
Identification of Logically Related Heap Regions

Mark Marron1 Deepak Kapur2 Manuel Hermenegildo1

1IMDEA-Software (Madrid, Spain)
2University of New Mexico (New Mexico, USA)

{mark.marron, manuel.hermenegildo}@imdea.org, kapur@cs.unm.edu

Abstract
This paper introduces a novel set of heuristics for identifying logi-
cally related sections of the heap such as recursive data structures,
objects that are part of the same multi-component structure, and re-
lated groups of objects stored in the same collection/array. When
combined with lifetime properties of these structures, this infor-
mation can be used to drive a range of program optimizations in-
cluding pool allocation, object co-location, static deallocation, and
region-based garbage collection. The technique outlined in this pa-
per also improves the efficiency of the static analysis by providing
a compact normal form for the abstract models (speeding the con-
vergence of the static analysis).

We focus on two techniques for grouping parts of the heap.
The first is a technique for identifying recursive data structures in
object-oriented programs based on connectivity and type informa-
tion. The second technique is a method for grouping objects that
make up the same composite structure and that allows us to par-
tition the objects stored in a collection/array into groupsbased on
a similarity relation. We provide a parametric component in the
similarity relation to support specialized analysis applications (e.g.
numeric analysis of object fields). Using theEm3d andBarnes-Hut
benchmarks from the JOlden suite we show how these grouping
methods can be used to identify various types of logical structures
and enable the application of many region-based optimizations.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages (program
analysis)

General Terms Languages, Performance, Verification

1. Introduction
Identifying and grouping logically related parts of the program
heap in an abstract program model is useful both to client opti-
mization applications (which can use the information to perform
pool allocation, object co-location, static deallocation, etc.) and in
improving the performance of the static data flow analysis (provid-
ing a normal form which speeds the convergence of the analysis).
This paper presents a novel set of grouping heuristics for identify-
ing and grouping these regions in a manner that supports a wide
range of client applications and that can be used in practiceto pro-
duce an efficient static analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’09 June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

Research on object allocation and memory layout has used
the notions of logically related structures to improve the spatial
locality of objects with similar temporal accesses via techniques
such as pool allocation [16, 4] and object co-location [12, 8]. Other
applications which use logically related sections of the heap have
focused on improving the efficiency of garbage collection. The
most direct application is static deallocation of regions or data
structures [16, 5, 13]. There has also been work [15] on using
region information to reduce the pause times of garbage collection
by only performing the collection on portions of heap that are likely
to contain many dead objects. Similar approaches (when combined
with heap based read/write information) can also be used to support
parallel garbage collection by statically identifying which parts of
the heap can be safely collected without concern for the mutator.

The techniques listed above use a variety of approaches for
identifying region information that is later used in the optimization
phase. The techniques range from simple grouping via the points-to
partitions computed using a Steensgaard style analysis [26, 14] to
more sophisticated approaches as done in [16, 17, 13]. However, as
these techniques are based on points-to style analyses or use limited
amounts of context/flow sensitivity they cannot precisely model
many properties (sharing and shape) of data structures thatare used
extensively in object oriented programs. The technique in this paper
offers a significantly higher degree of precision for identifying
regions than these approaches and can be used directly to improve
the effectiveness of many region based memory optimizations.

In addition to being useful for a range of optimization tech-
niques the region identification technique we present in this paper
can be used to improve the performance of various static analysis
techniques. This is achieved by using the region identification to
define a normal form for the abstract models, reducing the height
of the abstract lattice. This use of a normal form can be seen as a
pseudo-widening operation used to transform a domain of infinite
height (e.g, linked lists of size 0,1. . .∞) into a finite height lattice
(e.g, linked lists that are of size 0,1,2, or some unknown lengthω).
There are two parts to this normalization that we address in this
paper. The first is the compression of recursive structures of poten-
tially unbounded size, such as lists or trees, into finite representa-
tions. The second is the grouping of objects that make up composite
data structures or partitioning objects stored in a collection/array
based on asimilarity relation.

While the concept of computing normal forms for heap rep-
resentations is not novel to this paper —symbolic access paths
in [7], normalization/merge in [19, 18, 3, 6, 21], and the append
left/right rules in [1, 28] or similar rules for inductive synthesis
in [11]— the heuristics we use to accomplish this are significantly
more general than what has been used in previous work. In partic-
ular the formalization applies to any type of recursive datastruc-
ture (as opposed to just lists or trees [1, 28, 19, 11]) and recursive
data structures that are part of larger composite structures (such as
in [1, 21]). The heuristics in this work can precisely model multi-

component structures with shared components which cannot be
handled by [1, 28, 19]). Finally these heuristics support more effec-
tive grouping of the contents of collections (arrays or collections
from java.util) than is possible with the methods described
in [3, 23, 10] (and which are left out in most other approaches).

We begin with a brief introduction of the parametric labeled
storage shape graph (lssg) model, Section 2, that we use to illus-
trate the main contributions of this paper. These contributions as
described in Sections 3 and 4 are:

• A method for identifying and grouping recursive data struc-
tures.

• A method for grouping objects that form multi-object compos-
ite structures.

• A parametric approach to grouping the contents of arrays/col-
lections.

Finally, in Section 6 we use theEm3d andBarnes-Hut bench-
marks from the well known JOlden suite to illustrate the results of
the region analysis and how this information can be used to support
some of the optimizations mentioned above.

2. Concrete Heap and Labeled Shape Graph
We begin by reviewing the abstract graph model that we build on
in this work (although the concepts presented in this paper can be
applied in other approaches such as those that rely on separation
logic [1, 11, 28]). In previous work [21, 22, 23] this model is
used to precisely perform shape and sharing analysis on a range of
Java programs. While the properties discussed therein are critical
to precisely analyzing these programs (and similarly the region
identification method presented in this paper is critical tothe results
in these papers), we do not need all of this information in order
to perform region identification and grouping. Thus, to simplify
the discussion and to focus on the novel concepts in this paper we
present a simplified version of the model.

