

NIPS: Conferences: 2013

PERSONALIZED SEARCH: POTENTIAL AND PITFALLS

Overview

- Importance of context in search
- Potential for personalization framework
- Examples
 - Personal navigation
 - Client-side personalization
 - Short- and long-term models
 - Temporal dynamics
- Challenges and new directions

Search and Context

Context Improves Query Understanding

Queries are difficult to interpret in isolation

□ Easier if we model: who is asking, what they have done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)

vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)

SIGIR

Previous actions: (SIGIR | information retrieval)

vs. (SIGIR | U.S. coalitional provisional authority)

Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

Time: (SIGIR | Jan. submission) vs. (SIGIR | Jul. conference)

 Using a <u>single ranking</u> for everyone, in every context, at every point in time, <u>limits how well a search engine can do</u>

Potential For Personalization

- A single ranking for everyone limits search quality
- Quantify the variation in individual relevance for

the same query

Different ways to mea

- Explicit judgments from d
- Implicit judgments (clicks,
- Personalization can led
 - Study with explicit judgm
 - 46% gain with single ranking
 - 72% gain with personalized ranking

Potential For Personalization

- Not all queries have high potential for personalization
 - E.g., facebook vs. sigir
 - E.g., * maps

Learn when to personalize

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term
 - Who: Individual, group
- Using user models
 - Where resides: Client, server
 - When used: Always, sometimes, context learned
 - How used: Ranking, query support, presentation, etc.

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term

PNav

Who: Individual, group

PSearch

- Using user models
 - Where resides: Client, server

Short/Long

Time

- When used: <u>Always</u>, <u>sometimes</u>, <u>context learned</u>
- How used: Ranking, query support, presentation, etc.

Example 1: Personal Navigation

- Re-finding is common in Web search
 - 33% of queries are repeat queries
 - 39% of clicks are repeat clicks
- Many of these are navigational queries
 - E.g., facebook -> <u>www.facebook.com</u>
 - Consistent intent across individuals
 - Identified via low click entropy
- "Personal navigational" queries
 - Different intents across individuals, but consistently the same intent for an individua
 - SIGIR (for Dumais) -> <u>www.sigir.org/sigir2013</u>
 - SIGIR (for Bowen Jr.) -> <u>www.sigir.mil</u>

		Repeat Click	New Click
Repeat Query	33%	29%	4%
New Query	67 %	10%	57%
		39%	61%

Personal Navigation Details

- Large-scale log analysis
 - Identifying personal navigation queries
 - Use consistency of clicks within an individual
 - Specifically, the last two times a person issued the query, was there a unique click on same result?
 - Behavior consistent over time
 - Coverage and accuracy
 - Many such queries: ~12% of queries
 - Prediction accuracy high: ~95% accuracy
 - High coverage, low risk personalization
- Can be used to re-rank, or augment presentation
- Online evaluation

Example 2: PSearch

- □ Rich client-side model of a user's interests
 - Model: Content from desktop search index & Interaction history Rich and constantly evolving user model
 - Client-side re-ranking of (lots of) web search results using model
 - Good privacy (only the query is sent to server)
 - But, limited portability, and use of community

PSearch Details

Ranking Model

- Score: Weighted combination of personal and global scores
 - $Score(result_i) = \alpha PersonalScore(result_i) + (1 \alpha) WebScore(result_i)$
- Personal score: Content and interaction history features
 - Content score log odds of term in personal vs. web content
 - Interaction history score visits to the specific URL, with backoff to domain

Evaluation

- Offline evaluation, using explicit judgments
- Online evaluation, using PSearch prototype
 - Internal deployment; 225+ people for several months
 - Coverage: Results personalized for 64% of queries
 - Effectiveness:
 - CTR 28% higher, for personalized results
 - CTR 74% higher, when personal evidence is strong
 - Learned model for when to personalize

Example 3: Short + Long

- Short-term interests
 - Behavior: Queries, clicks within current session
 - (Q= sigir | information retrieval vs. iraq reconstruction)
 - (Q= nips | icml vs.
 - (Q= acl | computational linguistics vs.
 - Content: Language models, topic models, etc.
- Long-term preferences and interests
 - Behavior: Specific queries, clicks historically
 - (Q=weather) -> weather.com vs. accuweather.com vs. weather.gov
 - Content: Language models, topic models, etc.
- Developed unified model for both
- Sometimes short-term activity consistent with longterm interests, sometimes not

Short + Long Details

- User model (features)
 - Related queries, clicked URLs
 - Topic distributions, using ODP
- Log-based evaluation, MAP
- Which sources are important?
 - □ Session (short-term): +25%
 - □ Historic (long-term): +45%
 - □ Combinations: +65-75%
- What happens within a session?
 - 60% of sessions involve multiple queries
 - By 3rd query in session, short-term features more important than long-term
 - First queries in session are different –
 shorter, higher click entropy

