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Figure 1: Our hand tracker uses a smooth model of the hand, allowing a second-order optimizer to jointly search over the high-dimensional
space that contains both the hand pose and the model positions that correspond to each depth image pixel. Despite a higher per-iteration cost,
this optimization has a wide basin of convergence and yields a real-time system that is both more accurate and more efficient than alternatives,
enabling new interactions in virtual reality.

Abstract

Fully articulated hand tracking promises to enable fundamentally
new interactions with virtual and augmented worlds, but the limited
accuracy and efficiency of current systems has prevented widespread
adoption. Today’s dominant paradigm uses machine learning for
initialization and recovery followed by iterative model-fitting opti-
mization to achieve a detailed pose fit. We follow this paradigm,
but make several changes to the model-fitting, namely using: (1) a
more discriminative objective function; (2) a smooth-surface model
that provides gradients for non-linear optimization; and (3) joint
optimization over both the model pose and the correspondences
between observed data points and the model surface. While each of
these changes may actually increase the cost per fitting iteration, we
find a compensating decrease in the number of iterations. Further,
the wide basin of convergence means that fewer starting points are
needed for successful model fitting. Our system runs in real-time on
CPU only, which frees up the commonly over-burdened GPU for
experience designers. The hand tracker is efficient enough to run on
low-power devices such as tablets. We can track up to several meters
from the camera to provide a large working volume for interaction,
even using the noisy data from current-generation depth cameras.
Quantitative assessments on standard datasets show that the new
approach exceeds the state of the art in accuracy. Qualitative results
take the form of live recordings of a range of interactive experiences
enabled by this new approach.
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1 Introduction

Recent rapid advances in display and head-tracking technology is at
last bringing virtual reality (VR) and augmented reality (AR) to the
consumer mainstream. But perhaps just as important as the ability to
display virtual objects to the user, is for the user to be able to interact
with those virtual objects and environments as naturally as possible.
In the real world, we use our hands to reach out and touch objects,
which react to our interactions according to the laws of physics. Can
uninstrumented hand tracking allow natural interaction with virtual
objects in a physically plausible manner? A further question in VR is
the problem of embodiment: how can the system project an accurate
(though possibly unrealistic) avatar representation of your body and
hands to increase your sense of ‘presence’?

Camera-based tracking of the user has long promised technology
that could address these questions. The advent of consumer depth
cameras with the release of the Kinect system [Shotton et al. 2011]
offered a first glimpse outside the laboratory of full-body pose track-
ing technology. Kinect’s tracking proved successful for high-energy
scenarios such as video games, but provided only very limited and
noisy information about the hands – our primary manipulators. More
recently, there has been considerable interest, both academic and
commercial, in the task of fully-articulated hand tracking, where
the system aims to infer, in real time, a pose vector that accurately
describes the detailed motion of a user’s hands (see §2).

However, fully articulated hand tracking has not yet become the
user interface of choice for AR and VR. We believe that this can
be attributed to several factors. Accuracy and robustness. Hand
tracking from camera input, even depth camera input, is an incred-
ibly hard problem. Occlusions are rife, and the system must rely
heavily on priors which cannot work in all situations. Hands rotate
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Figure 2: Our hand tracking system is precise, flexible, and efficient enough to permit designers unskilled in hand tracking algorithms to build
a variety of interactive scenarios. A variety of user experiences explore direct physical interaction, pointing, and analog control.

freely about three axes, radically changing their appearance as they
do so. Fingers are difficult to disambiguate locally, thus kinematic
constraints must be used to reason about them jointly (e.g. using a
hand model). As a result, current systems still have many inaccu-
racies and failure modes. One particularly difficult obstacle when
applying a hand tracker to build end-user experiences is robustness:
imagine the frustration of trying to interact with a virtual object
if the tracker broke down every few seconds. Flexibility of setup.
Some systems use sensors that only work for close-range scenarios.
If the camera is room-mounted, this can be a limiting factor for
VR experiences where the user may be attempting to manipulate
virtual objects and environments across a large interaction volume.
Head-mounted cameras offer some hope, though are limited in their
field of view. Efficiency. Many state of the art systems e.g. [Sharp
et al. 2015; Tagliasacchi et al. 2015] are computationally expen-
sive. In some cases, the hand tracking algorithm saturates an entire
top-end consumer GPU. This makes it difficult to run hand trackers
on lower-power devices, or to provide compelling user experiences
which may themselves require considerable GPU bandwidth.

Our primary contribution is to show that using detailed smooth-
surface models in hand tracking allows standard non-linear opti-
mizers such as the Levenberg method to operate in real time with
considerably less computational power than existing methods, and
with comparable or increased accuracy. This is surprising, because
evaluation of these models would superficially appear to be more
expensive than simpler models based on geometric primitives. How-
ever, the improvements in iteration count and the basin of conver-
gence, coupled with an efficient handling of the Levenberg Jacobian,
overcome this expense by allowing for small numbers of iterations
and starting points, as well as handling noisy data captured at long
range. Our secondary contributions are a new reinitialization strat-
egy, and some novelties in the precise formulation of the energy
function.

Our experimental evaluation investigates the effect that these techni-
cal contributions have on the accuracy and efficiency of our system.
We present quantitative comparisons against several existing state
of the art approaches, and show in most cases a considerable im-
provement in accuracy. We also built a number of user experience
prototypes that can be seen in the accompanying video. These
demonstrate the promise of articulated hand tracking for VR and AR
applications, and have also proved incredibly useful as real-world
test harnesses as we developed the tracking algorithm.

Many limitations remain. This paper does not claim to have ‘solved’
hand tracking. Indeed, our limitations section might have simply
been copied from Rehg and Kanade [1994], more than two decades

ago: ‘occlusions and complicated backgrounds’. Today we would
say ‘heavy occlusion’ e.g. fists or extreme viewpoints, and of course
we would trivially exclude complete occlusions (hands invisible
to the sensor). For ‘complicated backgrounds’ we would include
other surfaces, other hands, and scenes where hand segmentation
fails. We are not even claiming to have reached some threshold level
with hand tracking, but we are confident that the experiences we
are showing are qualitatively better with this tracker than with other
academic or commercial trackers. At the same time, having built
these experiences, we can tell that we need to do more to improve
robustness and latency.