2.1 Concrete Semantics

To analyze a program we first transform (via a modified compiler
frontend) the Java 1.4 source into a semantically equivalent pro-
gram in a simpler to analyze core language. This intermediate lan-
guage is statically typed, has method invocations, conditional con-
structs, exception handling and the standard looping statements.
The state modification and expressions cover the standard range
of program operations: load, store, and assignment along with log-
ical, arithmetic, and comparison operators. During this transfor-
mation step we also load in our specialized standard libraryim-
plementations, so we can analyze programs that use classes from
java.util , java.lang , andjava.io .

The semantics of memory are defined in the usual way, using
an environment, mapping variables into values, and a store,map-
ping addresses into values. We refer to the environment and the
store together as the concrete heap, which is treated as a labeled,
directed multi-graph(V,O,R) where eachv∈V is a variable, each
o∈O is an object on the heap and eachr ∈ R is a reference (either
a variable reference or a pointer between objects). The set of ref-
erencesR⊆ (V ∪O)×O×L whereL is the set of storage location
identifiers (a variable name in the environment, a field identifier
for references stored in objects, or an integer offset for references
stored in arrays/collections).

A region of memoryℜ = (C,P,Rin,Rout) consists of a subset
C⊆ O of the objects in the heap, all the pointersP = {(a,b, p) ∈
R | a,b∈C∧ p∈ L} that connect these objects, the references that
enter the regionRin = {(a,b, r)∈R| a∈ (V∪O)\C∧b∈C∧r ∈L}
and references exiting the regionRout = {(a,b, r) ∈ R | a∈C∧b∈
O\C∧ r ∈ L}.

2.2 Storage Shape Graph Abstraction

Our abstract heap domain is based on thestorage shape graph[3]
approach. Anabstract storage graphis a tuple of the form(V̂, N̂, Ê),
whereV̂ is a set of abstract nodes representing the variables,N̂ is
a set of abstract nodes (each of which abstracts a regionℜ of the
heap), and̂E⊆ (V̂ ∪ N̂)× N̂× L̂ are the graph edges, each of which
abstracts a set of pointers, andL̂ is a set of abstract storageoffsets
(variable names, field offsets or the special offset? for references
stored in arrays/collections). We extend this definition with a set of
additional relationŝU that further restrict the set of concrete heaps
that each shape graph abstracts. Thelabeled storage shape graphs
(lssg), which we refer to simply asabstract graphs, are tuples of
the form(V̂, N̂, Ê,Û).

DEFINITION 1 (Valid Concretization of alssg). A given concrete
heap h is avalid concretizationof a labeled storage shape graph
g if there are functionsΠv,Πo,Πr such that the following hold:

• Πv : V 7→ V̂ , Πo : O 7→ N̂ andΠr : R 7→ Ê are functions (andΠv
is 1–1).

• h,Πv,Πo, andΠr satisfy all the relations in̂U.
• h,Πv,Πo, andΠr are connectively consistentwith g.

Where h,Πv,Πo,Πr are connectively consistentwith g if:

• ∀ o1,o2 ∈O s.t.(o1,o2, p)∈R,∃ e∈ Ê s.t. e= Πr ((o1,o2, p)),
e starts atΠo(o1), ends atΠo(o2), and e.offset= p.

• ∀ v∈V, o∈ O s.t.(v,o,v) ∈ R,∃ e∈ Ê s.t. e= Πr((v,o,v)), e
starts atΠv(v), ends atΠo(o), and e.offset= v.

To check if a given concrete heaph and mapsΠv,Πo,Πr satisfy
a given relation inÛ we need to look at the pre-images of the
nodes and edges in the abstract graphg under the mapsΠv,Πo,Πr .
We use the notationh ↓g e to indicate the set of references in the
concrete heaph that are in the pre-image ofe under the maps.
Similarly, we useh ↓g n, to indicate the region of the heap that
is the pre-image ofn under the maps.

2.3 Label Relations (inÛ)

Type. For thetyperelation, we add a relation(n,{τ1, . . . ,τk}) (we
use the shorthandn.type= {τ1, . . . ,τk}) to Û for each node inN̂,
whereτ j are types in the program and say:h,Πv,Πo,Πr satisfies
(n,{τ1, . . . ,τk}) iff {typeof (o) |objecto∈ h↓g n}⊆ {τ1, . . . ,τk}.

Linearity. The linearity relation is used to track the number of
objects in the region abstracted by a given node or the number
of references abstracted by a given edge. Thelinearity property
has 2 values: 1 indicating a cardinality of[0,1] or ω indicating a
cardinality of[0,∞). Given a noden whereh↓g n= (C,P,Rin,Rout)
then:

|C| ∈

{

[0,1] if n.linearity = 1
[0,∞) if n.linearity = ω

Similarly for an edgee whereh ↓g e= {r1, . . . , r j} then:

|{r1, . . . , r j}| ∈

{

[0,1] if e.linearity = 1
[0,∞) if e.linearity = ω

Abstract Layout. To approximate the shape of the structures present
in the region that a node abstracts, the analysis usesabstract layout
properties{(S)ingleton, (L)ist, (T)ree, (D)ag, and (C)ycle}. The
(S)ingletonproperty states that there are no pointers between any
of the objects abstracted by the node, given a noden whereh ↓g
n = (C,P,Rin,Rout) thenP = /0. The other properties correspond to
the standard definitions for list, tree, DAG, and cyclic structures in
the literature [9, 21, 1].

