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Abstract

This paper introduces a novel set of heuristics for ideimgyogi-
cally related sections of the heap such as recursive datztistes,
objects that are part of the same multi-component strucéune re-
lated groups of objects stored in the same collection/akiéyen
combined with lifetime properties of these structuress thior-
mation can be used to drive a range of program optimizations i
cluding pool allocation, object co-location, static deadition, and
region-based garbage collection. The technique outlingkis pa-
per also improves the efficiency of the static analysis byigiog

a compact normal form for the abstract models (speedingdhe c
vergence of the static analysis).

We focus on two techniques for grouping parts of the heap.
The first is a technique for identifying recursive data dites in
object-oriented programs based on connectivity and tyfoerma-
tion. The second technique is a method for grouping objégtts t
make up the same composite structure and that allows us to par
tition the objects stored in a collection/array into grotyased on
a similarity relation. We provide a parametric component in the
similarity relation to support specialized analysis applicationg. (e.
numeric analysis of object fields). Using tBm3d andBarnes-Hut
benchmarks from the JOlden suite we show how these grouping
methods can be used to identify various types of logicatsires
and enable the application of many region-based optinoizati

Categories and Subject Descriptors  F.3.2 Logics and Meanings
of Program$:. Semantics of Programming Languages (program
analysis)

General Terms Languages, Performance, Verification

1. Introduction

Identifying and grouping logically related parts of the gram
heap in an abstract program model is useful both to client opt
mization applications (which can use the information tofqren
pool allocation, object co-location, static deallocafiett.) and in
improving the performance of the static data flow analysie\ol-

ing a normal form which speeds the convergence of the aisalysi
This paper presents a novel set of grouping heuristics fantity-

ing and grouping these regions in a manner that supports e wid
range of client applications and that can be used in prattipeo-
duce an efficient static analysis.
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Research on object allocation and memory layout has used
the notions of logically related structures to improve tipatil
locality of objects with similar temporal accesses via teghes
such as pool allocation [16, 4] and object co-location []2C8her
applications which use logically related sections of thaphbave
focused on improving the efficiency of garbage collectioheT
most direct application is static deallocation of regiomsdata
structures [16, 5, 13]. There has also been work [15] on using
region information to reduce the pause times of garbagecadn
by only performing the collection on portions of heap thatldely
to contain many dead objects. Similar approaches (when ic&tb
with heap based read/write information) can also be usegpomt
parallel garbage collection by statically identifying whiparts of
the heap can be safely collected without concern for the touta

The techniques listed above use a variety of approaches for
identifying region information that is later used in theiapkation
phase. The techniques range from simple grouping via thrept
partitions computed using a Steensgaard style analysjsl{iGo
more sophisticated approaches as done in [16, 17, 13]. Honwey
these techniques are based on points-to style analyses imited
amounts of context/flow sensitivity they cannot preciselyded
many properties (sharing and shape) of data structureathased
extensively in object oriented programs. The techniqubigygaper
offers a significantly higher degree of precision for idBtig
regions than these approaches and can be used directly tovienp
the effectiveness of many region based memory optimization

In addition to being useful for a range of optimization tech-
nigues the region identification technique we present is phaper
can be used to improve the performance of various statig/sisal
techniques. This is achieved by using the region identiGioato
define a normal form for the abstract models, reducing thghtei
of the abstract lattice. This use of a normal form can be seen a
pseudo-widening operation used to transform a domain ofiiafi
height (e.qg, linked lists of size, Q... ») into a finite height lattice
(e.g, linked lists that are of sizeD 2, or some unknown lengttv).
There are two parts to this normalization that we addresig t
paper. The first is the compression of recursive structurpsten-
tially unbounded size, such as lists or trees, into finiteesenta-
tions. The second is the grouping of objects that make up ositg
data structures or partitioning objects stored in a cabedarray
based on aimilarity relation.

While the concept of computing normal forms for heap rep-
resentations is not novel to this paper —symbolic accessspat
in [7], normalization/merge in [19, 18, 3, 6, 21], and the appd
left/right rules in [1, 28] or similar rules for inductive sthesis
in [11]— the heuristics we use to accomplish this are sigaifity
more general than what has been used in previous work. licpart
ular the formalization applies to any type of recursive dstac-
ture (as opposed to just lists or trees [1, 28, 19, 11]) andrsae
data structures that are part of larger composite strusi{stech as
in [1, 21]). The heuristics in this work can precisely modelltia



component structures with shared components which cammot b
handled by [1, 28, 19]). Finally these heuristics suppontevedfec-
tive grouping of the contents of collections (arrays or edtilons
from java.util ) than is possible with the methods described
in [3, 23, 10] (and which are left out in most other approathes

We begin with a brief introduction of the parametric labeled
storage shape grapls$g model, Section 2, that we use to illus-
trate the main contributions of this paper. These contidbst as
described in Sections 3 and 4 are:

¢ A method for identifying and grouping recursive data struc-
tures.

¢ A method for grouping objects that form multi-object compos
ite structures.

e A parametric approach to grouping the contents of arraiss/co
lections.

Finally, in Section 6 we use them3d and Barnes-Hut bench-
marks from the well known JOIden suite to illustrate the Hssof
the region analysis and how this information can be usedpgpat
some of the optimizations mentioned above.