2 Related Work

Classical approaches to hand tracking include wearing data gloves
[Dipietro et al. 2008], markers [Wang and Popović 2009; Zhao
et al. 2012] or wearable cameras [Kim et al. 2012], but this type of
user instrumentation can act as a barrier for unencumbered natural
interaction. Therefore the field has moved towards vision-based
techniques without direct user instrumentation.

Techniques include discriminative approaches [Keskin et al. 2012;
Xu and Cheng 2013; Sun et al. 2015], which directly estimate hand
pose by extracting image features e.g. using classification and/or
regression techniques. These often do not rely on temporal infor-
mation and attempt to directly estimate the hand joint configuration,
thus making them useful as robust reinitializers [Shotton et al. 2011].
Conversely, generative (or model-based) methods use an explicit
hand model to recover pose across a temporal sequence of images
[Oikonomidis et al. 2011; Tagliasacchi et al. 2015]. Discriminative
approaches are typically robust, but lack the accuracy inherent in
model fitting. Generative approaches can suffer from a dependency
on the previous frame for initialization, making recovery from errors
more challenging. Hybrid methods address this by combining dis-
criminative and generative approaches to improve the robustness of
frame-to-frame model fitting with per-frame reinitialization [Ballan
et al. 2012; Sridhar et al. 2013; Sridhar et al. 2015; Qian et al. 2014;
Sharp et al. 2015].

Single RGB-based Approaches Early vision-based systems
used monocular RGB cameras, making the problem very challenging
(see Erol et al. [2007] for a survey). Understandably most approaches
were offline. Discriminative approaches used small databases of
restricted hand poses [Athitsos and Sclaroff 2003; Wu and Huang
2000] and had limited accuracy. Generative methods used models
with restricted degrees of freedom (DoF), working with simplified
hand representations based on 2D, 2.5D or inverse kinematics (IK)



(e.g. [Stenger et al. 2001; Wu et al. 2001]), again resulting in limited
accuracy. Bray et al. [2004] used a more detailed 3D hand model.
Further user-personalization was added by de La Gorce et al. [2011],
who automatically applied a scaling to the bones in the hand model
during tracking. Heap and Hogg [1996] provided an early example
of online (10Hz) tracking with a simplified deformable hand model.
This work, as with other RGB-based methods, struggled with com-
plex poses, changing backgrounds, and occlusions, thus limiting
general applicability.

In our work, we use a single commodity depth camera; while such
cameras typically also provide RGB data, we focus purely on the
depth signal, although incorporation of other sensors is interesting
future work.

Multi-camera Performance Capture Possibly the first attempt at
unencumbered hand tracking was by Rehg and Kanade [1994], using
two video cameras to resolve 27 DoF using a Gauss-Newton solver
and local edge search based on a capsule model. Their system ran
at 10Hz, with the limitation that the hand should be almost entirely
unoccluded. There has also been recent work on high-quality offline
(non-interactive) performance capture of hands using multi-camera
rigs. Ballan et al. [2012] demonstrate high-quality results closely
fitting a detailed scanned mesh model to complex two-handed and
hand-object interactions. Zhao et al. [2012] use a depth camera,
motion capture rig, and markers worn on the user’s hand to capture
complex single-hand poses, again offline. Wang et al. [2013] and
Tzionas et al. [2015] show complex hand-object interactions by
using a physics engine, but take minutes per frame. The first multi-
camera real-time system was that of Sridhar et al. [2013], where five
RGB cameras and a time-of-flight (ToF) sensor are used to track a
user’s hand at ∼10Hz.

The above systems can produce highly accurate results, but are
impractical for interactive consumer scenarios due to their computa-
tional cost and the heavyweight multi-camera setups.

Single Depth Cameras The advent of consumer depth cameras
such as Kinect has made computer vision more tractable, for ex-
ample through robustness to lighting changes and improved invari-
ance to foreground and background appearance. However, most
high-accuracy real-time methods are still extremely computationally
demanding (typically using the GPU), making their use on mobile
devices still limited.

Generative Approaches: Oikonomidis et al. [2011] present a gener-
ative method based on particle swarm optimization (PSO) for full
DoF hand tracking (at 15Hz) using a depth sensor. The hand is
tracked from a known initial pose, and the method cannot recover
from loss of track. Other stochastic optimization schemes have also
been explored for real-time hand model fitting but again these lack
the benefits of discriminative approaches [Makris et al. 2015]. Melax
et al. [2013] use a generative approach driven by a physics solver
to generate 3D pose estimates. Both Fleishman et al. [2015] and
Tagliasacchi et al. [2015] show impressive high speed tracking re-
sults using a fast, articulated variant of ICP. These systems however
do not recover from tracking loss. Tagliasacchi et al. [2015] require
the user to wear a wristband for hand localization, but have also
shown state of the art results for hand tracking.

Discriminative Approaches: Keskin et al. [2012] propose a discrimi-
native method using a multi-layered random forest to predict hand
parts and thereby to fit a simple skeleton. The system runs at 30Hz on
consumer CPU hardware, but can fail under occlusion. A variety of
systems extend this work [Tang et al. 2013; Tejani et al. 2014; Tang
et al. 2015; Sun et al. 2015] using novel classification or regression
architectures to demonstrate more complex poses. Other discrimina-

tive methods include systems which estimate hand pose directly in a
single shot using different cascaded learning-based architectures [Xu
and Cheng 2013; Oberweger et al. 2015; Li et al. 2015; Neverova
et al. 2015; Poier et al. 2015]. Wang et al. [2009; 2011] demonstrate
a discriminative nearest-neighbor lookup scheme using a large hand
pose database and IK for pose refinement. Nearest-neighbor meth-
ods are highly dependent on the database of poses, and can struggle
to generalize to unseen poses. Purely discriminative systems do not
include an explicit model-fitting step, and so results may often not be
kinematically valid (e.g. implausible articulations or finger lengths).