(a) Concrete List, Length 3 or More (b) Abstraction with Regions Identified

Figure 1: A Linked List and Desired Abstraction with RegionsIdentified

2.4 Sample Heap and Abstract Graph Model.

Figure 1 shows a linked list of length 3 or more (left) and the
representation of this list in the abstract domain with the objects
that represent it grouped into regions (right). In the abstract domain
each edge is labeled with a unique identifier, an abstract storage
offset, and alinearity label. The nodes are labeled with a unique
identifier, atypelabel, alinearity label and alayout label.

In Figure 1b we see that the variablel refers to node 1 which
represents a single (linearity is 1) ListNode (LN) object at the head
of the linked list. There is a single edge (edge 2) out of the node
representing the single (againlinearity 1) nx (next) pointer, which
ends at node 2. This node represents the tail of the list (the self n
edge and(L)ist layout) which may contain many objects (linearity
is ω).

Partitioning the list into these two nodes captures severalimpor-
tant attributes. First we have kept the head of the list (which may be
modified though the variablel) distinct, giving more opportunities
to the analysis for precisely modeling the effects of later program
statements. Next, the grouping has produced a compact represen-
tation for the list structure which has a substantial impacton the
efficiency of the analysis. Finally, we have grouped all of the ob-
jects that make up the list into two nodes (the head and the tail,
nodes 1 and 2) and as we will see later if there are other unre-
lated lists in the program (and the analysis can determine that they
are unrelated) the abstraction will generate separate nodes for each
of these lists. Thus, the information needed by the various opti-
mization techniques we are interested in is preserved (objects in
the same structures are grouped together while disjoint structures
in the concrete heap are kept separate in the abstract model).

3. Recursive Components
The first contribution in this paper is a generalized method for iden-
tifying parts of the abstract heap graph that may represent asingle
recursive data structure and how these parts should be grouped to-
gether (e.g. using multiple nodes to represent the head and tail sec-
tions of the linked list). The basic approach of identifyingpoten-
tially recursive structures is a straightforward examination of the
type information and connectivity properties of the program based
on recursive field paths [7, 21, 1, 19]. However, there are a number
of subtle but important modifications that are needed to maintain
the desired level of precision in the results when dealing with non-
trivial object-oriented programs.

3.1 Statically Recursive Types

We can identify the types in a program that may be recursive by
looking at the type graph for the program. Thisstatic program type
graphhas a node for each type that is declared and for each pair of
typesτ,τ ′ there is an edge fromτ to τ ′ if τ has a field of type (or
supertype)τ ′. From this construction we can identify types that are
recursive (based on the static type information) as follows:

DEFINITION 2 (Statically Recursive Types).For a given program
and typesτ,τ ′:

1. τ,τ ′ are statically recursiveiff in the static program type graph
(τ 6= τ ′ ∧ τ,τ ′ are in the same strongly connected component)
∨ (τ = τ ′ and there is a self edge).

2. τ is a statically recursivetype iff ∃τ ′ s.t. τ,τ ′ are statically
recursive.

In much of the past work on region identification [21, 7, 19, 1,
11] this static type information has been used (in various ways)
to determine if two objects are part of the same recursive data
structure. However, this can result in overly approximate region
identification in three important classes of heap structures. Below
we describe these and how we can modify our concept of recursive
structures to characterize them.

3.2 Safe Nodes

In order to accurately simulate the effects of various program state-
ments it is critical to precisely model the targets of variable refer-
ences. Consider removing an element from a linked list wherewe
have multiple variables pointing into the same list structure. In or-
der to preserve the listness property after the removal we must keep
track of the relative positions of the variable references into the list
structure and the effects of the assignment statements on the objects
referred to by the variables. Thus, even though all of these objects
make up the same recursive list structure, we want to use multiple
nodes to represent it (one for each location in the list that is being
modified in addition to nodes for the tail or other segments).

To identify these important objects which need to be modeled
independently we introduce the notion ofsafe nodes(which is
similar to the notion ofinterrupting nodesin [19]). We say a
node is safe if it represents an interesting point in a recursive data
structure (a point where the program is accessing a specific node
in the data structure via a variable, as in the above example,or a
non-recursive data structure pointing into specific locations in the
recursive structure) and we keep these nodes distinct from any other
recursive components.

If we have a recursive data structure and we store references
to important points in it via another data structure we want to be
able to maintain the relations between these specific pointsin a
data structure. This is a generalization of maintaining theprecise
locations of variable references into a recursive data structure. This
is important to analyzing situations of the form: a method returns a
Pair object containing two references toListNode objects and
we want to remove all the elements in the list between thefirst
andsecond entries of thePair . If the analysis does not maintain
the order relation between the targets of thefirst andsecond
reference fields in the list structure we cannot accurately model
the effects of the remove operation (e.g., we would conservatively
assume that the target of thesecond field could come before the
target of thefirst field in the list).

Figure 2: Safe Nodes Example

(a) Recursive Types But No Complete Structure

(b) Recursive Types With Complete Structure

Figure 3: Recursive Types and Complete Structures

DEFINITION 3 (Safe Node).A node n issafe if it is a node with
the(S)ingleton layoutand either of the following hold:

1. ∃ variable v that refers to n.
2. ∃ edge e s.t. e starts at a node ns where∀τs ∈ ns.type,τ ∈

n.type ,τs,τ are notstatically recursive.

Figure 2 shows a simple example of the two ways a node is
considered safe (represents an interesting point in the heap). In
this figure we have node 1 which issafe since it is referred to
directly by a variable. More interestingly we have nodes 2, 3which
both representLN objects and arestatically recursivebut are also
pointed to by thePair object which isnot statically recursivewith
theLN type. Thus according to our definition of safe nodes, nodes
1, 2 are considered safe and will not be merged.