2. Concrete Heap and Labeled Shape Graph

We begin by reviewing the abstract graph model that we build o
in this work (although the concepts presented in this paperbe
applied in other approaches such as those that rely on $igpara
logic [1, 11, 28]). In previous work [21, 22, 23] this model is
used to precisely perform shape and sharing analysis orge &n
Java programs. While the properties discussed thereinrieak
to precisely analyzing these programs (and similarly thggore
identification method presented in this paper is criticahtoresults
in these papers), we do not need all of this information ireord
to perform region identification and grouping. Thus, to difgp
the discussion and to focus on the novel concepts in thisrpape
present a simplified version of the model.

2.1 Concrete Semantics

To analyze a program we first transform (via a modified compile
frontend) the Java 1.4 source into a semantically equivades+
gram in a simpler to analyze core language. This interme dau-
guage is statically typed, has method invocations, camiti con-
structs, exception handling and the standard looping rattes.
The state modification and expressions cover the standagk ra
of program operations: load, store, and assignment alotigled-
ical, arithmetic, and comparison operators. During thiss$for-
mation step we also load in our specialized standard libirary
plementations, so we can analyze programs that use classes f
java.util ,java.lang , andjava.io

The semantics of memory are defined in the usual way, using
an environment, mapping variables into values, and a stoa@;
ping addresses into values. We refer to the environment lad t
store together as the concrete heap, which is treated asledab
directed multi-graptV,O,R) where eaclv € V is a variable, each
o € Ois an object on the heap and each Ris a reference (either
a variable reference or a pointer between objects). Thefgef-o
erenceR C (VUO) x O x L wherelL is the set of storage location
identifiers (a variable name in the environment, a field iifient
for references stored in objects, or an integer offset faremces
stored in arrays/collections).

A region of memoryd = (C,P,Rin, Rout) consists of a subset
C C O of the objects in the heap, all the pointé&s= {(a,b, p) €
R|ab e CA pe L} that connect these objects, the references that
enter the regioRj, = {(a,b,r) e Rlae (VUO)\CAbeCArelL}
and references exiting the regiBgut = {(a,b,r) e Rlac CAbe
O\CArelL}.

2.2 Storage Shape Graph Abstraction

Our abstract heap domain is based ondtezage shape grap|8]
approach. Arabstract storage grapts a tuple of the forn{V,N, E),
whereV is a set of abstract nodes representing the variablés,

a set of abstract nodes (each of which abstracts a régiohthe
heap), and C (VUN) x N x L are the graph edges, each of which
abstracts a set of pointers, ahds a set of abstract storagéfsets
(variable names, field offsets or the special offaéor references
stored in arrays/collections). We extend this definitiothvei set of
additional relationd) that further restrict the set of concrete heaps
that each shape graph abstracts. [Hieled storage shape graphs
(Issg) which we refer to simply aabstract graphsare tuples of
the form(V,N,E,U).

DerINITION 1 (Valid Concretization of éssg. A given concrete
heap h is avalid concretizatiorof a labeled storage shape graph
g if there are functions$ly, Mo, M; such that the following hold:

e My:V—V,My:0— N andr, : R— E are functions (andfly
is 1-1).

e h, Ny, Mo, andl; satisfy all the relations i,

e h, Ny, My, andl, are connectively consistentith g.

Where hIy, Me, M, are connectively consistentith g if:

e V01,00 € 05.t.(01,0p,p) € R,IecE s.t. e= M ((01,02,p)),
e starts atf1o(01), ends atlly(02), and eoffset= p.

eVveV,0e0st(v0v) cR,IecE st e=T((v0,V)), e
starts atlMy(v), ends afl1y(0), and eoffset=v.

To check if a given concrete heagnd mapsly, Mo, M satisfy
a given relation inU we need to look at the pre-images of the
nodes and edges in the abstract grgpimder the mapBly, Mo, M.
We use the notatioh |4 e to indicate the set of references in the
concrete heagh that are in the pre-image & under the maps.
Similarly, we useh | g n, to indicate the region of the heap that
is the pre-image ofi under the maps.

2.3 Label Relations (inU)

Type. For thetyperelation, we add a relatiom, {11, ..., 1}) (we
use the shorthand.type= {13,...,7}) to U for each node im,
wherert; are types in the program and sdyf1y, Mo, N, satisfies
(n{11,...,7c}) iff {typeof (o)|objectoeh |gn} C{Ty,..., T}

Linearity. The linearity relation is used to track the number of
objects in the region abstracted by a given node or the number
of references abstracted by a given edge. Tinearity property
has 2 values: 1 indicating a cardinality [& 1] or w indicating a
cardinality of[0, ). Given a nodewhereh | g n= (C,P,Rin, Rout)

[0,1]

then:
[l e { 0.0)

Similarly for an edgeewhereh |ge= {ry,...,r;} then:

raentie{ 00

Abstract Layout. To approximate the shape of the structures present
in the region that a node abstracts, the analysis alsstsact layout
properties{(S)ingleton (L)ist, (T)ree (D)ag, and (C)ycle}. The
(S)ingletonproperty states that there are no pointers between any
of the objects abstracted by the node, given a nodéiereh |4

n= (C,P,Rin, Rout) thenP = 0. The other properties correspond to
the standard definitions for list, tree, DAG, and cyclic staues in

the literature [9, 21, 1].

if n.linearity=1
if n.linearity = w

if elinearity =1
if elinearity = w



[2, nx, 1]

[nx]

[1,1,1]

(a) Concrete List, Length 3 or More

(b) Abstraction with Regions Identified

Figure 1: A Linked List and Desired Abstraction with Regiddentified

2.4 Sample Heap and Abstract Graph Model.

Figure 1 shows a linked list of length 3 or more (left) and the
representation of this list in the abstract domain with thgcts
that represent it grouped into regions (right). In the azttdomain
each edge is labeled with a unique identifier, an abstracagto
offset and alinearity label. The nodes are labeled with a unique
identifier, atypelabel, alinearity label and dayoutlabel.