Hybrid Approaches: Qian et al. [2014] extend Oikonomidis et al.
[2011] by adding a ‘guided’ PSO step and a reinitializer that re-
quires fingertips to be clearly visible. Sridhar et al. [2014] use
a sum-of-Gaussians representation for efficient model fitting with
reinitialization. All these systems so far are based on simple hand
models; our approach exploits a full 3D hand surface model that,
as shown, is better able to fit to the observed data. Tompson et
al. [2014] demonstrate impressive hand tracking results using deep
neural networks to predict feature locations and IK to infer a mesh
skeleton. While real-time, the approach only tackles close-range
scenarios. Sharp et al. [2015] use a detailed mesh model and PSO in
combination with a robust fern and forest reinitializer to generate im-
pressive results, including far distances or moving camera scenarios,
but with heavy demand of a high-end GPU.

Commercial Systems Beyond this research, there have also been
commercial hand tracking systems. The work of Wang et al. [2009;
2011] led to the 3Gear/NimbleVR Systems [2013]. The Intel Per-
ceptual Computing SDK [2016] paired with the RealSense camera
provides close-range hand tracking but lacks the flexibility and large
working volume of our approach. The original release of the Leap
Motion [2013] system demonstrated high frame-rate articulated
hand tracking but was limited in the range of poses it supported,
and only worked in a very limited depth range. This has been re-
engineered for head-mounted scenarios, where the hand can also
be assumed to be in a limited depth range, as a new release named
Orion [2015]. The system robustly tracks complex poses, even when
presented with modest two-handed interaction, which translates into
compelling user experiences in VR. There often appears, however,
to be a non-negligible mismatch between the image and overlaid
skeleton, possibly indicating over-reliance on strong priors or the
use of an uncalibrated hand model.

3 Method

Our problem statement is as follows. We have a sensor which
provides a stream of depth images, It, t ∈ {t0, t1, ...} where t is the
capture time,1 and we assume the existence of hand segmentation
and fingertip detection algorithms (§3.4) which preprocess It into:

• a subsampled list of N 3D points {xtn}Nn=1, where N is an
algorithm parameter (we show in §4.3 that surprisingly small
values work well).

• a corresponding list of 3D normals, estimated from the data,
denoted {ntn}Nn=1.

• a segmentation mask, from which we compute a distance
transformDt : R2 7→ R, whereDt(x) is the 2D distance from
2D point x to the hand silhouette (zero inside the silhouette).

• a set of Ft detected fingertips, denoted {f tf}Ft
f=1 ⊂ R3.

1Note that much of our system operates independently from frame to
frame so the t superscript will often be dropped.



We parametrize hand pose following Khamis et al. [2015] using a
pose vector θ ∈ R28 that includes global translation and rotation,
one abduction and three flexion variables for each digit, and one
abduction and flexion parameter for the wrist/forearm. We also
use the model of both hand shape and pose provided by Khamis
et al. [2015]. The model parametrizes neutral hand shape using
a set of blend shapes and then, given a fixed neutral hand shape,
applies a pose θ to produce an appropriately articulated triangu-
lar control mesh P (θ) ∈ R3×M that defines the smooth surface
S(θ) ⊆ R3 of the posed hand (see Fig. 3). To find a fixed neutral
hand shape, we simply use the technique of Tan et al. [2016] to
personalize the model to each subject. The pose function P (θ) is
defined using linear blend skinning [Jacobson et al. 2014] whereas
the smooth surface S(θ) is a close approximation [Taylor et al.
2014] to the Loop subdivision surface [Loop 1987] that the control
mesh P (θ) would define. Crucially, Taylor et al. [2014] provide
a smooth map S(u; θ) from a piecewise 2D parameter space Ω
to R3, with corresponding surface normal function S⊥(u; θ), where
S(θ) = {S(u; θ)|u ∈ Ω}. Although points in Ω have the somewhat
unusual data type (TriangleID, Real, Real), it is known that with
careful bookkeeping [Taylor et al. 2014], optimization over Ω can
be handled just as easily as over R2.

The goal of hand tracking is to find pose parameters θt such that the
3D surface S(θt) is a ‘good explanation’ of the image data in It

and previous frames. This leads us to a formulation of the problem
where the concept of ‘good explanation’ is encapsulated in an energy
function Et(θ) whose minimum

θ̂t = argmin
θ

Et(θ)

will be output as the system’s estimate of the pose at time t. There is
always a trade-off between the fidelity of the energy to the true image
formation process and the ease with which it may be minimized, but
it appears clear that any effective formulation will involve an energy
with multiple local minima, so there must be some form of global
optimizer. A common strategy is to use multiple starting points,
independent of whether Et itself requires stochastic optimization.
In our system, these starting points are given by forward prediction
from previous frames, and from a frame-independent reinitializer
based on machine learning (see §3.3.2).

3.1 Overall Architecture

In overview, our hand tracking algorithm comprises these steps at
each input frame:

1. Preprocess (§3.4)
2. Generate starting points from reinitializer and temporal prediction
3. From each starting point, optimize E
4. Report the pose which yielded the lowest E

The following sections describe these components, beginning with
the energy definition and minimization, as these are the core contri-
bution, and then describing preprocessing and reinitialization.

3.2 Energy Function

The energy function is the core of a modern hand tracker, and a key
engineering choice is the complexity of the energy. At one extreme
is a full ‘render and compare’ strategy, sometimes described as a
‘golden energy’ [Sharp et al. 2015]. In the context of hand track-
ing, however, such energies have so far been optimized only using
stochastic search [Oikonomidis et al. 2011; Sharp et al. 2015] or
finite-differenced gradients [Tan et al. 2016], with concomitant high
computational expense. An improvement in efficiency is obtained
by defining a smooth and differentiable renderer [de La Gorce et al.

Posed mesh
P (θ) ∈ R3×M

Surface
S(θ) ⊆ R3

Extract
surface

Figure 3: Our surface model creates a posed mesh using linear
blend skinning, which defines a smooth surface (right) using a sur-
face model based on approximate Loop subdivision.