3.3 Connectivity Awareness

Consider a program with the object typesτ1, τ2, τ3 which are
mutually recursive on thenx field. If we have the abstract heap
graph in Figure 3a we can see that the 2nd and 3rd nodes in the list
are statically recursive according to the definitions abovebut it is
not complete. That is although typesτ2 andτ3 are recursive each
no object of a given type appears multiple times. Figure 3b shows
a similar structure but in this case the 2nd and 3rd nodes in the list
are statically recursive. Since the typeτ2 appears multiple times (in
node 2 and 3) these two nodes form a complete structure thus we
want to replace this set of nodes with a single summary node.

To distinguish between these two cases we perform a connectiv-
ity aware detection of the recursive structures which takesconnec-
tivity and multiplicity into account ensuring that we only consider
two nodes as being recursive if they are part of acomplete recursive

Figure 4: Recursive Cycle

structure. This ensures only nodes that are in repeating and unin-
teresting parts of a recursive data structure are grouped together.

DEFINITION 4 (Complete Recursive Structure).Two nodes n,n′

are part of acomplete recursive structureif:

∃ edge e from n to n′, ∃nτ and a path from n′ to nτ s.t. none of
n,n′,nτ or the nodes on the path aresafe, and n.type∩nτ .type 6= /0.

3.4 Recursive vs. Back Pointers.

Many programs use back pointers causing the above definition
to identify any cyclic structure as recursive, since trivially every
node can reach itself and thus every type appears multiple times.
This causes the grouping of cycles in the graph into single nodes
with the layout (C)ycle, which can lead to substantial imprecision.
Figure 4 shows an example of such a heap. We can see that even
though the abstract heap structure is finite, the back edge will
cause our recursive component definition to group the 2nd and
3rd nodes into the same recursive component. To address this and
similar problems that arise when distinguishing between bounded
and unbounded structures when cyclic structures are present, we
modify the recursive definition to ignore back edges.

3.5 Recursive Node Definition

Given the above scenarios and the proposed solutions for handling
them we get the following final definition for determining if two
nodes are recursive (that is they represent part of the same poten-
tially recursive data structure on the heap).

DEFINITION 5 (Recursive Nodes).Given the functiondepthwhich
returns the depth of a node in the abstract heap graph, nodes n, n′

(where n6= n′) are recursiveif:

∃ edge e from n to n′, neither of n,n′ are safeand ∃nτ s.t. there
is a (possibly empty) pathψr = 〈(ns

1,n
e
1) . . . (n

s
k,n

e
k)〉 from n′ to nτ

s.t.∀(ns
i ,n

e
i) ∈ ψr ,depth(ns

i) < depth(ne
i) (wheredepthis the depth

of the node in the graph),∀(ns
i ,n

e
i), neither nsi or ne

i is safe and,
n.type∩nτ .type 6= /0.

4. Composite Components and Array/Collection
Grouping

The second contribution of this paper is a method to identifycom-
posite structures and equivalence classes of the objects stored in
arrays or collections, which has not been studied as extensively as
the problem of identifying recursive structures. The approach pre-
sented in this paper is based on the definition of a parametricpred-
icate for determining if two nodes representequivalentregions of
the heap. The method presented in this section is based on theiden-
tification of heap regions based on connectivity information (and
is sufficient for most optimization applications) as well asa para-
metric component which allows for the predicate to be tailored to
support other applications as well (for example if we are using a
numeric domain we can extend it to keep objects in an array with
non-zero values in a given field distinct from objects that must have
a zero in this field).

We introduce a notion ofequivalenceof two nodes that captures
our intuition of when two nodesn,n′ abstract similar regions of the
concrete heap. Since theequivalencepredicate is used to determine
the maximum number of out edges each node may have, we can im-
prove efficiency by minimizing the number of equivalence classes
created by this relation. The tradeoff between precision and perfor-
mance that we have found to be acceptable is determined by the
following conditions: (1) are all the types represented by the nodes
non-recursive (or may both nodes represent recursive types) and (2)
what variables can access the objects in the regions abstracted by
the nodes?

4.1 Recursive Similarity

Two nodes arerecursive similar if they both abstract all non-
recursive types or they both may abstract objects with recursive
types. An example of why this is important is the common con-
struction of k-ary trees using arrays/collections to hold either a re-
cursive subtree or a non-recursive (with respect to the internal tree)
leaf object.

DEFINITION 6 (Recursive Similarity).Given nodes n,n′ and the
statically recursivetype information, n,n′ are recursive similariff
either of the following holds:

1. ∃τ ∈ n.type,τ ′ ∈ n′.types.t.τ,τ ′ are statically recursive.
2. (6 ∃τ ∈ n.type,τ is statically recursive)∧ (6 ∃τ ′ ∈ n′.type,τ ′ is

statically recursive)

An example of where this heuristic applies is shown in Fig-
ure 5a. In this figure we have two types of objectsτ,κ which both
inherit from the superclassµ (a common way to build a tree struc-
ture in Object-Oriented Programing). The classτ is specialized to
represent the internal tree structure (via the fieldsl andr) which
point to objects of typeµ. The classκ is the non-recursive leaf
class which contains some value and may be referred to by multi-
ple τ tree nodes.

In this case we want to make sure that not only do we distinguish
the root node of the tree as well as the left and right sub-trees (which
are preserved by the recursive structure identification heuristics in
Section 3) but we also want to make sure that the analysis keeps the
objects representing the internal tree structure in a disjoint region
from the objects representing the leaf objects. Otherwise we would
end up merging nodes 2 and 4, as they are both pointed to by an
edge withoffsetl (highlighted in red if color is available) that starts
at node 1 (Def. 8). This would result in aDAG region in node 2 and
a loss of the overall tree structure as shown in Figure 5b.