In Figure 1b we see that the variablerefers to node 1 which
represents a singlérfearity is 1) ListNode [N) object at the head
of the linked list. There is a single edge (edge 2) out of théeno
representing the single (agdinearity 1) nx (next) pointer, which
ends at node 2. This node represents the tail of the list @liens
edge andL)ist layou) which may contain many objectBnearity
is w).

Partitioning the list into these two nodes captures sevenabr-
tant attributes. First we have kept the head of the list (whiay be
modified though the variable) distinct, giving more opportunities
to the analysis for precisely modeling the effects of latexgpam
statements. Next, the grouping has produced a compactsepre
tation for the list structure which has a substantial impatthe
efficiency of the analysis. Finally, we have grouped all &f tb-
jects that make up the list into two nodes (the head and the tai
nodes 1 and 2) and as we will see later if there are other unre-
lated lists in the program (and the analysis can determiaetiiey
are unrelated) the abstraction will generate separatesrfodeach
of these lists. Thus, the information needed by the variqis o
mization technigues we are interested in is preserved ¢tsbja
the same structures are grouped together while disjointtstres
in the concrete heap are kept separate in the abstract model)

3. Recursive Components

The first contribution in this paper is a generalized mettwdden-

tifying parts of the abstract heap graph that may repressinghe

recursive data structure and how these parts should be epidop
gether (e.g. using multiple nodes to represent the headbdrsd¢-

tions of the linked list). The basic approach of identifyipgten-

tially recursive structures is a straightforward exaniorabf the

type information and connectivity properties of the progrsased
on recursive field paths [7, 21, 1, 19]. However, there aremalrax

of subtle but important modifications that are needed to taain
the desired level of precision in the results when dealirtty won-

trivial object-oriented programs.

3.1 Statically Recursive Types

We can identify the types in a program that may be recursive by
looking at the type graph for the program. Thtatic program type

DEFINITION 2 (Statically Recursive Typeskor a given program
and types, 7'

1. 1,7’ are statically recursivaff in the static program type graph
(t # 1 A 1,7 are in the same strongly connected component)
V (1 = 7’ and there is a self edge).

2. T is a statically recursivetype iff 31’ s.t. 7,7’ are statically
recursive

In much of the past work on region identification [21, 7, 19, 1,
11] this static type information has been used (in variougsya
to determine if two objects are part of the same recursiva dat
structure. However, this can result in overly approximagion
identification in three important classes of heap strustuBelow
we describe these and how we can modify our concept of reeursi
structures to characterize them.

3.2 Safe Nodes

In order to accurately simulate the effects of various paogstate-
ments it is critical to precisely model the targets of vaeatefer-
ences. Consider removing an element from a linked list where
have multiple variables pointing into the same list strugtin or-
der to preserve the listness property after the removal wst kaep
track of the relative positions of the variable references the list
structure and the effects of the assignment statementeabjbcts
referred to by the variables. Thus, even though all of thégects
make up the same recursive list structure, we want to usapieult
nodes to represent it (one for each location in the list thaeing
modified in addition to nodes for the tail or other segments).

To identify these important objects which need to be modeled
independently we introduce the notion séfe nodegwhich is
similar to the notion ofinterrupting nodesin [19]). We say a
node is safe if it represents an interesting point in a réceidata
structure (a point where the program is accessing a specifie n
in the data structure via a variable, as in the above exaropla,
non-recursive data structure pointing into specific lao&tiin the
recursive structure) and we keep these nodes distinct fngrother
recursive components.

If we have a recursive data structure and we store references
to important points in it via another data structure we wanbe
able to maintain the relations between these specific pdings
data structure. This is a generalization of maintainingptecise
locations of variable references into a recursive datastre. This
is important to analyzing situations of the form: a methddnes a
Pair object containing two referencesltéstNode objects and
we want to remove all the elements in the list betweerfitse
andsecond entries of thePair . If the analysis does not maintain
the order relation between the targets oftingt  andsecond

graphhas a node for each type that is declared and for each pair of reference fields in the list structure we cannot accuratebgleh

typesrt, T’ there is an edge fromto T’ if T has a field of type (or
supertype)’. From this construction we can identify types that are
recursive (based on the static type information) as follows

the effects of the remove operation (e.g., we would consigel
assume that the target of teecond field could come before the
target of thefirst ~ field in the list).



[4, nx, 1]

[2,f, 1] [3,s 1]
1, Pair, 1,S

[1,x 1]

[5, nx, 1]

[nx]

Figure 2: Safe Nodes Example

[3, nx, 1]

[2, nx, 1] [3, nx, 1]

(b) Recursive Types With Complete Structure

Figure 3: Recursive Types and Complete Structures

DEeFINITION 3 (Safe Node)A node n issafeif it is a hode with
the (S)ingleton layouaind either of the following hold:

1. Jvariable v that refers to n.
2. 3 edge e s.t. e starts at a nodg whereV1s € ns.type T €
n.type, 7s, T are notstatically recursive

Figure 2 shows a simple example of the two ways a node is
considered safe (represents an interesting point in thp) héa
this figure we have node 1 which g&fesince it is referred to
directly by a variable. More interestingly we have nodes @hg&h
both representN objects and arstatically recursivebut are also
pointed to by thé”air object which isot statically recursivevith
the LN type. Thus according to our definition of safe nodes, nodes
1, 2 are considered safe and will not be merged.