2011; Loper et al. 2015] and using gradient-based optimization, but
to date we know of no sufficiently efficient implementation to deter-
mine whether such approaches can be made real-time. Even with an
efficient implementation, it remains to be seen whether the energy
surface itself is so complex that an excessive number of starting
points is required.

Our approach is to define a smooth energy function amenable to
Gauss-Newton optimization as a weighted sum of several terms,
encoding different desiderata of the model fit. These terms are
summarized below, with references to recent work that use similar
terms.

data Each data point xn should be close to the smooth surface
S(θ) and have a similar normal at the closest point.
[Taylor et al. 2014]

bg Model points should not project over the background.
[Vicente and Agapito 2013]

pose The pose θ should be a likely human hand pose.
[Tagliasacchi et al. 2015; Tan et al. 2016]

limit The pose θ should obey joint-angle limits.
[Khamis et al. 2015]

temp The temporal sequence of poses should be likely.
[Tagliasacchi et al. 2015]

int The hand model should not self-intersect.
[Ballan et al. 2012]

tips Each detected fingertip ff in the data should have a
model fingertip nearby.
[Sridhar et al. 2013; Tagliasacchi et al. 2015]

Let Terms = {bg, tips, pose, limit, int, temp} be the set of non-
data term identifiers. Then the overall energy is the weighted sum

E(θ) = Edata(θ) +
∑

τ∈Terms

λτEτ(θ)

where the parameters λτ are set as described in Table 1. Each term
is now defined in detail.

3.2.1 data: Data Term

We penalize the distance from each data point xn to the model, and
the difference in surface orientation to the associated data normal nn,
using

Edata(θ) =
1

N

N∑
n=1

min
u∈Ω

‖S(u; θ)− xn‖2

σ2
x

+
‖S⊥(u; θ)− nn‖2

σ2
n



Smooth Surface without Normal Term Smooth Surface with Normal Term Planar Surface with Normal Term

Figure 4: Illustration of the cross section of the surface (green) of
two fingers close to some data (orange) from a single finger. Without
the normal term (left) the discrete update causes a correspondence
(blue) to select the wrong finger. With the normal term (center)
this is not only prevented but forces (shown in red) drive the corre-
spondences towards their correct location, increasing convergence.
With a planar model (right) the normal term still allows the discrete
update to place the correspondences on the correct finger but these
forces are gone, as the surface normal is constant across a face.

where σ2
x, σ

2
n are estimates of the noise variance on points and nor-

mals. The normal term allows the energy to use surface orientation
to select better locations on the model even when they are far from
the data (see Fig. 4).

Relationship to ICP As written, Edata involves a search over the
entire surface domain Ω for each data point, akin to a closest-point
computation in a conventional iterated closest point (ICP) algo-
rithm [Tagliasacchi et al. 2015]. Commonly, when adopting an ICP
approach, the model is restricted to some class of geometric prim-
itives such as cones, spheres or triangles, in order that this closest
point computation can be conducted efficiently. If instead the algo-
rithm is expressed only in terms of the abstract surface functions S
and S⊥, this would need to be implemented as a nonlinear optimiza-
tion in two variables (a vector in Ω) for each point. In practice, given
that the closest-point solution is typically applied over all primitives,
and the Ω optimization can be initialized from the nearest vertex,
the costs can be quite similar, particularly with the surface-normal
terms included.

In our implementation, we avoid these inner iterative steps entirely,
using the lifting strategy from Taylor et al. [2014] and Khamis et
al. [2015]. Defining

ε(u, θ,x,n) :=
‖S(u; θ)− x‖2

σ2
x

+
‖S⊥(u; θ)− n‖2

σ2
n

(1)

we have

Edata(θ) =
1

N

N∑
n=1

min
u∈Ω

ε(u, θ,xn,nn) (2)

=
1

N

N∑
n=1

min
un∈Ω

ε(un, θ,xn,nn) (3)

= min
U
E′data(θ,U) (4)

where (3) simply renames the variable being minimized over, U =
{un}Nn=1 is a set of now explicitly exposed correspondences and

E′data(θ,U) =
1

N

N∑
n=1

ε(un, θ,xn,nn). (5)

This allows us to create a ‘lifted’ energy

E′(θ,U) =E′data(θ,U) +
∑

τ∈Terms

λτEτ(θ) (6)

where for any U
E(θ) ≤ E′(θ,U) (7)

and
min
θ
E(θ) = min

θ,U
E′(θ,U) . (8)

This lifted energy E′(θ,U) is easily differentiable with respect to
all parameters, making gradient-based minimization possible.

3.2.2 bg: Background Penetration Penalty

Although the data term encourages the model to explain all the fore-
ground data it does nothing to demand that the model not protrude
outside the silhouette and into the background. We therefore check
a set Ubg = {ubg

h }
H
h=1 ⊆ Ω of H points on our model and penalize

any projection of these points outside the silhouette, using the term

Ebg(θ) =
1

H

H∑
h=1

D(Π(S(ubg
h ; θ)))2 (9)

where Π : R3 → R2 is the projection to the image plane and D is
the image-space distance transform. See the supplementary material
for the locations we choose for Ubg.

3.2.3 pose: Pose Prior

In order to constrain joints to take on reasonable poses when oc-
cluded, we use the pose prior provided by Tan et al. [2016]. This
consists of a multivariate Gaussian distribution with mean pose µ
and covariance matrix Σ. We penalize the negative log likelihood of
the pose θ under this distribution as

Epose(θ) =
1

22
(θ − µ)>Σ−1(θ − µ) (10)

which can also be written in a squared form, as shown for a closely
related prior by Tagliasacchi et al. [2015]. The six components of θ
that parametrize the global transform are not penalized by this prior.

