(M — 1)Te + Ts
TgootH = Tmux + 4TNor + TcBaA,12-4
Twar = 3Ts + TcBa,14-4

where Tc and Ts are the delays for the carry and sum paths
in a full adder, respectively, and Tnor is the NOR gate delay.

The delay through the critical path of the MAC unit can thus
be estimated systematically. Estimating the MAC delay based
on the performance of the mentioned subblocks thus facilitates
rapid estimation of the maximum operating frequency, level
of parallelism, and, hence, the associated system parameters,
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leakage and maintain high transistor on-to-off ratios in subthreshold CMOS
gates.

thereby overcoming the need for extensive transistor-level
simulations in the early phases of system design.

4) Flexible Polynomial Kernel: A polynomial kernel can
be selected to transform the dot product output from the
MAC engine. The flexible kernel module comprises two
12 x 12 x 24 multipliers to support polynomial transforma-
tions of order 2—4. Only one such multiplier is needed for a
second-order polynomial function. Going from a second-order
to a third-order polynomial kernel, however, incurs the cost
of using an additional 12 x 12 x 24 multiplier. Further, the
difference between a fourth-order and a third-order polynomial
function is only an additional array of multiplexers. These
aspects are summarized in Fig. 11.

D. Choice of Technology

Owing to the modest performance requirements of typical
biomedical applications (i.e., to the relatively low bandwidth
of physiological signals), employing a technology that is
aggressively optimized for low leakage is beneficial. As an
example, for arrhythmia detection, a performance on the order
of 5 million MACs per second is required. The technology
we use in this paper is thus a 1.5 V 150-nm ultralow-leakage
FD-SOI CMOS process [49]. FD-SOI allows the technology
to exhibit reduced process variations due to a reduction in
random dopant fluctuations and gives the transistors steep
subthreshold slopes; the I;—V,, characteristic for the devices
is shown in Fig. 12. Additionally, the devices are designed
to have high threshold voltages to reduce the leakage current
(e, Vi,n =0.65V, |V, p| =0.53 V) [49].

V. RESULTS AND ANALYSIS

In this section, we present post-layout simulation results of
the coprocessor.

Table VI summarizes the impact of the architectural opti-
mizations considered (which include feature extraction on the
Tensilica processor and classification using custom instruc-
tions or a coprocessor). A 2x improvement in the energy
consumption per SV dimension is obtained while going from
an implementation on a base Tensilica processor (which con-
sumes 11.85 nJ) to a design with custom instructions (which
consumes 5.89 nJ). The limited energy reductions, as men-
tioned in Section III-B, is due to the high-dimensional input
data required for classification. More aggressive specialization,
through the use of a coprocessor, leads to a 519x energy
reduction over the base case. Subsequent voltage scaling,
taking advantage of the parallelism possible in the coprocessor
implementation, leads to energy reductions of 2119x and
2231x for V44 corresponding to 0.6 and 0.4 V, respectively.

A. Coprocessor Energy Measurements

In this section, we present an analysis of the energy
consumption of the classification coprocessor versus Ngy
and Dgy. Further, we also quantify the energy reductions
achievable through voltage and precision scaling.

1) Energy Versus Ngsy and Dgy: We perform energy
measurements on the post-layout extracted netlist at various
values of Ngy for the wavelet and morphological features.
Fig. 13 shows the scaling in the energy consumption versus the
number of SVs for the classification computation. The energy
for classification scales roughly linearly with Ngy. A similar
behavior is observed with Dgy (as shown in Fig. 14 where
the energy numbers are provided at Vg = 1.2 V). Fig. 13
shows results for a fourth-order polynomial kernel and spectral
wavelet features (Dsy = 256) for arrhythmia detection. At
100000 SVs, the optimization of a base Tensilica processor
with custom instructions leads to an energy reduction by
1.96x (Section III-B). For the FD-SOI Coprocessor-based
design, energy reductions by 228 x are achieved at a supply
voltage of 1.2 V. Voltage and precision scaling applied to the
coprocessor leads to further energy reductions. For instance,
as shown in Fig. 13, classification computations after wavelet
feature extraction (Dgy = 256) consume 12.00-120.05 uJ
using 10000-100000 SVs at 8 b of data precision and a
supply voltage of 0.4 V. This represents 1170x lower energy
than that of a Tensilica processor with custom instructions
alone. Classification computations after morphological feature
extraction, at the same precision and voltage levels, consume
10.24-24.51 uJ of energy, which is 1548 x smaller than one
based on a custom-instruction-based design. Detailed analysis
results for the voltage- and precision-scaling experiments are
presented next.