3.3 Connectivity Awareness

Consider a program with the object type$, 12, 13 which are
mutually recursive on thex field. If we have the abstract heap
graph in Figure 3a we can see that té &nd 39 nodes in the list
are statically recursive according to the definitions aboveit is
not complete. That is although type2 andt3 are recursive each
no object of a given type appears multiple times. Figure 3lwsh
a similar structure but in this case th&and 39 nodes in the list
are statically recursive. Since the typgeappears multiple times (in

1,1, 1] [2, nx, 1] [3, nx, 1

]

[4, nx, 1]

Figure 4: Recursive Cycle

structure This ensures only nodes that are in repeating and unin-
teresting parts of a recursive data structure are groupgitter.

DEFINITION 4 (Complete Recursive Structuréjiwo nodes m’
are part of acomplete recursive structuife

3 edge e from n to’n In; and a path from hto n; s.t. none of
n,n’,n; or the nodes on the path asafe and ntypenn;.type# 0.

3.4 Recursive vs. Back Pointers.

Many programs use back pointers causing the above definition
to identify any cyclic structure as recursive, since tiiyiaavery

node can reach itself and thus every type appears multiplesti

This causes the grouping of cycles in the graph into singeso
with thelayout (C)ycle which can lead to substantial imprecision.
Figure 4 shows an example of such a heap. We can see that even
though the abstract heap structure is finite, the back edfe wi
cause our recursive component definition to group tA® ahd

3 nodes into the same recursive component. To address this and
similar problems that arise when distinguishing betweetmbed

and unbounded structures when cyclic structures are fresen
modify the recursive definition to ignore back edges.

3.5 Recursive Node Definition

Given the above scenarios and the proposed solutions faltihgn
them we get the following final definition for determining fid
nodes are recursive (that is they represent part of the sateap
tially recursive data structure on the heap).

DEeFINITION 5 (Recursive Nodes)Given the functionlepthwhich
returns the depth of a node in the abstract heap graph, nodds n
(where n£ ') are recursiveif:

node 2 and 3) these two nodes form a complete structure thus we

want to replace this set of nodes with a single summary node.

To distinguish between these two cases we perform a comnecti
ity aware detection of the recursive structures which takemec-
tivity and multiplicity into account ensuring that we onlgrsider
two nodes as being recursive if they are part obmplete recursive

3 edge e from n to’n neither of nn' are safeand 3n; s.t. there
is a (possibly empty) patly: = ((n§,n$)...(n¢,ng)) from rf to n
s.t.Y(n?,nf) € ¢r,depth{nf) < depthn?) (wheredepthis the depth
of the node in the graph)y(n?,nf), neither if or nf is safe and,
n.typen n;.type# 0.



4. Composite Components and Array/Collection
Grouping

The second contribution of this paper is a method to idectify-
posite structures and equivalence classes of the objertdsin
arrays or collections, which has not been studied as extlgsas
the problem of identifying recursive structures. The applopre-
sented in this paper is based on the definition of a paran@eit-
icate for determining if two nodes represemjuivalentregions of
the heap. The method presented in this section is based afethe
tification of heap regions based on connectivity informat{and
is sufficient for most optimization applications) as wellaapara-
metric component which allows for the predicate to be tailioto
support other applications as well (for example if we arengis

numeric domain we can extend it to keep objects in an arrdy wit

non-zero values in a given field distinct from objects thastimave
a zero in this field).

We introduce a notion afquivalencef two nodes that captures
our intuition of when two nodes, ' abstract similar regions of the
concrete heap. Since tequivalenceredicate is used to determine

the maximum number of out edges each node may have, we can im-

prove efficiency by minimizing the number of equivalencessks
created by this relation. The tradeoff between precisiahparfor-

mance that we have found to be acceptable is determined by the

following conditions: (1) are all the types representedhi®/niodes
non-recursive (or may both nodes represent recursive ignel(2)
what variables can access the objects in the regions atesirbg
the nodes?

4.1 Recursive Similarity

Two nodes argecursive similarif they both abstract all non-
recursive types or they both may abstract objects with sdaeir

types. An example of why this is important is the common con-

struction of k-ary trees using arrays/collections to hater a re-
cursive subtree or a non-recursive (with respect to thenatdree)
leaf object.

DEFINITION 6 (Recursive Similarity)Given nodes m' and the
statically recursivaype information, m’ are recursive similaiiff
either of the following holds:

1. It entype T’ € N .types.t. T, T’ are statically recursive.
2. (A1 € ntype 1 is statically recursiven (AT’ € n'.type 1’ is
statically recursive)

An example of where this heuristic applies is shown in Fig-

ure 5a. In this figure we have two types of objertg which both
inherit from the superclags (a common way to build a tree struc-
ture in Object-Oriented Programing). The clasis specialized to
represent the internal tree structure (via the fi¢ldmdr ) which
point to objects of typeu. The class is the non-recursive leaf

class which contains some value and may be referred to by-mult

ple T tree nodes.