3.2.4 limit: Joint Limit Constraints

In order to restrict our model from taking on anatomically incorrect
poses, such as fingers bent backwards, we rely on a vector of joint
angle minima ψmin ∈ R22 and maxima ψmax ∈ R22 provided by Tan
et al. [2016]. Note that instead of using box constraints, we instead
softly penalize joint angle settings outside of this feasible area using

Elimit(θ) =
1

22

22∑
i=1

ε(ψmin
i , ψi(θ), ψ

max
i )2 (11)

where

ε(a, x, b) = max(0, a− x) + max(x− b, 0). (12)

3.2.5 temp: Temporal Prior

We encourage temporal consistency of poses between frames as a
way to smooth the tracker output but also to integrate observations
from the previous frame. A constant position model hypothesizes
that the current pose should be near to the pose of the previous frame,
which we denote θtemp. We encode this prior into the energy term

Etemp(θ) =
1

28

28∑
i=1

ρ(θi − θtemp
i , τi) (13)



where the robust Geman-McClure kernel ρ(e, τ) = (e/τ)2

1+(e/τ)2
mod-

els the possibility that the pose from the previous frame could be
wrong [Geman and McClure 1987] and τi ∈ {τtrans, τrot}, selecting
τtrans for the translational and τrot for the rotational components of θ.

3.2.6 int: Self-Intersection Penalty

In order to discourage finger self-intersection, we approximate the
volume of the fingers in our deformable hand surface using a set
of S spheres (see supplementary material). In particular, we let the
sth sphere have radius rs ∈ R and location cs(θ) ∈ R3 specified as
an affine combination of model vertices. That is, we define vectors
T = {T s}Ss=1 ⊂ RM×1 with

∑M
m=1 T

s
m = 1 for each s. For

the set P ⊆ {1, ..., S}2 containing all pairs of spheres where both
spheres are not in the same or adjacent joints of the same finger, we
penalize self-intersection with

Eint(θ) =
1

|P|
∑

(s,t)∈P

max(0, hst(θ))
2 (14)

where
hst(θ) = (rs + rt)

2 − ‖cs(θ)− ct(θ)‖2 (15)

measures the amount of penetration between spheres s and t.

3.2.7 tips: Fingertip Term

The detected fingertips (§3.4) are a set of 3D points {ff}Ff=1 ⊂
R3. We likewise identify five model positions {utip

d }
5
d=1 ⊂ Ω

that correspond to the tip of each finger in our model. We then
incorporate the fingertip detector into the model-fitting energy using

Etips =
1

F

F∑
f=1

softmin(sf ; νtips)
2 (16)

where sf ∈ R5 is the vector filled with the values ‖S(utip
d ; θ)− ff‖2

for d = 1 . . . 5, and softmin is the differentiable operator

softmin(s; ν) =

∑
s∈s e

−s/ν2s∑
s′∈s e

−s′/ν2 (17)

which encourages each of the detections to be explained by a finger-
tip in our model.

3.3 Energy Minimization

Having defined an energy E′(θ,U) parametrized in terms of both
the pose θ and the data-to-model correspondences U ⊂ Ω, we now
show how to efficiently minimize this function. We will concatenate
the parameters into Θ =

[
vec(U)> θ>

]> ∈ R2N+28, and add
the overload

E′(Θ) = E′(
[
vec(U)> θ>

]>
) := E′(θ,U).

Like Tagliasacchi et al. [2015], we have ensured that all terms de-
scribed above can be represented as a sum of squares, so the energy
is in the Gauss-Newton/Levenberg-Marquardt form:

E′(Θ) =

K∑
k=1

r2
k(Θ) = ‖r(Θ)‖2 (18)

for the vector of residuals r(Θ) ∈ RK . We use the method ‘Square-
Rooting the Kernel’ described by Zach [2014] in order to handle the
robust kernels in the energy.

Initialization First Iteration Convergence

Figure 5: Examples of our model fitting converging to an energy
minimum. Often when initialized far from the true pose the model
converges to (presumably) the global minimum (top row) demon-
strating the large basin of convergence. In the bottom row the pose
is outside that basin as the pinky is too far from its data. Often the
first iteration (middle column) dictates the success or failure of the
optimization.

3.3.1 Levenberg Iteration

As we have been careful to make everything differentiable, we can
calculate the Jacobian J(Θ) ∈ RK×(2N+28), which is block sparse
(see Fig. 7). We use this to compute a standard Levenberg step using

(J(Θ)>J(Θ) + γI)∆Θ = J(Θ)>r(Θ) (19)

where γ is a damping parameter. A single iteration then updates
both the hand pose and correspondences as

Θ← Θ⊕∆Θ (20)

with the ⊕ operator defined simply as addition for the pose compo-
nents of Θ, and the mesh-aware update from Taylor et al. [2014]
for the correspondence components, which correctly handles the
transitions between the triangular faces of Ω.

Due to the highly sparse and regular structure of the Hessian approx-
imation, we can solve (19) in a very efficient manner by exploiting a
Schur complement, as often used in bundle adjustment [Triggs et al.
2000], which observes that in the block-matrix linear system[

C E
E> B

] [
∆U
∆θ

]
=

[
c
b

]
, (21)

we can first solve the symmetric positive definite system for ∆θ as

(B − E>C−1E)∆θ = b− E>C−1c . (22)

Note that C ∈ R2N×2N is composed of 2 × 2 blocks along the
diagonal and thus C−1 can easily be computed by inverting each
block independently. Then ∆U is obtained cheaply from ∆U =
C−1(c − E∆θ). Similarly, the structure of these matrices allows
for efficient computation of the matrix multiplications above. (22)
requires only the decomposition (e.g. Cholesky) of a constant-sized
matrix, and thus the algorithm scales linearly with N .

The correspondences now contribute only a small computational
cost to each iteration, comparing very favourably with ICP, where a
closest-point operation must be performed on each iteration for each
data point.
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Initialization Discrete Update Continuous Update

Iteration 1

Discrete Update Continuous Update

Iteration 2

Discrete Update Continuous Update

Iteration 3

Figure 6: A typical example of our model-fitting converging to the correct pose. Orange dots are data points {xn}Nn=1. Each correspondence
un is represented by its blue surface point S(un; θ). Initialization: The model begins in a pose extrapolated from previous frames or supplied
by our discriminative predictor (§3.3.2). Iteration 1: In the first discrete update, each of the data points is assigned a correspondence from a
finite set of model points (§3.3.3). Despite the coarseness of this set, the continuous update (§3.3.1) is able to make large corrections (blue
trails from old to new) to these correspondences while simultaneously adjusting the hand pose. Iteration 2: Many of the grossly misassigned
correspondences are corrected by the discrete update allowing the continuous update to make substantial progress towards the true pose.
Iteration 3: The third iteration corrects the remaining correspondences and slides the model further towards the true pose.
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Figure 7: Left: The Jacobian J has a block sparse structure com-
posed of N blocks of size 6×2 with 28 mostly-dense columns on
the right. Right: The Hessian approximation has a block sparse
arrowhead structure composed of 2×2 blocks and a mostly dense
set of rows and columns forming the arrowhead.

