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Human Genome Privacy

Human DNA Is Important to genomic
% research, biomedical studies, and is
becoming part of electronic health records

(EHRSs)

Examples: Genome-wide association studies (GWAS), rare disease studies,
targeted therapy, precision medicine

However, genomic data are also highly
sensitive

Personally identifiable markers: skin, hair color, predisposition to

disease...

Examples of breach: Disease markers, surname identification, face
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Grand Challenge

How to share or analyze genomic data in a way
that preserves the privacy of the data owner,
without undermining the utility of the data or
impeding its convenient dissemination?
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Utility and Privacy Balance

Secure primitives increase the computational cost,
noise adding brings in artifacts to human genome
data, there is a critical tradeoft

Questions: Can state-of-the-art techniques be used
to support biomedical research in practice?
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NIH Roadmap
National Centers for Biomedical Computing
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Real Study, Real Impacts

Understand the impacts of data “anonymization”
and secure models to real-world biomedical

studies

Real human genomic data
High dimension of a practical scale

Balance privacy/security protection and utility

Goal: maximum utility with minimum controlled privacy risks
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TUIDASH S&P competition
2014

Bpivacy Protection Challenge
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The 1st Competition

-valuate how effective the best privacy
orotecting technologies could be in protecting
numan genomic data and analysis results

The challenge focused on tasks related to

sharing aggregate SNP data (allele frequencies)
and top-K SNP identification for GWAS studies
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Workshop preparation and registration statistics
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Data generation Registration Evaluation
Competition preparation Submission of results
Winnipeg
Vancouver = Gulf of St
= I\ Lawrence
S N -—\--._ o
. North ‘/\ - ;
Washington Montana Dakota . /N New. Prince
Minnesota - J/ Brunswick _____Fdward
R Mo@eal Island
, YR Nova
South Wisconsin | 7 Maine Scotia
greoon Idaho 2R Michigan | Toro_onto ?Vermonl .
Wyoming A f ) New York _ New 4 2 t
vy Ch"(:)ago \// Hampshire C O u n r I e S
Nebraska Pennsylvania
'"'"0@ Ohio Nawiane Massachusetts
Nevada s United States Ir@ana @ bl A Rhode Island
a
@ Colorado Kansas MiZSour vx'gﬁﬁt. A Connecticut
California @ Kentucky Virginia New Jersey ¢ 9 St a t e S
North
Los Oklahoma A4 ancas Tennessee Caroorlina Delaware
Ange Arizona New TS South Maryland
: h° - Mexico D@as Mississippi Carolina District of
San Diego & Phoenix Alabama Columbia . .
L Teag * 33 registrations
S Louisiana
. Sang
. Antonio Houston
N\
Gulf of Florida
~alifol
Califorma Mongerrey, Gulf of
R Mexico
Mexico Havana
o

Microsoft Research

FaCU|ty Summit 2016 . - m Microsoft




Challenge of Task 1

Goal: Understand the privacy-utility balance achievable when publicly
released SNP data, after proper ‘anonymization, for a realistic GWAS

Utility: the number of significant SNPs identified by the Chi-square
association test over the case population (200 individuals from PGP) and a
control population (from HapMap)

Privacy Protection: the ‘anonymized’ data’s resistance to one of the
strongest re-identification statistical attack (i.e., the likelihood ratio test).

Sankararaman, S., Obozinski, G., Jordan, M. |., & Halperln E. (2009) NatureGenettcs 47(9) 965—- 7
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Privacy: Evaluation of Privacy Risks using the
_ikelihood Ratio Test

where m is the number of SNPs, p; is the
allele frequency of SNP j in the population
and p; is that in a pool

Implemented as an online tool that
allows challenge participants to examine
privacy risks in their noise-added data:
http://humangenomeprivacy.org
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Utility: Case-Control Association Test

Observed allele counts for SNP1

Case a=3 b=1 r=4

Control c=1 d=3 s5=4

Chi-square; 1=y 2=

i=1j=1

: : : : Total a+tc b+d n=2_8
O,;is observed frequencies, E;; is expected frequencies

Expected allele counts for SNP1

(a+c)*r/n  (b+d)*r/n

{a+c)*s/n  (b+d)*s/n
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Challenge of Task 2

Goal: Given a privacy protection standard, evaluate how
much utility, in terms of top-K most significant SNPs, can be
preserved by the best techniques for ‘anonymized’ outcome
release

Utility: Top-K most significant SNPs (using chi-square tests)
across the genome (e.g., K=1or 5)

Privacy Protection: Differential privacy with a budget €=1.0
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Differential Privacy

A mechanism is differentially private it every output is produced with
similar probability whether any given input is included or not