In this case we want to make sure that not only do we distifiguis

the root node of the tree as well as the left and right sulstf@hich
are preserved by the recursive structure identificatiomi@es in
Section 3) but we also want to make sure that the analysiskeep
objects representing the internal tree structure in a idisjegion
from the objects representing the leaf objects. Otherwiserauld

[3.r,1]

[, r [, r]

[4,{, r}, w] [5 {l, r}, w]

(a) Internal Tree and Leaves In Disjoint Regions

[l,r]
[5 1 1}, w]

[l r

(b) Without Use of Recursive Similarity

Figure 5: Recursive Similarity

structures for many programs. For example a compiler mag hav
large number of classes that inherit from Brpression  base
class which appear in the parse tree structure and aredraate
formly by the program. If we maintained an abstract graphenod
for each of these types the tree would have a very large branch
ing factor (and potentially depth) causing substantiafqrarance
degradation in the analysis.

4.2 Reference Similarity

If we have two nodes,n’ and the objects abstracted in the region
by n are all stored in an arraf and all the objects in the region
abstracted by’ are stored in arrar and a second arra§ then it

is reasonable to assume that the programmer has partitibesd
objects differently for some reason. Thus, we want to prestris
information by keeping the nodes distinct, we show thisagitn in
Figure 6. We can ensure that the information on which cabest
and variables refer to which sets of objects is maintainedgiyg
the following definition ofreference similarity

DEFINITION 7 (Reference Similarity)We say two nodes ' are

end up merging nodes 2 and 4, as they are both pointed to by anreference similar if given the set of in edges to p, £ {€] ... €]},

edge withoffsetl (highlighted in red if color is available) that starts
at node 1 (Def. 8). This would result inZAG region in node 2 and
a loss of the overall tree structure as shown in Figure 5b.

At the other end of the range of possible similarity relasion
if we were to ensure that regions with differing types were al
ways kept separate the analysis would build unacceptatyg teee

the set of in edges td rEl, = {€] ...€] }, and the set of variables
that can reach node n,\= {V{...\{'}, the set of variables that can

reach node f) V/ = {V{ ...VJ'}, the following holds:

({eoffset| ec Ejp} = {¢.offset| € e E[ ) A (M =V)



[1, A 1]

1,LN[, 1, S
12,7, w] (3.7 wl]
2, LN, w, S 3, LN, w, S

Figure 6: Nodes 2, 3 Not Reference Similar (based on variable
reachability)

[4,B,1]

[5, 7, w]

This definition ensures that if two nodes are treated diffiye
with respect to the types of objects they are stored in ordhiables
that reach them then they are kept separate. In Figure 6 2cates
3 are notreference similaisince node 2 is reachable from variable
Awhile node 3 is reachable from both variabkeandB.

4.3 Parametric Node Equivalence

In addition to using the structural information providedth re-
cursive similarandreference similarelations we can also provide

a parametric component to the grouping operation to sughert
needs of more specific types of analysis. For example if we are
checking a program to ensure that all file reads are excefréen

we want to distinguistinputStream  objects that are open from

those that are closed even if we have an array of such objects.

Similarly if we are interested in checking locking propestive al-
ways want to distinguish between objects that are lockedtzrsk
that are unlocked. Thus our definition allows parametridlsitity
properties to support specialized analyses that dependeaisply
tracking differences of specific properties of interesttfar objects
in the program.

DEeFINITION 8 (Equivalent Nodes/Edgesgiven the above defini-
tions we definedge equivalenc&iven a node n and two out edges
e € which start at node n and end at nodesamd ny respectively
we say e€ are equivalentf:

1. eoffset= € .offset

2. ne,ng arerecursive similar

3. ne, Ny arereference similar

4. ne,ng are equivalent for all parametric similarity relations

5. Region Identification and Grouping

Using the above definitions for identifying recursive stuues,
composite structures and grouping the contents of cotlestar-
rays we define the method for constructing the logicallytezla
regions. Once we have identified a set of nodes that represent
logically related region, based on our region predicatesneed to
replace them with a single node ttsatfelyapproximates the prop-
erties of the nodes in the set.

5.1 Component Summarization

Before we present the complete region identification/ntimaton
algorithm we describe how the summary nodes are computed.
To simplify the computation we perform the summarizatiorain
pairwise manner. When summarizing two nodeandn’, there are
three possibilities. The first is that there are no edges dmtvthe
nodes, there are only edges in one direction between nades rf

ton’ or ' to n, but not both) and when there are edges frota n’

and fromn' ton.

If there are no edges between the nodes we usenige-
NoEdge method to compute the summary representation. This
method is a simple component-wise operation where the agdat
typelabel is the union of the twdype sets, thdinearity value is
w and thelayoutis the max (the most general) of the thayout
labels. The case where there are edges fieom’ and fromn' ton
(mergeBothWayis similar except we always assume thgout of
the summary node i€C)ycle(while this is in general a significant
over approximation we have found that the infrequency witiciv
it is used makes this an acceptable definition).

The mergeOneWaypperation (Algorithm 1) on a pair of nodes
that have connecting edges is more complicated. In paaticue
need to account for the fact that the edge(s) connectingsmoaled
' will affect thelayoutof the new summary node.