At the other end of the range of possible similarity relations,
if we were to ensure that regions with differing types were al-
ways kept separate the analysis would build unacceptably large tree

(a) Internal Tree and Leaves In Disjoint Regions

(b) Without Use of Recursive Similarity

Figure 5: Recursive Similarity

structures for many programs. For example a compiler may have a
large number of classes that inherit from anExpression base
class which appear in the parse tree structure and are treated uni-
formly by the program. If we maintained an abstract graph node
for each of these types the tree would have a very large branch-
ing factor (and potentially depth) causing substantial performance
degradation in the analysis.

4.2 Reference Similarity

If we have two nodesn,n′ and the objects abstracted in the region
by n are all stored in an arrayA and all the objects in the region
abstracted byn′ are stored in arrayA and a second arrayB then it
is reasonable to assume that the programmer has partitionedthese
objects differently for some reason. Thus, we want to preserve this
information by keeping the nodes distinct, we show this situation in
Figure 6. We can ensure that the information on which collections
and variables refer to which sets of objects is maintained byusing
the following definition ofreference similarity.

DEFINITION 7 (Reference Similarity).We say two nodes n,n′ are
reference similar if given the set of in edges to n, Ein = {en

1 . . .en
k},

the set of in edges to n′, E′in = {en′
1 . . .en′

k }, and the set of variables
that can reach node n, Vr = {vn

1 . . .vn
r }, the set of variables that can

reach node n′, V′r = {vn′
1 . . .vn′

s }, the following holds:

({e.offset| e∈ Ein}= {e′.offset| e′ ∈ E′in})∧ (Vr = V ′r)

Figure 6: Nodes 2, 3 Not Reference Similar (based on variable
reachability)

This definition ensures that if two nodes are treated differently
with respect to the types of objects they are stored in or the variables
that reach them then they are kept separate. In Figure 6 nodes2 and
3 are notreference similarsince node 2 is reachable from variable
A while node 3 is reachable from both variablesA andB.

4.3 Parametric Node Equivalence

In addition to using the structural information provided bythe re-
cursive similarandreference similarrelations we can also provide
a parametric component to the grouping operation to supportthe
needs of more specific types of analysis. For example if we are
checking a program to ensure that all file reads are exceptionfree
we want to distinguishInputStream objects that are open from
those that are closed even if we have an array of such objects.
Similarly if we are interested in checking locking properties we al-
ways want to distinguish between objects that are locked andthose
that are unlocked. Thus our definition allows parametric similarity
properties to support specialized analyses that depend on precisely
tracking differences of specific properties of interest forthe objects
in the program.

DEFINITION 8 (Equivalent Nodes/Edges).Given the above defini-
tions we defineedge equivalence. Given a node n and two out edges
e,e′ which start at node n and end at nodes ne and ne′ respectively
we say e,e′ are equivalentif:

1. e.offset= e′.offset
2. ne,ne′ are recursive similar
3. ne,ne′ are reference similar
4. ne,ne′ are equivalent for all parametric similarity relations

5. Region Identification and Grouping
Using the above definitions for identifying recursive structures,
composite structures and grouping the contents of collections/ar-
rays we define the method for constructing the logically related
regions. Once we have identified a set of nodes that representa
logically related region, based on our region predicates, we need to
replace them with a single node thatsafelyapproximates the prop-
erties of the nodes in the set.

5.1 Component Summarization

Before we present the complete region identification/normalization
algorithm we describe how the summary nodes are computed.
To simplify the computation we perform the summarization ina
pairwise manner. When summarizing two nodes,n andn′, there are
three possibilities. The first is that there are no edges between the
nodes, there are only edges in one direction between nodes (fromn
to n′ or n′ to n, but not both) and when there are edges fromn to n′

and fromn′ to n.

If there are no edges between the nodes we use themerge-
NoEdgemethod to compute the summary representation. This
method is a simple component-wise operation where the updated
type label is the union of the twotypesets, thelinearity value is
ω and thelayout is the max (the most general) of the twolayout
labels. The case where there are edges fromn to n′ and fromn′ to n
(mergeBothWay) is similar except we always assume thelayout of
the summary node is(C)ycle(while this is in general a significant
over approximation we have found that the infrequency with which
it is used makes this an acceptable definition).

ThemergeOneWayoperation (Algorithm 1) on a pair of nodes
that have connecting edges is more complicated. In particular we
need to account for the fact that the edge(s) connecting nodesn and
n′ will affect the layoutof the new summary node.

Algorithm 1 : mergeOneWay

input : graphg, n,n′ nodes,ebt set of edges fromn to n′

n.types← n.types∪ n′.types;
n.linearity← ω;
n.layout← combineLayout(n.layout,n′.layout,ebt);
remap all edges incident ton′ to be incident ton;
deleteNode(g, n′);

The algorithmcombineLayout(l , l ′,ebt), is based on a case anal-
ysis of thelayout that results from the possible combinations of
the layoutsfor n, n′ along with the total number of pointers repre-
sented byebt [20]. We enumerate the possible combinations of the
ebt edges and thelayout labels and then for each case we use the
semantics of the edge andlayout properties to determine the most
generallayout type that may result from this particular case. For
example if we have two(S)ingletonnodes connected by an edge of
linearity 1 then the most generallayout for a node that summarizes
these nodes and the edge is a(L)ist.

To merge two arbitrary nodesn,n′ we use Algorithm 2 which
selects the appropriate method for merging two nodes based on the
existence of edges between them.

Algorithm 2 : mergeNode

input : noden,n′, graphg
if ∃ edges from n to n′ and n′ to n then

mergeBothWay(g, n, n′);
else if∃ edges from n to n′ then

mergeOneWay(g, n, n′, {e | e from n to n′});
else if∃ edges from n′ to n then

mergeOneWay(g, n′, n, {e | e from n′ to n});
else

mergeNoEdge(g, n′, n);

5.2 Region Identification/Normalization Algorithm

Once we have the above methods for computing summary nodes
for a pair of nodes in the graph we can define the final region iden-
tification algorithm. The resulting region grouped model isalso a
convenient normal form ensuring that the static analysis terminates
as the infinite set oflabeled storage shape graphsis a finite set
under the normal form (recursive structures are represented by a
bounded number of nodes and each node has a bounded number of
out edges, for space we omit a formal proof).