3.3.2 Pose Initialization

Since the energy function is highly non-convex, we hope to initiate
a local gradient-based optimization from at least one starting point
that is sufficiently close to the global minimum for it to be found.
There are two sources of starting points for pose parameters. The
first uses the predictor

θtracked = θ(1) +
t(1)

t(2) − t(1)

(
θ(1) − θ(2)

)
(23)

where θ(1) and θ(2) were the tracked poses for those frames that
arrived t(1) and t(2) > t(1) time units earlier than the current frame.2

When a constant velocity prediction is not available, the constant
position prediction θtracked = θ(1) is substituted instead.

The second is a set of reinitialization poses quickly estimated for
each frame. This is an instance of the ‘multi-output learning’ prob-
lem [Guzmán-Rivera et al. 2014], for which we use a modification

2In (23) we implement the addition operator for the global rotation com-
ponent to maintain angular velocity.

(a) (b) overlap of (a) & (b)

Figure 8: Visual intuition for the two distances relevant to our
reinitializer. Top: Flipping a hand generates an image similar in
appearance space, but distant in pose space. The retrieval forest
therefore returns a lot of seeds that are flipped versions of the ground
truth. A graph building metric that only relies on pose cannot
recover from such local minima. Bottom: Retrieval forests can often
match hands to their slightly rotated versions. Here, the distance in
pose space is small, but the distance in appearance space is large,
because the fingers do not overlap.

of a recently-proposed method [Valentin et al. 2016]. This algorithm
generates multiple hypotheses for hand poses given a preprocessed
and cropped hand image. It quickly generates candidate hand poses
using what is coined a ‘Retrieval Forest’. Those candidates are then
refined using ‘Navigation Graphs’ to generate a small number of
pose proposals. We successfully adapted the algorithm proposed by
Valentin et al. [2016] despite the complication that similar appear-
ances do not always imply nearby hand poses and vice versa (see
Fig. 8 for some examples). Instead of learning a global translation di-
rectly, we instead learned a relative translation from a pre-processed
and cropped hand image which could then be mapped into a global
translation. For the optimal algorithm settings (c = 40, n = 10) the
search concludes in under 5ms.

3.3.3 Discrete Update of U

While initial estimates for θ are provided by temporal extrapolation
and reinitializers, we also need to initialize the correspondences U .
A regressor could also be used here [Taylor et al. 2012], but in this



σx σn λbg λpose λlimit

3mm 0.25 0.1 1 102

λtemp τtrans τrot λint λtips νtips

0.15 2cm 4◦ 104 40 2cm

Table 1: Parameters used for all our experiments and experiences.

work we perform a simple discrete search. In particular, a set of Q
proposal correspondences Uprop

i = {uprop
iq }

Q
q=1 ⊆ Ω is predefined

offline for each iteration i. Before the ith Levenberg step, each entry
un in U is updated according to

un ← argmin
u∈Uprop

i ∪{un}
ε(un, θ,xn,nn). (24)

Note that this update strictly reduces the energy (6) as each corre-
spondence un is allowed to retain its old value. This is not only
valuable in providing a good initialization but allows correspon-
dences to jump from finger to finger (see Fig. 6), which is a more
global, but coarse-grained, update than a gradient-based optimizer
can provide. Although we use random sampling to predefine each
Uprop
i (see supplementary material), we leave it as future work to

investigate better heuristics, such as using more proposals on the
fingers, or regressing the set using features based on the current pose,
set of correspondences and image.

3.4 Preprocessing

The preprocessing stages are relatively standard. The hand position
is detected using the Kinect body tracker [Shotton et al. 2011]. This
position is then used as a seed to grow a segmentation of the hand
using a connected components algorithm where neighbouring pixels
close in depth are considered to be connected. As pixels within a
bounding volume of 19cm centered at the seed pixel are considered
for inclusion, pixels from the user’s forearm are often included; it
is therefore important that our model also has a forearm to explain
these pixels.

We then sample the N pixels using a stochastic approximation to
farthest-point sampling which simply selects the furthest from 5
candidates to the existing sample set [Mitchell 1991]. The depth
of each sampled pixel is used to calculate its 3D position yielding
the set of data points {xn}Nn=1 ⊆ R3. For each pixel xn, we
additionally compute a data normal nn ∈ R3 by first smoothing
the depth image and normalizing the average of a set of normalized
cross products in a region around the pixel.

Finally, we employ a simple variant of the fingertip detection algo-
rithm of Qian et al. [2014] to find a set of likely fingertips in the
image and likewise back-project them to get a set of F positions
{ff}Ff=1 ⊂ R3.

4 Experiments

In this section we evaluate many aspects of our tracker, comparing
to the state of the art, investigating the trade-off between accuracy
and efficiency, demonstrating the effect of various terms in our
energy, and discussing the user experiences shown in our video. All
experiments and demonstrations in the accompanying video use the
weight settings given in Table 1.

4.1 Metrics

Marker Error We quantify the error of predicted against hand-
annotated 3D marker positions, such as the tip of a finger or the
location of a finger joint. For this metric we report the number of
frames for which either the average or the maximum marker position
error was less than a certain threshold (see e.g. Taylor et al. [2012]
or Sharp et al. [2015] for more details). Note that the ground truth
marker positions have a considerable degree of annotation error, so it
is impossible and undesirable to achieve perfect accuracy. Since our
algorithm predicts the hand pose, not the markers directly, we must
define a mapping from the pose to the required markers. Like Tan et
al. [2016], we solve for the affine combination of just four vertices
of the posed mesh that best predicts the marker on an equally-spaced
5% subset of the frames in each sequence. Note that the flexibility
of this mapping is extremely limited and this procedure simply
automates an otherwise manual and biased process.