3 E.ll similar output distributions E.I- 2

Risk for C does not increase much if
her data are included in the computation

C. Dwork, “Differential privacy,” Int. Collog. Autom Lang Program voI 4052, no. d, pp. 1-12, 2006.
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Data preparation

individuals

Case: 200 PGP
£.319 SNVs individuals

Data set 1: 311 SNVs
Data set 2: 610 SNVs

Task 2: top-K SNP identification

Case: 200 PGP
individuals

CEU populationin HapMap Data set 1: 5000 SNVs
Data set 2: 106,129 SNVs

Microsoft Research
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Task 1. Privacy Preserving Data Sharing

Baseline Team 1 Team 2 Team 3 # of sig SNVs
SNV-based Haplotype-based U Oklahoma UT Dallas McGill U
Fower 0.05 0.03 0.61 0.04 0.01
Cutoff TPR. FFPR TPR. FPR TPHR. FPR TPR. FFR TPR. FFPR
D 5.00E-02 0.864. 0.844 0.910.0.612 1.000. 0.941 1.000. 0.855 1.000. 0.886 22
1.00E-03 0.632. 0.774 1.000. 0.493 1.000. 0.884 1.000. 0,791 1.000. 0.798 19
1.00E-05 0.643. 0.700 1.000. 0.475 1.000. 0.879 1.000. 0.737 1.000. 0.737 14
Power 0.04 0.115 0.005 0.01 0.09
Cutoff TPE. FPR TPE. FPR TPR. FPR TPE. FFR TPE. FPR
o2 5.00E-02 0.933. 0.924 0.978. 0.804 1.000. 0.958 0.533.0 0.956. 0.746 45
1.00E-03 0.800. 0.862 1.000. 0.708 1.000. 0.909 1.000.0 1.000. 0.582 15
1.00E-05 0.625. 0.788 1.000. 0.504 1.000. 0.876 1.000.0 1.000. 0.425 8

In the first column, D1 refers to 200 participants, 311 SNVs (~29504091-30044866, chr2) and D2 refers to 200 participants, 610 SNVs (~55127312-
56292137, chr10). The rows labeled ‘Power’ indicate the ratio of identifiable individuals using the likelihood ratio test in the case group. The other
rows start with a cutoff threshold for the x2test (e.g., 5 x 102,103, 10®), for which two measurements (true positive rate and false positive rate for

SNVs using the x2 test) were calculated under each method. The last column corresponds to the number of significant SNVs (p=10-°) calculated
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Task 2: Privacy Preserving Feature Selection

Teams Top1 Top3 Top5  Top10 Top 15 Top 20 Top 30
UT Austin 1 2.66 4.44 8.48 7.07 4.68 2.37

Small (5000 SNVs)
CMU 0.98 2.28 3.53 7.89 4.59 2.32 1.16
UT Austin 1 2.65 4.41 5,90 2.26 0.69 0.18

Large (100K SNVs)
CMU 0.98 2.26 3.56 3.27 0.42 0.15 0.07

The table shows the average number of (1000 iterations) privacy-preserving SNV identification
algorithms developed by the two participating teams. Both algorithms were trained using the small
dataset consisting of 5000 SNVs, and then were tested on both small and large datasets, i.e.,
selecttop K (i.e., K=1, 3, ..., 30) most significant SNVs.
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Discussion

It remains a challenge to do privacy-
preserving sharing of aggregate human
genomic data while maintaining utility in
genome-wide association studies (GWAS)

Even for a single genomic locus involving a few hundreds of SNPs, the utility of the data
was largely damaged after noise was added to ensure privacy protection

It is unlikely that current privacy-preserving techniques will scale well for sharing whole
human genomic data
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Discussion

Privacy-preserving techniques show promise
on publishing outcomes of GWAS-like

analyses

High accuracy can be achieved when only a small number of most significant SNPs are
disclosed (from the users’ perspective)

This is aligned with a data computing model that only releases the results of analyses to
users
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2nd iDASH S&P competition
(2015)

IDASH PRIVACY & SECURITY WORKSHOP 2015

Microsoft Research
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Secure genome analysis competition

Foster research to address secure outsourcing ana
multiparty collaboration in biomedical studies

Secure Genome-Wide Association Study (GWAS)

Secure genome comparison based on Hamming ana
Edit distances
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Workshop preparation and registration statistics
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nature International weekly journal of science

genomeweb
msiness & Policy Research Clinical Disease Areas 1 1 Te a m S

Home | News & Comment [ Research | Careers & Jobs | Current Issue | Archive | Audio & Video ] For Autt

Volume 519
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oy ~ Home » The Scan » To Keep It Safe and Sound . .
Extreme cryptography paves way to personalized 1 2 I t t t
medicine O0600 0O NSTITUTIONS

Encrypted analysis of data in the cloud would allow secure access to sensitive information.

Erika Check Hayden

23 March 2015

) poF | W Rights & Permissions

Cloud processing of DNA sequence data promises to speed up discovery of disease-linked gene
variants.

To Keep It Safe and Sound

Mar 25, 2015

One of the concerns about using genetic data along with medical records
information to personalize medicine is how to keep that personal information safe,
but still easily accessible for analysis. Cryptographers at a workshop hosted by the
University of California, San Diego, tested a homomaorphic encryption method that
seems promising, reports Nature News' Erika Check Hayden.