The algorithm is a straightforward iterative identification of
pairs of nodes/edges that should be grouped and the replacement
of these structures by a summary representation until a fixpoint
is reached. After this method terminates the abstract graphmodel
will have all the logically related regions identified and grouped
according to the characterizations in Sections 3 and 4.

Algorithm 3 : groupRegions

input : graphg
while g is changingdo

while ∃ node n with edges e,e′ s.t. e6= e′ ∧ e,e′ are
equivalent edgesdo

mergeNode(target ofe, target ofe′, g);
e.linearity← ω;
deleteEdge(g, e′);

while ∃ nodes n,n′ that are recursivedo
mergeNode(g, n, n′);

6. Case Study and Experimental Evaluation
In this section we look at two case studies that illustrate how the
heuristics presented above allow the analysis to group heapobjects
into regions and how this information can be used to drive a range
of memory management optimizations. Both benchmarks are taken
from a version of the JOlden [2] suite.

6.1 Em3d

The first program we look at isEm3d which computes electro-
magnetic field values in a 3–dimensional space by constructing
a list of ENode objects, each representing an electric field value
and a second list ofENode objects, each of which represents a
magnetic field value. To compute how the electric/magnetic field
value for a givenENode object is updated at each time step the
computeNewValue method uses an array ofENode objects
from the opposite field and performs a convolution of these field
values and a scaling vector, updating the current field valuewith
the result. The main computation code is shown below:

vo id compute () {
f o r (i n t i = 0 ; i < t h i s . eNodes . s i z e () ; ++ i)

eNodes . ge t (i) . computeNewValue () ;

f o r (i n t i = 0 ; i < t h i s . hNodes . s i z e () ; ++ i)
hNodes . ge t (i) . computeNewValue () ;

}

vo id computeNewValue (){
f o r (i n t i = 0 ; i < f romCount ; i ++)

va lue −= c o e f f s [i] ∗ fromNodes [i] . va lue ;
}

Figure 7 shows the heap structure that is constructed by the
program and that is used in the main computation algorithm. To aid
clarity we placed dashed lines around the composite structures that
represent the magnetic field (in blue if color is available) and the
electric field (in green). Variablethis points to a single object of
typeBiGrph , which is the data structure that encapsulates all the
objects of interest. TheBiGrph object has 2 fields, thehNodes
field pointing to aVector of ENode objects that make up the
magnetic field and, theeNodes field pointing to aVector of
ENodeobjects that make up the electric field. Each of theseENode
objects has an array offloats and an array ofEnode objects
from the opposite field that are used to update the value of the
field on each iteration of the field value computation loop. The
region analysis identification techniques have precisely grouped
all of the heap components in the program into the composite
electric/magnetic field structures and even though the overall heap
structure is cyclic the analysis has precisely resolved thebipartite
graph structure. We note that in this example the definition of
safe nodesdue to non-recursive in edges is critical to ensuring
the analysis resolves the heap into a bi-partite structure instead of
merging many of the nodes into a single cyclic region.

While the heap is not further modified after construction, and
thus there are no opportunities for improved memory collection,

the above computation loop is an excellent candidate for altering
memory layout to improve spatial locality of the memory accesses.
This can be done statically by determining that the lifetimes of the
ENode objects are bounded by the lifetime of theVector they
are stored in. Then at allocation time we can co-locate theENode
objects with theVector [8]. Or we can use this information to
provide support for the runtime reallocation of theENode (and
perhapsENode[] or float[]) objects into contiguous memory
pools based on the electric/magnetic structures they are in[12]. Our
simple hand implementation of these optimizations on this bench-
mark resulted in approximately a 7-10% performance improve-
ment, indicating that the information provided by the analysis is
able to support sophisticated program transformations resulting in
non-trivial performance improvements.

6.2 Barnes-Hut

Thebh program performs a gravitational interaction simulation on
a set of bodies (theBody objects) using afast-multipoletech-
nique with a space decomposition tree. The tree is represented us-
ing Cell objects each of which has aVector containing refer-
ences to otherCell objects or references to theBody objects. The
program also keeps twoVector objects for accessing the bod-
ies,bodyTab andbodyTabRev . The positions (pos), velocities
(vel) and acceleration (acc) values of the bodies are represented
with composite structures consisting of aMathVector object and
a double[] .

Using a common OOP idiom theCell andBody objects both
inherit from an abstractNode class. Thus, if we did not use the
concept ofrecursive similarityto distinguish between references in
theVector collection to the recursiveCell objects which make
up the tree structure and the non-recursive leafBody objects the
analysis would end up grouping the tree and the leaf objects into
the same region. However, by distinguishing regions based on their
recursive similaritythe analysis has ensured that the tree structure
and the leaf objects are grouped into different regions.

Figure 8 shows the abstract heap model built and used in
the stepSystem method of the benchmark (the listing below),
where the space decomposition tree is recomputed (themakeTree
method), the body-body interactions are computed (the loopwith
thehackGravity method), and the new acceleration information
is propagated (thevprop method).

pub l i c vo id s te pSys te m (){
r o o t = n u l l ;
makeTree (n s t e p) ;

I t e r a t o r<Body> b i = bodyTabRev . i t e r a t o r () ;
whi le (b i . hasNext ())

b i . ne x t () . ha c kGra v i t y (r s i z e , r o o t) ;

vprop (bodyTabRev , n s t e p) ;
}

As we can see in Figure 8 the region identification algorithm
is able to correctly identify and group all the major components
in the overall heap structure. The space decomposition treeis
grouped into the region represented by node 17 (although theanal-
ysis has overly conservatively assumed the structure may have a
(C)yclic layout) while the leafBody objects are represented sep-
arately by node 14. The analysis has also grouped the composite
MathVector /double[] structures and has maintained the sep-
aration of these structures when they abstract distinct structures and
are stored in different types or in different fields.