Classification Error A less prevalent metric based on classifying
pixels as belonging to one of several parts of the hand (index finger,
palm, etc.) was introduced by Sharp et al. [2015] with the FINGER-
PAINT dataset. The metric counts the percentage of frames where
either the average or the maximum pixel classification error rate falls
below a certain threshold. In contrast to marker-based metrics, this
metric measures the system’s ability to fully and accurately explain
every pixel. As such this metric also serves as a proxy for evaluating
the validity of the generative model used.

Energy We also report some results on energy values. Since
the lifted energy E′(θ,U) is largely dominated by the current set-
ting of the latent variables U , we use the unlifted energy E(θ) =
minU E

′(θ,U). This is calculated by performing a single closest-
point update, which we define as a discrete update followed by a
continuous optimization that minimizes U holding θ fixed.

4.2 Comparison to State of the Art

Dexter Dataset In Fig. 9 we compare the accuracy of our tracker
with several state of the art methods on the DEXTER dataset [Sridhar
et al. 2013]. For all methods we compute per-frame errors for the
labeled fingertip markers on the same subset of 2,931 out of 3,155
frames that Sridhar et al. use for error evaluation, and the results
are normalized so that each of the 7 sequences in the dataset has
equal weight. For our tracker, we use the personalized shape model
described by Tan et al. [2016] for the single subject in the Dexter
dataset.

Fig. 9 shows that on this dataset, our tracker has much higher accu-
racy than Sridhar et al. [2015] and Tan et al. [2016]. Our CPU-only
tracker achieves almost identical results to those of Tagliasacchi et
al. [2015] which requires using a high-end GPU (they report using a
Nvidia GTX980). Looking at the qualitative results (see accompany-
ing video), we believe that both our results and those of Tagliasacchi
et al. [2015] are operating essentially at the level of human labeling
accuracy. We attempted to perform a direct comparison with this
implementation to confirm the differing computational requirements
of our tracker, but unfortunately it proved difficult to obtain the
discontinued Senz3D depth camera that their tracker requires.

NYU Dataset In Fig. 9 we also compare our tracker to a range
of recent papers on hand pose estimation by using the NYU
dataset [Tompson et al. 2014]. We report results for just the first test
sequence of 2,440 frames in order to compare with Tagliasacchi et
al. [2015] who did not evaluate their method on the whole test set.
The results originally published by Tompson et al. [2014] include
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Figure 9: Comparison to the state of the art on DEXTER (top) and
NYU (bottom).
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Figure 10: Comparison to the state of the art on FINGERPAINT

positions for three locations on the palm that several methods find
it difficult to localize accurately; to avoid these, we use a common
subset of ten joint positions (two per digit) to compute error in each
frame. Our tracker again uses a personalized model for the only
subject shown in these frames of the NYU dataset, using the method
described by Tan et al. [2016]. On this dataset, our tracker appears
to be substantially more accurate than the alternatives.

FingerPaint Dataset In Fig. 10 we compare on the FINGERPAINT
dataset [Sharp et al. 2015]. Tan et al. [2016] showed significant im-
provements over Sharp et al. by using a detailed mesh personalized
to each user. However our results, that use the same personalized
models, demonstrate further improvements in tracking robustness,
despite the compromises made in our generative model to obtain
differentiability.

4.3 Computational Efficiency

A key contribution of this paper is the demonstration that both
our smooth surface model and joint optimization strategy not only
contribute to the state of the art accuracy shown above, but also allow
us to largely maintain this accuracy when we enter a low compute

scenario. There are three variables that dominantly determine the
amount of compute our model fitting procedure requires: (i) the
number of data points in our data term; (ii) the number of starting
points we initialize the Levenberg algorithm from; and (iii) the
number of Levenberg iterations we perform for each starting point.

We found that when a powerful desktop was available we could run
10 starting points for 10 iterations on 192 data pixels while reserving
the entire GPU and enough CPU for the demanding VR experiences
shown in our videos. This is also the default setting we use for all
experiments. As we will see, however, we find that we can scale our
tracker down (e.g. to run on a tablet – see video) by adjusting these
parameters without a drastic decrease in accuracy.

We demonstrate this graceful degradation in comparison to two
different modifications of our algorithm.

• ICP: Each iteration of our algorithm is replaced by a clos-
est point update followed by a continuous optimization of θ
holding U fixed.

• Planar: Our smooth subdivision surface model is replaced by
a piecewise planar triangular surface. That is we set S(u; θ) ∈
R3 to be a linear combination of the three vertices u lies on.

We compare our approach with the ICP and Planar variants using
the maximum error metric on DEXTER in Fig. 11a, showing both
per-frame and tracking results. The per-frame results show a con-
siderable improvement of our approach over the alternatives. This
is important for recovery during rapid motions omnipresent in real
world applications such as those presented in §4.6. The improvement
is somewhat diluted in the tracked results where our large basin of
convergence is less important.

To demonstrate our ability to gracefully trade a small amount of
accuracy for lower compute, we investigate varying the parameters
that influence computational cost. Fig. 11b shows that our accuracy
is remarkably invariant to the number of pixels considered. In
Fig. 11c and 11d we show that we can achieve higher accuracy using
far fewer iterations and starting points than ICP and Planar. We
believe this is facilitated by the smoothness of our energy combined
with joint optimization over pose and correspondences, which takes
advantage of being able to rotate portions of the surface while sliding
the correspondences to compensate (see Fig. 6).

4.4 Evaluation of Energy Terms

Our energy includes a variety of terms and it is important to convey
the reasons for the inclusion of each and how we decided on a single
set of weights used across all datasets. The weights themselves were
set through cursory parameter sweeping combined with modifica-
tions that we felt improved the ‘feel’ of our live hand tracker. Given
our desire for the latter, and our use of a single set of weights for all
datasets and cameras, we believe that the results presented are not
the result of overfitting.