2) Energy Versus Vgq: Egac; and Ej measurements from the
coprocessor are shown in Fig. 15, demonstrating the benefit
of voltage scaling. The results are shown at 12 b of data
precision. A second-order polynomial kernel is used for the
simulations. On average, for a data precision of 12 b, E,¢
accounts for 98.1%, 95.1%, and 71.2% of the total energy at
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TABLE VI

ENERGY PER SV DIMENSION

Tensilica Tensilica + Tensilica + Custom Instr. + Coprocessor
(at 1.2'V) Custom Instr. VdchPRoc —12V VdCdOPROC —06V VdCdOPROC —04V
11.85nJ - 1x 5.89 nJ - |2x 22.84 pJ - |519x 5.59 pJ - |2119x 5.31 pJ - |2231x
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Fig. 13. Classification coprocessor enabling energy reductions of 228x at
1.2 V. Energy reductions are increased to 1170x at V5 = 0.4 V and 8 b of
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Fig. 14. Coprocessor energy versus Dgy per TV (at 12-bit data precision).

supply voltages of 1.2, 0.6, and 0.4 V, respectively. Voltage
scaling thus enables energy reduction by up to 77%.

3) Energy Versus Precision: Table VII shows the E,
and Ej; measurements from post-layout simulation of the
coprocessor using 8 b of data-representation precision.
A second-order polynomial kernel is used for the results
shown. On average, for a data precision of 12 b, E,¢; accounts
for 98.1%, 95.2%, and 71.3% of the total energy at supply
voltages of 1.2, 0.6, and 0.4 V, respectively. Consequently,
performing computations at a data-representation precision of
8 b enables an overall 9.25%, 9.09%, and 9.09% reduction
in total energy as compared to an implementation that relies

Fig. 15. Coprocessor energy versus Vgg per TV (at Ngy = 10, Dgy = 8,
and 12-bit data precision). Vg4 scaling enables energy reduction by up to
77%.
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Fig. 16.  Total application energy (segmentation + feature extraction +

classification) reduced by up to 1062x through the use of a coprocessor for
classification.

on 12 b of data precision [most savings come from a 17.6%
reduction from the MAC unit alone (see Fig. 10)].

B. Energy Versus Kernel Selection

Table VIII shows the energy consumption for various clas-
sifier kernels at a data precision of 12 and 8 b. Since the kernel
transform is not the dominant computation, the energy scaling
is modest.

On average, going from a second- to a third- to a fourth-
order polynomial costs 30.92% and 7.56% extra energy for
12 b and 33.57% and 4.12% for 8 b of data-representation
precision, respectively. The incremental change in energy
between a third- and a fourth-order polynomial kernel is
due to the optimization enabled by the programmable kernel
architecture [16].
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TABLE VII
PRECISION SCALING ENABLING UP TO 9.25% REDUCTION IN THE COPROCESSOR ENERGY