Thebh program has many opportunities to apply the optimiza-
tions discussed in the introduction. In particular the information
computed by the analysis in this paper enables opportunities that
could not be previously exploited due to a lack of sufficiently pre-
cise region identification.

Figure 7: Abstract Heap inEm3d

Figure 8: Abstract Heap inbh

The first possible optimization is the use of pool allocation[16]
for the space decomposition tree (node 17) which is allocated in the
makeTree method and then becomes dead at theroot = null
assignment on the next loop iteration. By pool allocating this we
can collect the entire tree as one block instead of requiringthe GC
algorithm to traverse and collect each node in the tree one object
at a time (reducing the number of objects that the garbage collector
needs to reclaim by about 11%) and increasing the spatial locality
of the accesses to the tree (which improves the performance of the
program by 3-4% percent).

Given the structure of the heap, the two phases of compu-
tation and the limited pointer writes during thehackGravity
method we can profitably apply parallel and region based collec-
tion [15]. This allows us to reduce the GC overhead by collecting
deadMathVector objects in the regions for theacc , vel , and
pos fields while thenewAcc values are being computed in the
hackGravity method. Similarly we can collect objects in the
space decomposition tree andnewAcc field regions while the mu-
tator is in thevprop method. This parallel, region-specific collec-
tion greatly reduces the GC pause times while only requiringthe
collector/mutator to lock once on entry to these methods.

If we includesharing information as described in [22] we can
determine that thedouble[] (where the size of the arrays is a
small compile time constant) stored in theMathVector objects
are never shared betweenMathVector objects and thus are good
candidates for co-location [12, 8]. This has the beneficial effect of
increasing the data locality and removing many redundant loads
resulting in a 12% reduction in the runtime of the single threaded
program, as well as reducing the size of theMathVector /Array
composite structure object by a pointer (and the overhead ofan
array), resulting in a 37% reduction in memory usage.

Finally, if we again use the sharing information in [22] we can
statically determine when each of theMathVector /double[]
objects becomes dead and can insert explicit collection code for
them [13]. This transformation reduces the number of objects that
the GC needs to collect by a factor of about 52% (since these
objects are immutable there are many of these created for each body
object). If we perform this optimization with the pool allocation of
the space decomposition tree then all of the objects can be collected
statically eliminating the need for the collector entirely.

These transformations allow for the efficient collection (by col-
lecting individual objects or entire pools) of all the dead objects cre-
ated during this main computation portion and for the location of
temporally related objects into contiguous parts of memory. Thus,
this benchmark demonstrates how the precision of the regionanal-
ysis presented in this paper enables the application of a number of
powerful program optimizations that reduce the memory require-
ments, reduce garbage collection costs, and to improve the perfor-
mance of the program.

6.3 Experimental Evaluation.

We have implemented a shape analyzer based on the region iden-
tification methods and instrumentation properties presented in this
paper and evaluated the effectiveness and efficiency of the analy-
sis on programs from SPECjvm98 [25] and a version of the JOlden
suite. The JOlden suite contains pointer-intensive kernels that make
use of recursive procedures, inheritance, and virtual methods. We
modified the suite to use modern Java programming idioms. The
benchmarksraytrace anddb are taken from SPECjvm98.

The analysis algorithm was written in C++ and compiled using
MSVC 8.0. The analysis was run on a 2.6 GHz Intel quad-core
machine with 4 GB of RAM (although memory consumption never
exceeded 120 MB).

For each of the benchmarks we provide a brief description
of some of the major structures/features that are in the program.

Benchmark LOC Description Analysis Time
bisort 560 Tree w/ Mod 0.26s
mst 668 Cycle w/ Struct. 0.12s
tsp 910 Tree to Cycle 0.15s
em3d 1103 Bipartite Graph 0.31s
perimeter 1114 Tree w/ Parent Ptr 0.91s
health 1269 Tree w/ Mod 1.25s
voronoi 1324 Cycle w/ Struct 1.80s
power 1752 Lists of Lists 0.36s
bh 2304 N-Body Sim w/ Mod 1.84s
db 1985 Shared/Mod Arrays 1.42s
raytrace 5809 Shared/Cycle/Tree 37.09s

Figure 9: LOC is for the normalized program representation in-
cluding library stubs required by the analysis. Analysis Time is the
analysis time for the analysis in seconds.

We mention the major data structures used (Trees, Lists of Lists,
Cycles, etc.) and if the program heavily modifies the data structures
(w/ Mod). Some of the benchmarks have slightly more nuanced
structures —mst andvoronoi which build globally cyclic structures
that have significant local structure,bh which has a complex space-
decomposition tree and sharing relations, andraytrace which builds
a large multi-component structure which has cyclic structures, tree
structures, and substantial sharing throughout. We also note thattsp
and voronoi begin with tree structures and process them building
up a final cyclic structure during the program. These benchmarks
thus exercise a wide range of features in the analysis based on the
types of structures built, modification of these structures, sharing
of the structures, use of multi-component structures, and the use of
arrays/collections.1

As our interest in this paper is primarily in the developmentof
a heap analysis that can support a range of memory management
and optimization techniques rather than in the performanceof a
specific GC method we focus on the cost of running the analysis
to produce the region information. We note that the region infor-
mation produced for all of the benchmarks is similar in quality to
the results in the case studies (thus many of the same optimizations
could be applied) and that the runtimes are on the order of seconds
even for programs likebh andraytrace which make use of complex
data structures, a number of classes fromjava.util /java.io
and have nontrivial amounts of sharing between data structures.