In Fig. 12 we use DEXTER to experiment with turning off one
energy term at a time. In order to avoid having the initialization
from the previous frame hide details, we only use our reinitializer
(see Fig. 11a for the effect of Etemp when tracking). Apart from the
positional component datax of the data term, the terms which have
the largest effect on model fitting accuracy are the pose prior and
the normal component, datan. The other terms seem to make only a
small difference under this metric; nonetheless, we find these terms
help the qualitative feel of the tracker for which quantitative metrics
may not be a good proxy.
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(a) Accuracy on per-frame fitting (left) and tracking (right).
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(b) Effect of the number of data pointsN on accuracy.
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(c) Effect of the number of iterations on energy and accuracy.
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(d) Effect of the number of starting points on energy and accuracy.

Figure 11: Effect of alternative model fitting strategies and op-
timizer configurations when fitting to DEXTER. Apart from the
right-hand plot in (a), every plot shows the results of fitting to each
frame individually.
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Figure 12: The effect of setting the weight for each non-temporal
term of our energy function E to zero when fitting to each frame of
DEXTER without tracking, compared to the accuracy with all terms
included. See Section 3.2 for a description of each term.
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Figure 13: Our reinitializer is able to estimate reasonable hand
poses for many configurations (top two rows). The bottom two rows
show failure cases.
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Figure 14: Comparison of reinitializer strategies on DEXTER.

4.5 Reinitializer

Our reinitializer is capable of estimating plausible seeds for a wide
variety of hand poses as illustrated in Fig. 13. The most significant
source of errors come from retrieved poses that are flipped, such as
a flat hand facing forward being predicted as facing away.

To demonstrate the precision of our reinitializer, we compare it
against the reinitializer from Sharp et al. [2015], which is based
on a combination of discriminative fern ensembles [Krupka et al.
2014] and decision jungles [Shotton et al. 2013]. Fig. 14 shows a
significant improvement, regardless of the number of seeds. Using
only 9 seeds (the real-time setting used for our results) our best seed
is on average 17mm closer to the ground truth compared to the best
seed of Sharp et al. [2015]. Our reinitializer also runs at a similar
speed to that of Sharp et al. [2015].

4.6 Experiences

We demonstrate a number of diverse user experience prototypes in
the accompanying video and Figs. 1 and 2. These include examples
of discrete gesture recognition (such as a thumb click to engage or
disengage), retargeting the hand to new 3D hand avatars, painting,
pointing, 3D thumb stick control, and the exciting frontier of physics-
based interaction, including: prototypes of piano playing and typing,
controlling a marionette via virtual strings attached to the fingers,
deforming a 3D model, scratching records, and interacting with a 3D
GUI through pure physics. We also demonstrate a play-through of a
prototype game experience, codenamed ‘Huge’, that combines many



of the individual interaction metaphors into a coherent experience.
Most of these experiences were built in Unity hooked up to the
Oculus DK2 VR headset and using a Kinect V2 camera for input.

Several aspects set these experiences apart from existing work. First,
their number and diversity: the level of precision and robustness of
our system means that it was extremely easy to put each experience
together. As an example, the typing experience took under an hour
for a designer with no technical background in hand tracking to
create. Our ability to track the hands reliably at several meters from
the camera enables a much larger working volume that is typically
possible (e.g. compared to a Leap Motion sensor) meaning that
there is less risk of the user accidentally breaking the experience
by moving their hands out of view. Finally, the Huge demonstrator
shows for the first time a coherent end-to-end user experience, and
highlights how our system can reliably distinguish between several
interaction modalities across multiple minutes of gameplay.

An ongoing concern regarding virtual object manipulation is the
importance of haptic feedback. We believe there are several ways
to address this. First, with the stereo disparity cues offered by VR
headsets, it is easy to position your hand relative to virtual objects,
and visual and auditory cues can then indicate interaction events
to the user. We were genuinely surprised how well this works
and how natural this feels. Second, one can design the experience
such that affordances are thin and the user ends up making a pinch.
Finally, research in in-air haptics continues apace [Monnai et al.
2014; Ultrahaptics Ltd 2013].

5 Conclusion

We have presented a new system for detailed articulated tracking of
the human hand. Our approach combines a smooth, differentiable
surface model with a new energy function that is continuously opti-
mized jointly over both pose and correspondences. The optimization
exhibits a large basin of convergence, meaning that fewer starting
points need to be explored. Further, despite a possibly higher per-
iteration cost, convergence is much faster than alternating algorithms
such as ICP. These technical contributions result in quantitative ac-
curacy that exceeds that of multiple competing systems across a
number of datasets, at a much lower computational cost. The re-
sulting system runs in real-time on lightweight devices without any
GPU compute. Finally we have shown compelling user experience
prototypes that demonstrate the exciting range of possibilities that
articulated hand tracking will enable. We believe our approach rep-
resents a significant milestone in the problem of fitting deformable
surface models to observed data.
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UIST, 549–558.

WANG, Y., MIN, J., ZHANG, J., LIU, Y., XU, F., DAI, Q., AND
CHAI, J. 2013. Video-based hand manipulation capture through
composite motion control. ACM Trans. Graphics 32, 4 (July),
43:1–43:14.

WU, Y., AND HUANG, T. S. 2000. View-independent recognition
of hand postures. In Proc. CVPR, vol. 2, 88–94.

WU, Y., LIN, J. Y., AND HUANG, T. S. 2001. Capturing natural
hand articulation. In Proc. ICCV, vol. 2, 426–432.

XU, C., AND CHENG, L. 2013. Efficient hand pose estimation from
a single depth image. In Proc. ICCV, 3456–3462.

ZACH, C. 2014. Robust bundle adjustment revisited. In Proc.
ECCV, 772–787.

ZHAO, W., CHAI, J., AND XU, Y.-Q. 2012. Combining marker-
based mocap and RGB-D camera for acquiring high-fidelity hand
motion data. In Proc. Symposium on Computer Animation, 33–42.

http://ultrahaptics.com
http://ultrahaptics.com