Vaa (V) Dgsy | Ngy | Precision | Eact (pJ) | Eix (pJ) Etotal (pJ) fop,» T = 287K
12bit | 3089.1 537 | 314238
12 8 10 8 bit 2799.8 524 2852.2} 9.25%1, 10 MHz
12 bit 7305 310 | 7615
0.6 8 10 8 bit 667.2 250 | 6923 } 9-09%| 2 MHz
12 bit 508.7 2132 | 7219
0.4 8 10 8 bit 457.1 1992 | 6563 } 9-09%| 530 kHz
TABLE VIII
COPROCESSOR ENERGY SCALING WITH RESPECT TO THE KERNEL FUNCTION
Specification Eact (pJ) | Eix (p)) Etotal (p)) Kernel Order
3078.7 641 | 31428 Poly?2
Vya = 1.2V, Ngy = 10, 30.92%, ¥
Do 8 12 bit precision | 40362 782 | 41144 } 756% L Poly3
4344.4 811 | 44255 Poly4
2799.8 524 | 28522 Poly?2
Vg = 12V, Ngy = 10, } 33.57%. y
Dev = 6. it precision | 37387 709 | 3809.6 } 2% Poly3
3914.6 747 | 39893 Poly4
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Fig. 17. Energy proportions for preprocessing, feature extraction, and classi-
fication computations, illustrating the benefits of voltage and precision scaling
applied to the classification coprocessor for low-energy operation. (a) Base
Tensilica processor operating at Vg = 1.2 V. (b) Custom-instruction-based
implementation. (c) Hardware—software codesign with custom instructions
for preprocessing + feature extraction and the classification computations
implemented on a coprocessor at Vy; = 1.2 V and 12 b of data precision.
(d) Coprocessor at Vgzg = 1.2 V and 8 b. (e) Coprocessor at Vgg = 0.4 V
and 8 b.

C. Subblock Energy Measurements

Table IX shows the computational energy contributions for
the coprocessor subblocks during online classification at a
data-representation precision of 8 and 12 b. In the table,
the energy consumed in the TV and SV buffers, the MAC
array engine, kernel, and the control block are shown in the
BUF, MAC, KER, and CNTRL columns, respectively. The
MAC engine consists of six MAC units and the KER block
consists of three MUL 12 x 12 x 24 multipliers, which are
subblocks within a MAC unit. As shown, the MAC + KER
energy dominates (~ 84%), validating the need to focus on
its energy through the optimization discussed in Section I'V-B.
Although the buffers dominate the transistor count, their low
energy contribution shown in the table is due to the low
leakage enabled by the choice of technology. The buffers have
a very weak influence on the minimum energy point of the
coprocessor due to the low activity factor and low leakage
energy.

D. Processor-Level Energy Measurements

In this section, we present energy measurements for the
entire processor. The architecture, which employs custom
instructions for feature extraction and a coprocessor for clas-
sification, achieves over two orders of magnitude energy
reductions as compared to an implementation that employs
only custom instructions for the entire computation.

1) Energy Versus Ngy: In this section, we show energy
scaling results versus Ngy for the full signal detection process
(which, along with classification, includes the energy numbers
for a custom-instruction-based implementation of preprocess-
ing and feature extraction computations).

Fig. 16 shows simulation results for a fourth-order poly-
nomial kernel and spectral wavelet features (Dsy = 256).
Significant energy reductions are observed for the total detec-
tion process. For instance, using Nsy = 10000, the total
detection energy at 1.2 V and 12 b of data precision is
73.98 wuJ. It is reduced to 63.69 uJ using 8 b of precision at
1.2 V. Voltage scaling applied to this optimized coprocessor
configuration results in a total detection energy of 24.29 uJ
at 0.4 V (this is about 580x lower than an implementation
using a base Tensilica processor, which consumes 14.08 mJ at
Via=12V).

2) Computational-Energy Contributions: Fig. 17 shows the
proportions of energy consumption for the preprocessing,
feature extraction, and classification computations following
the various optimizations. The design space ranges from a
full software-based Tensilica implementation to a coprocessor-
based architecture. The proportions are shown for Ngy =
20000. It is observed that, even after a custom-instruction-
based optimization, the classification computations dominate
feature extraction and preprocessing (less than 1% of the total
energy). After an optimization through the use of the FD-SOI
coprocessor, however, the classification energy is reduced sub-
stantially. The energy proportions are 1.8:1 for classification
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TABLE IX
ENERGY (PER TV) AND AREA OF THE SUB-BLOCKS