Algorithm 1: mergeOneWay

input : graphg, n,n’ nodesgbt set of edges fromto n’
n.types« n.typesu n'.types;

n.linearity — w;

n.layout« combineLayoutg.layout,n’.layout,ebt);
remap all edges incident td to be incident tan,
deleteNodeg, n');

The algorithmcombineLayout,|’, eb), is based on a case anal-
ysis of thelayout that results from the possible combinations of
thelayoutsfor n, ' along with the total number of pointers repre-
sented byebt[20]. We enumerate the possible combinations of the
ebtedges and thiayout labels and then for each case we use the
semantics of the edge atayout properties to determine the most
generallayout type that may result from this particular case. For
example if we have tw¢S)ingletonnodes connected by an edge of
linearity 1 then the most generkayoutfor a node that summarizes
these nodes and the edge ik #ist.

To merge two arbitrary nodes n’ we use Algorithm 2 which
selects the appropriate method for merging two nodes bas#teo
existence of edges between them.

Algorithm 2 : mergeNode

input : noden,n’, graphg

if 3 edges from n to’rand r to nthen
mergeBothWayd, n, n');

else if3 edges from n to’rthen
mergeOneWayy, n, ', {e| efromnton'});

else if3 edges from hto nthen
mergeOneWayy, ', n, {e| efrom n’ to n});

else
mergeNoEdgey, 1, n);

5.2 Region Identification/Normalization Algorithm

Once we have the above methods for computing summary nodes
for a pair of nodes in the graph we can define the final region-ide
tification algorithm. The resulting region grouped modediso a
convenient normal form ensuring that the static analysisiteates

as the infinite set ofabeled storage shape graplis a finite set
under the normal form (recursive structures are repreddnyea
bounded number of nodes and each node has a bounded number of
out edges, for space we omit a formal proof).

The algorithm is a straightforward iterative identificatiof
pairs of nodes/edges that should be grouped and the repatem
of these structures by a summary representation until aifikpo
is reached. After this method terminates the abstract gnaqdtel
will have all the logically related regions identified ancbgped
according to the characterizations in Sections 3 and 4.



Algorithm 3: groupRegions
input : graphg
while g is changingdo
while 3 node n with edges € s.t. e£ € A e € are
equivalent edgedo
mergeNode(target &, target ofe/, g);
elinearity — w;
deleteEdgey, €);
while 3 nodes nn' that are recursivelo
mergeNodeg, n, 1');

6. Case Study and Experimental Evaluation

In this section we look at two case studies that illustrate e
heuristics presented above allow the analysis to group biej@gots
into regions and how this information can be used to drivengea
of memory management optimizations. Both benchmarks kemta
from a version of the JOlden [2] suite.

6.1 Em3d

The first program we look at iEm3d which computes electro-
magnetic field values in a 3—dimensional space by consbgicti
a list of ENode objects, each representing an electric field value
and a second list oENode objects, each of which represents a
magnetic field value. To compute how the electric/magnegid fi
value for a givenENode object is updated at each time step the
computeNewValue method uses an array &Node objects
from the opposite field and performs a convolution of thesk fie
values and a scaling vector, updating the current field velitie

the result. The main computation code is shown below:

void compute () {

for(int i = 0; i < this.eNodes.size (); ++i)
eNodes.get(i).computeNewValue();
for (int i = 0; i < this.hNodes.size (); ++i)
hNodes. get(i).computeNewValue();
}
void computeNewValue(){
for(int i = 0; i < fromCount; i++)
value —= coeffs[i] = fromNodes[i]. value;
}

Figure 7 shows the heap structure that is constructed by the
program and that is used in the main computation algoritronaid
clarity we placed dashed lines around the composite stesthat
represent the magnetic field (in blue if color is available)l she
electric field (in green). Variablthis  points to a single object of
type BiGrph , which is the data structure that encapsulates all the
objects of interest. ThBiGrph object has 2 fields, theNodes
field pointing to aVector of ENode objects that make up the
magnetic field and, theNodes field pointing to aVector of
ENode objects that make up the electric field. Each of tHeNede
objects has an array dfoats and an array oEnode objects
from the opposite field that are used to update the value of the
field on each iteration of the field value computation loopeTh
region analysis identification techniques have precisebuped
all of the heap components in the program into the composite
electric/magnetic field structures and even though theadivieeap
structure is cyclic the analysis has precisely resolvedtpartite
graph structure. We note that in this example the definitibn o
safe nodegdue to non-recursive in edges is critical to ensuring
the analysis resolves the heap into a bi-partite struchs®ead of
merging many of the nodes into a single cyclic region.

While the heap is not further modified after constructiond an
thus there are no opportunities for improved memory cabbect

the above computation loop is an excellent candidate feriaty
memory layout to improve spatial locality of the memory ases.
This can be done statically by determining that the liferoéthe
ENode objects are bounded by the lifetime of thector they
are stored in. Then at allocation time we can co-locateEiRede
objects with theVector [8]. Or we can use this information to
provide support for the runtime reallocation of tB®&ode (and
perhapsENode[] orfloat[] ) objects into contiguous memory
pools based on the electric/magnetic structures they §@jnOur
simple hand implementation of these optimizations on thisch-
mark resulted in approximately a 7-10% performance improve
ment, indicating that the information provided by the asalyis
able to support sophisticated program transformationgtieg in
non-trivial performance improvements.