7. Related Work
There has been a significant amount of work on developing static
techniques to improve the allocation [16, 4], layout [12] and collec-
tion [16, 5, 13, 15] of memory in object oriented programs. These
techniques have introduced a variety of methods for computing re-
gion information based on static partitions computed usinga range
of points-to analyses and are capable of scaling to large programs.
However, the imprecision of fixed partitioning and flow insensitiv-
ity in parts of the analysis limits their ability to precisely analyze
many programs that destructively rearrange regions and limits the
ability to disambiguate components of larger composite structures
(i.e. the 2 distinct regions ofENode objects in the overall cyclic
heap structure inEm3d or disambiguating theBody objects from
the space decomposition tree inBarnes-Hut). Thus the performance
improvement achieved by the optimizations proposed in these pa-
pers, while good, is limited by the precision of the analysisresults.

Other recent heap analysis work has focused on the precise
modeling of destructive updates and their effect on the structure

1 Seewww.software.imdea.org/ ˜ marron/ for benchmark code,
examples of the analysis results, and an executable analysis demo.

of the heap, TVLA [19, 18, 27, 24], separation logic based ap-
proaches [1, 28, 11]. While these techniques can model, witha very
high degree of precision, many complex heap operations theycur-
rently impose limitations that make region analysis infeasible for
many programs. In particular the current formulations are restricted
to programs that manipulate lists (or trees) and restrict the amount
of sharing between regions. As Separation Logic and TVLA are
general purpose frameworks/logics the work in these paperscould
be extended as described in this work. However, to the best ofour
knowledge this extension has not been done. Thus, many of the
benchmarks examined in this paper currently cannot be analyzed
with these methods, includingbh, em3d, voronoi, andraytrace, all
of which have substantial opportunities for the application of vari-
ous region based optimizations.

8. Conclusion
The analysis presented in this paper presents an important develop-
ment in applying shape analysis techniques to real world programs
as it can precisely and efficiently deal with the types of datastruc-
tures and programmatic events that occur in realistic programs. In
particular the formalization applies to any type of recursive data
structures (as opposed to just lists or trees, and it supports com-
posite data structures that have non-trivial sharing between them),
it can precisely model many types of structures which are merged
in simpler points-to style approaches, and it supports moreprecise
grouping of the contents of collections (arrays or collections from
java.util) than is possible with other methods.

Our experiments demonstrate that the proposed region identifi-
cation method can be used to precisely and efficiently identify and
group logically related regions of the heap (recursive datastruc-
tures, composite structures composed of multiple objects and the
contents of arrays/collections). Further our case studiesdemon-
strate that the results of the analysis can be effectively used to
support memory allocation/layout/collection optimization applica-
tions. Based on these results we believe that the proposed approach
presents a basis for a heap analysis that can be used in practice
to provide detailed heap information for a range of optimization
applications that rely on region information and we are currently
working on improving the practicality of the analysis by develop-
ing on techniques to scale it to larger programs.

Acknowledgements.We would like to thank the reviewers for
their comments and suggestions. This work was funded in partby
EU projects FETHATSand 06042-ESPASS, Spanish Ministry of
Science and Industry projects TIN-2008-05624DOVESand FIT-
340005-2007-14, and CAM project S-0505/TIC/0407PROMESAS.
This work was also funded via NSF awards CCF-0541315, CNS-
0831462, and CCF-0540600.

References
[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies,

and H. Yang. Shape analysis for composite data structures. In CAV,
2007.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. InPACT, 2001.

[3] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. InPLDI, 1990.

[4] S. Cherem and R. Rugina. Region analysis and transformation for
Java programs. InISMM, 2004.

[5] S. Cherem and R. Rugina. Compile-time deallocation of individual
objects. InISMM, 2006.

[6] S. Chong and R. Rugina. Static analysis of accessed regions in
recursive data structures. InSAS, 2003.

[7] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In PLDI, 1994.

[8] J. Dolby and A. Chien. An automatic object inlining optimization
and its evaluation. InPLDI, 2000.

[9] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A
shape analysis for heap-directed pointers in C. InPOPL, 1996.

[10] S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-
manipulating low-level software. InCAV, 2007.

[11] B. Guo, N. Vachharajani, and D. August. Shape analysis with
inductive recursion synthesis. InPLDI, 2007.

[12] S. Z. Guyer and K. S. McKinley. Finding your cronies: static analysis
for dynamic object colocation. InOOPSLA, 2004.

[13] S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-me: a static
analysis for automatic individual object reclamation. InPLDI, 2006.

[14] B. Hackett and R. Rugina. Region-based shape analysis with tracked
locations. InPOPL, 2005.

[15] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. InOOPSLA, 2003.

[16] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In
PLDI, 2005.

[17] C. Lattner, A. Lenharth, and V. S. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the realworld. In
PLDI, 2007.

[18] T. Lev-Ami and S. Sagiv. TVLA: A system for implementingstatic
analyses. InSAS, 2000.

[19] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate
abstraction and canonical abstraction for singly-linked lists. In
R. Cousot, editor,VMCAI, 2005.

[20] M. Marron. Modeling the heap: A practical approach. Phd. thesis,
University of New Mexico, 2008.

[21] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo. A static
heap analysis for shape and connectivity. InLCPC, 2006.

[22] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and
D. Kapur. Sharing analysis of arrays, collections, and recursive
structures. InPASTE, 2008.

[23] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap
analysis in the presence of collection libraries. InPASTE, 2007.

[24] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. InPOPL, 1999.

[25] Standard Performance Evaluation Corporation. JVM98 Version 1.04,
August 1998. http://www.spec.org/jvm98.

[26] B. Steensgaard. Points-to analysis in almost linear time. InPOPL,
1996.

[27] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InCC, 2000.

[28] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. OHearn. Scalable shape analysis for systems code. InCAV, 2008.