Meas. Condition Total | BUF MAC, pJ KER, pJ CNTRL
Vaa | Dsv | Nsv pJ pJ (% Total) (% Total) pJ
8-bit Data Precision
1.2V 2852.2 | 38.8 1511.8 (53.0) | 900.9 (31.6) 400.7
0.6 V 8 10 692.3 18.9 360.7 (52.1) 220.2 (31.8) 92.5
04V 656.3 18.5 343.8 (52.4) 203.9 (31.1) 90.1
12-bit Data Precision
1.2V 3142.8 | 40.2 | 1640.5 (52.2) | 990.0 (31.5) 472.1
0.6 V 8 10 761.5 19.3 402.8 (52.9) 242.2 (31.8) 97.2
04V 721.9 20.1 383.3 (53.1) 223.8 (31.0) 94.7
Area (in mm?) 290 | 1.62 0.61 0.65 0.02
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Fig. 18. Benefits of voltage scaling applied to the coprocessor (with the  Fig. 19. Voltage scaling enabling the full detector computations at less than

Tensilica processor at 1.2 V) using a fourth-order polynomial kernel and a beat
classification rate (Rcpass) of 3 beats/s with wavelet features (Dgy = 256).

and preprocessing + feature extraction computations. How-
ever, at Ngy = 100000, the corresponding proportions are 9:1
(the total energy consumption for the associated computations
being 120.32 uJ at a supply voltage of 0.4 V and a data-
representation precision of 8 b).

3) Energy Versus Vggz: We next illustrate the benefits of
voltage scaling on the coprocessor. This leads to operation of
the arrhythmia detector at a power level < 500 uW.

Figs. 18 and 19 show the energy optimizations achieved
for the detection process using a polynomial kernel of order
four for the wavelet and morphological features, respectively.
It is observed that voltage and precision scaling applied to
the coprocessor enable computations in data-driven biomedical
monitoring algorithms within an energy consumption range
of 24.29-132.33 uJ for Ngy = 10000-100000, respectively
(for wavelet features). Similar experiments with morpholog-
ical features demonstrate the full detection process within
10.24-24.51 pJ for Ngy = 10000-100000, respectively (see
Fig. 19).

VI. CONCLUSION

Machine-learning-based algorithms for biomedical detection
are emerging as a highly promising means to detect specific
states in physiologically complex signals. The structure in
these algorithms can be exploited toward the design of a gen-
eralizable low-energy computation platform. In the detection
algorithms, kernel-based classification is found to pose the
primary energy bottleneck and is thus targeted for optimization

500 «W. Results are shown for morphological features (Dgy = 26) with a
quartic kernel at Rcpags = 3 beats/s.

through the use of hardware specialization. It is observed that,
although feature-extraction computations can be implemented
efficiently as custom instructions on a low-power processor,
the energy reductions achievable through the use of custom
instructions for classification are limited due to the large
number of operands involved in the dot product computation.
We thus explored opportunities for optimization through the
use of a hardware coprocessor. This specialization provides an
approach for hardware—software codesign expanding the scope
of the biomedical processor architecture to a broader range
of applications. In the classification coprocessor, the fixed
kernel computations required were exploited, but selective
flexibility required across a range of applications was also
incorporated through specific hardware configurability. The
optimized coprocessor reduced the computational energy of
the biomedical platform by over three orders of magnitude
compared to that of a low-power processor with custom
instructions alone. Implementation of data-driven algorithms
on a base Tensilica processor consumed about 100 mW for the
entire computation. Thus, a wearable device (which runs on a
typical 3 V, 560-mAh capacity coin-cell battery) employing a
Tensilica-like processor would have an average recharge cycle
of 16.8 h. If the computational power for the entire processor
can be reduced by 2-3 orders of magnitude, continuous patient
monitoring can become more viable (with battery lifetimes
extended to 2-24 months). This introduces great promise for
healthcare networks, as an increasingly wide range of real-
time patient signal correlations are being discovered with new
clinical states of interest.
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