6.2 Barnes-Hut

Thebh program performs a gravitational interaction simulation o
a set of bodies (th®ody objects) using dast-multipoletech-
nigue with a space decomposition tree. The tree is reprederst
ing Cell objects each of which has\éector containing refer-
ences to othe€ell objects or references to tB®ody objects. The
program also keeps twidector objects for accessing the bod-
ies,bodyTab andbodyTabRev . The positionsfos ), velocities
(vel ) and acceleratioragc ) values of the bodies are represented
with composite structures consisting dffathVector object and
adouble[]

Using a common OOP idiom theell andBody objects both
inherit from an abstradNode class. Thus, if we did not use the
concept ofrecursive similarityto distinguish between references in
theVector collection to the recursiv€ell objects which make
up the tree structure and the non-recursive Badly objects the
analysis would end up grouping the tree and the leaf objetts i
the same region. However, by distinguishing regions baseateir
recursive similaritythe analysis has ensured that the tree structure
and the leaf objects are grouped into different regions.

Figure 8 shows the abstract heap model built and used in
the stepSystem method of the benchmark (the listing below),
where the space decomposition tree is recomputedrigieTree
method), the body-body interactions are computed (the Voitip
thehackGravity = method), and the new acceleration information
is propagated (theprop method).
public void stepSystem(){

root = null;
makeTree(nstep);

Iterator<Body> bi = bodyTabRev.iterator ();
while (bi.hasNext())

bi.next(). hackGravity(rsize , root);

vprop (bodyTabRev, nstep);

As we can see in Figure 8 the region identification algorithm
is able to correctly identify and group all the major compuse
in the overall heap structure. The space decomposition itree
grouped into the region represented by node 17 (althoughrtae
ysis has overly conservatively assumed the structure meg ha
(C)yclic layout) while the leaBody objects are represented sep-
arately by node 14. The analysis has also grouped the cotaposi
MathVector /double[] structures and has maintained the sep-
aration of these structures when they abstract distinetistres and
are stored in different types or in different fields.

Thebh program has many opportunities to apply the optimiza-
tions discussed in the introduction. In particular the infation
computed by the analysis in this paper enables opportartitiat
could not be previously exploited due to a lack of sufficigmtte-
cise region identification.
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The first possible optimization is the use of pool allocafibs
for the space decomposition tree (node 17) which is allddatthe
makeTree method and then becomes dead atrtiee = null
assignment on the next loop iteration. By pool allocating the
can collect the entire tree as one block instead of requthiegcC
algorithm to traverse and collect each node in the tree ojexbb
at a time (reducing the number of objects that the garbadeatoit
needs to reclaim by about 11%) and increasing the spatialitpc
of the accesses to the tree (which improves the performdrtbe o
program by 3-4% percent).

Given the structure of the heap, the two phases of compu-
tation and the limited pointer writes during theckGravity
method we can profitably apply parallel and region basecdcoll
tion [15]. This allows us to reduce the GC overhead by calhect
deadMathVector objects in the regions for thecc , vel , and
pos fields while thenewAcc values are being computed in the
hackGravity = method. Similarly we can collect objects in the
space decomposition tree anewAcc field regions while the mu-
tator is in thevprop method. This parallel, region-specific collec-
tion greatly reduces the GC pause times while only requitireg
collector/mutator to lock once on entry to these methods.

If we include sharinginformation as described in [22] we can
determine that thelouble[]]  (where the size of the arrays is a
small compile time constant) stored in tMathVector objects
are never shared betwebtathVector objects and thus are good
candidates for co-location [12, 8]. This has the benefidfake of
increasing the data locality and removing many redundaatdo
resulting in a 12% reduction in the runtime of the single &aed
program, as well as reducing the size of MathVector /Array
composite structure object by a pointer (and the overheaahof
array), resulting in a 37% reduction in memory usage.

Finally, if we again use the sharing information in [22] wenca
statically determine when each of tMathVector /double[]
objects becomes dead and can insert explicit collectior dod
them [13]. This transformation reduces the number of objduit

Benchmark| LOC | Description Analysis Time
bisort 560 | Tree w/ Mod 0.26s
mst 668 | Cycle w/ Struct. 0.12s
tsp 910 | Treeto Cycle 0.15s
em3d 1103 | Bipartite Graph 0.31s
perimeter 1114 | Tree w/ Parent Ptr 0.91s
health 1269 | Tree w/ Mod 1.25s
VOronoi 1324 | Cycle w/ Struct 1.80s
power 1752 | Lists of Lists 0.36s
bh 2304 | N-Body Sim w/ Mod 1.84s
db 1985 | Shared/Mod Arrays 1.42s
raytrace 5809 | Shared/Cycle/Tree 37.09s

Figure 9: LOC is for the normalized program representation i
cluding library stubs required by the analysis. Analysisdiis the
analysis time for the analysis in seconds.

We mention the major data structures used (Trees, Listssté Li
Cycles, etc.) and if the program heavily modifies the datactires
(w/ Mod). Some of the benchmarks have slightly more nuanced
structures —mst andvoronoi which build globally cyclic structures
that have significant local structuiteh which has a complex space-
decomposition tree and sharing relations, eayttace which builds
a large multi-component structure which has cyclic stmedutree
structures, and substantial sharing throughout. We alsothattsp
and voronoi begin with tree structures and process them building
up a final cyclic structure during the program. These bencksna
thus exercise a wide range of features in the analysis bas#teo
types of structures built, modification of these structustgring
of the structures, use of multi-component structures, hadise of
arrays/collections.