- User model (temporal extent)
 - Session, Historical, Combinations

Query

Temporal weighting

Example 4: Temporal Dynamics

- Queries are not uniformly distributed over time
 - Often triggered by events in the wor
- □ Relevance changes over time
 - E.g., US Open ... in 2013 vs. in 2012
 - E.g., US Open 2013 ... in May (golf) vs. in

- Before event: Schedules and tickets, e.g., stubhub
- During event: Real-time scores or broadcast, e.g., espn
- After event: General sites, e.g., wikipedia, usta

Temporal Dynamics Details

- Develop time-aware retrieval models
- Leverage <u>content</u> change on a page
 - Pages have different rates of change (influences document priors, P(D))
 - \blacksquare Terms have different longevity on a page (influences term weights, P(Q|D))
 - 15% improvement vs. LM baseline

- Leverage time-series modeling of <u>user interactions</u>
 - Model query and URL clicks as time-series
 - Learn appropriate weighting of historical data
 - Useful for queries with local or global trends

Challenges in Personalization

- User-centered
 - Privacy
 - Transparency and control
 - Serendipity
- Systems-centered
 - Performance/optimization
 - Storage, caching, run-time efficiency etc.
 - Evaluation
 - Measurement, experimentation

Privacy

- Profile on client (e.g., PSearch)
 - Profile is private
 - Query to server, many documents returned, local computations
- Profile in cloud
 - Transparency about what's stored
 - Control over what's stored ... including nothing
- Other approaches
 - Light weight profiles (e.g., queries in a session)
 - Public or semi-public profiles (e.g., tweets, Facebook status)
 - Matching an individual to group

Serendipity

- Does personalization mean the end of serendipity?
 - ... Actually, it can improve it!
- Experiment on Relevance vs. Interestingness
 - Personalization finds more relevant results
 - Personalization also finds more interesting results
 - Even when interesting results were not relevant
- Need to be ready for serendipity
 - Like the Princes of Serendip

Evaluation and Feedback

- External judges, e.g., crowdworkers
 - Lack diversity of intents and backgrounds
- Actual searcher
 - Offline
 - Allows safe exploration of many different alternatives
 - Labels can be explicit or implicit judgments (log analysis)
 - Online
 - Explicit judgments: Nice, but annoying and may change behavior
 - Implicit judgments: Scalable, but can be very noisy
 - Note ... limited experimental bandwidth; not directly repeatable; requires production-level code; mistakes costly
- Diversity of methods important
 - \blacksquare User studies, log analysis, and A/B testing

Summary

- Queries difficult to interpret in isolation
- Augmenting query with context can help
 - Who, what, where, when?

- Potential for improving search using context is large
- Examples
 - PNav, PSearch, Short/Long, Time
- Challenges and new directions

Thanks!

- □ Questions?
- More info:

http://research.microsoft.com/~sdumais

□ Collaborators:

Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White, Kevyn Collins-Thompson, Peter Bailey, Eugene Agichtein, Krysta Svore, Kira Radinski, Jon Elsas, Sarah Tyler, Alex Kotov, Anagha Kulkarni, David Sontag, Carsten Eickhoff

References

- Short-term models
 - White et al., CIKM 2010. Predicting short-term interests using activity based contexts.
 - □ Kotov et al., SIGIR 2011. Models and analyses of multi-session search tasks.
 - Eickhoff et al., WSDM 2013. Personalizing atypical search sessions.
- Long-term models
 - □ Teevan et al., SIGIR 2005. Personalizing search via automated analysis of interests and activities. *
 - □ Teevan et al. SIGIR 2008. To personalize or not: Modeling queries with variations in user intent. *
 - □ Teevan et al., TOCHI 2010. Potential for personalization. *
 - □ Teevan et al., WSDM 2011. Understanding and predicting personal navigation. *
 - □ Bennett et al., SIGIR 2012. Modeling the impact of short- & long-term behavior on search personalization. *
- Temporal models
 - □ Elsas and Dumais, WSDM 2010. Leveraging temporal dynamics of document content in relevance ranking. *
 - Kulkarni et al., WSDM 2011. Understanding temporal query dynamics.
 - □ Radinsky et al., TOIS 2013. Behavioral dynamics on the web: Learning, modeling and predicting. *
- □ http://www.bing.com/community/site http://www.bing.com/community/site blogs/b/search/archive/2011/02/10/making-search-yours.aspx
- http://www.bing.com/community/site_blogs/b/search/archive/2011/09/14/adapting-search-to-you.aspx