As our interest in this paper is primarily in the developmeht
a heap analysis that can support a range of memory management
and optimization techniques rather than in the performasfce

the GC needs to collect by a factor of about 52% (since these specific GC method we focus on the cost of running the analysis

objects are immutable there are many of these created foibealy
object). If we perform this optimization with the pool alkt@n of
the space decomposition tree then all of the objects canlleetza
statically eliminating the need for the collector entirely

These transformations allow for the efficient collection ¢ol-
lecting individual objects or entire pools) of all the dedujlets cre-
ated during this main computation portion and for the |aratf
temporally related objects into contiguous parts of memodhys,
this benchmark demonstrates how the precision of the regiaf
ysis presented in this paper enables the application of &aupf
powerful program optimizations that reduce the memory iregu
ments, reduce garbage collection costs, and to improvedtierp
mance of the program.

6.3 Experimental Evaluation.

to produce the region information. We note that the regidarin
mation produced for all of the benchmarks is similar in qyatd
the results in the case studies (thus many of the same optionzs
could be applied) and that the runtimes are on the order ofsisc
even for programs likeh andraytrace which make use of complex
data structures, a number of classes fjawa.util fjava.io

and have nontrivial amounts of sharing between data stegtu

7. Related Work

There has been a significant amount of work on developingcstat
techniques to improve the allocation [16, 4], layout [12 @ollec-
tion [16, 5, 13, 15] of memory in object oriented programse3d
techniques have introduced a variety of methods for comgug-
gion information based on static partitions computed usingnge
of points-to analyses and are capable of scaling to larggranas.

We have implemented a shape analyzer based on the region idenHowever, the imprecision of fixed partitioning and flow insiin-

tification methods and instrumentation properties preskint this
paper and evaluated the effectiveness and efficiency ofrthly-a
sis on programs from SPECjvm98 [25] and a version of the JDlde
suite. The JOIden suite contains pointer-intensive keritnelt make
use of recursive procedures, inheritance, and virtual austhWe

ity in parts of the analysis limits their ability to precigednalyze
many programs that destructively rearrange regions aritslitme
ability to disambiguate components of larger compositecstires
(i.e. the 2 distinct regions dENode objects in the overall cyclic
heap structure iEm3d or disambiguating th&ody objects from

modified the suite to use modern Java programming idioms. The the space decomposition treediarnes-Hut). Thus the performance

benchmarksaytrace anddb are taken from SPECjvm98.

The analysis algorithm was written in C++ and compiled using
MSVC 8.0. The analysis was run on a 2.6 GHz Intel quad-core
machine with 4 GB of RAM (although memory consumption never
exceeded 120 MB).

For each of the benchmarks we provide a brief description
of some of the major structures/features that are in theramg

improvement achieved by the optimizations proposed inetipes

pers, while good, is limited by the precision of the analysiults.
Other recent heap analysis work has focused on the precise

modeling of destructive updates and their effect on thectire

1Seewww.software.imdea.org/ ~marron/ for benchmark code,
examples of the analysis results, and an executable analgsio.



of the heap, TVLA [19, 18, 27, 24], separation logic based ap-
proaches [1, 28, 11]. While these techniques can model anigry
high degree of precision, many complex heap operationsdhey
rently impose limitations that make region analysis infiel@sfor
many programs. In particular the current formulations astricted

to programs that manipulate lists (or trees) and restreettnount

of sharing between regions. As Separation Logic and TVLA are
general purpose frameworks/logics the work in these papmrl

be extended as described in this work. However, to the bestirof

[7] A. Deutsch. Interprocedural may-alias analysis fompeis: Beyond
k-limiting. In PLDI, 1994.

[8] J. Dolby and A. Chien. An automatic object inlining optiation
and its evaluation. I?LDI, 2000.

[9] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclappP A
shape analysis for heap-directed pointers in GPQPL, 1996.

[10] S. Gulwani and A. Tiwari. An abstract domain for anahgiheap-
manipulating low-level software. I6AV, 2007.

knowledge this extension has not been done. Thus, many of the [11] B. Guo, N. Vachharajani, and D. August. Shape analysts w

benchmarks examined in this paper currently cannot be z@dly
with these methods, includingh, em3d, voronoi, andraytrace, all
of which have substantial opportunities for the applicatd vari-
ous region based optimizations.

8. Conclusion

The analysis presented in this paper presents an impoegekyp-
ment in applying shape analysis techniques to real worlgraras
as it can precisely and efficiently deal with the types of datac-
tures and programmatic events that occur in realistic @rogt In
particular the formalization applies to any type of recugsilata
structures (as opposed to just lists or trees, and it supporn-
posite data structures that have non-trivial sharing betvtbem),
it can precisely model many types of structures which aregetkr
in simpler points-to style approaches, and it supports rpogeise
grouping of the contents of collections (arrays or coll@tsi from
java.util ) than is possible with other methods.

Our experiments demonstrate that the proposed regionifident
cation method can be used to precisely and efficiently ifleatid
group logically related regions of the heap (recursive dtac-
tures, composite structures composed of multiple objeuntisthe
contents of arrays/collections). Further our case studawon-
strate that the results of the analysis can be effectivegd ue
support memory allocation/layout/collection optimizatiapplica-
tions. Based on these results we believe that the propogedasgh
presents a basis for a heap analysis that can be used incpracti
to provide detailed heap information for a range of optiricra
applications that rely on region information and we are entty
working on improving the practicality of the analysis by dmp-
ing on techniques to scale it to larger programs.
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