This method involves mathematically encrypting data on a local computer and then
uploading the encoded form to the cloud where it can be analyzed, Check Hayden
notes. Encoded results are then sent back to a local computer, which unscrambles
the data. Any data intercepted along the way would be encrypted.

She notes that this idea dates back to 1978, but remained largely theoretical until
2009 when IBM Thomas J. Watson Research Center's Craig Gentry showed that
computational analyses could be carried out on homomorphically encrypted data.

At the UCSD workshop, cryptographers showed that such an approach could
analyze data from 400 people within about 10 minutes and pinpoint a variant
associated with disease from among few hundred loci. Analysis of larger datasets

North America: IBM US;
Stanford/MIT; Syracuse
University; University of
Maryland; University of Notre
Dame; University of Virginia;
Microsoft Research;
University of California Irvine;

Europe: IBM UK; Cybernetica
AS (Estonia); The Alexandra
Institute (Denmark)

. I . . °
The dream for tomorrow’s medicine is to understand the links between DNA and disease — and to ﬁl"'ld more bﬁSE palrs wasn tIB.'Wﬂ‘],FS DDSSIHE' C—hGCk Hﬂ},l’d&ﬂ Sﬁ‘j"S, and it COUId tﬁkE ASIa ' U n Ive rS Ity Of TS u k u ba
tailor therapies accordingly. But scientists working to realize such ‘personalized’ or ‘precision’ a lot of COI’T‘IDU‘GI’ Memaory, tlme, or money. (J a p a n )

medicine have a problem: how to keep genetic data and medical records secure while still
enabling the massive, cloud-based analyses needed to make meaningful associations. Now, tests

While the workshop organizers find the approach promising, others say it might not
provide enough protection for the data or allow researchers and clinicians to
perform all the analyses they want. US National Center for Biotechnology

known as homomorphic encryption, they could find disease-associated gene variants in about ten Infﬂrmatmnls Steven Sherm‘ fDr InStanCE’ prafars rES‘HC‘UnQ dﬂtﬁ access tO a SE"E‘Ct

minutes. Despite the fact that computers were still kept bogged down for hours by more-realistic few people who have agreed to follow certain regulations on how the data may be
tasks — such as finding a disease-linked variant in a stretch of DNA a few hundred-thousandths Used.

of an emerging form of data encryption suggest that the dilemma can be solved.

At a workshop on 16 March hosted by the University of California, San Diego (UCSD),
cryptographers analysed test genetic data. Working with small data sets, and using a method

m Microsoft

the size of the whole genome — experts in cryptography were encouraged.



Challenge 1: HME based analysis

Develop a homomorphic encryption-based
orotocol to analyze encrypted DNA data on an
untrusted cloud

Compute the minor allele frequencies (MAF) and chi-square statistics for task 1.1, and the
Hamming distance and edit distance for task 1.2, on an untrusted remote server.

The protocol should return the encrypted results (e.g., MAF, x* statistics, distance), which only the
data owner with the private key can decrypt.
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Challenge 2: SMC based Analysis

Assess solutions to enable two parties to work
together to perform a genomic analysis across
their DNA datasets without exposing their
individual data

Task 2.1: Each participating team is required to develop a distributed cryptographic
protocol to securely aggregate the minor allele frequencies (MAF) in two datasets and
securely calculate y? statistics for each of the given SNPs.

Task 2.2: Each participating team is required to develop a distributed cryptographic
protocol to securely compute the Hamming distance and edit distance between two
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Submission and Evaluation

For both tasks of challenge 1, each submitted program was
executed within the pre-set virtual machine on a single
computer, where the runtime and memory usage were
recorded.

For both tasks of challenge 2, each submitted program was
executed within two virtual machines on two servers located
at Indiana University and UCSD, respectively, where the
runtime and memory usage on each server and the data size
communicated between two servers were recorded.
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Result Summary for Task 1.1

Microsoft 174409331 26.306573 16.875895 27.1131054

— O MW~ 0D 3 = =

Research
ucl* 0.5886  0.8858  0.6586 0.87081
Stanford/MIT 1.069 1.847 1.069 1.847
U of Tsukuba 55208  112.323 55208  112.323
'\R":;g;z: 130.484  247.296  118.080  234.728
ucl* 3.320 3.320 3.320 3.320
Stanford/MIT 8.0 13.0 8.0 13.0
U of Tsukuba 31.808  32.668 31808  32.668

tsourcing, and was not considered in the competition.

*The algorithm encrypts local counts instead of input data for secure data ou
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Result for Task 1.2 (Hamming distance)

5k 100k 5k 10k 100k 3 Helib

Plaintext data 4740 131535 3099 3306 134252 g 5K=p=653,r=1,d=2,b=251<i;4;‘lq<fi;§;3677,
IBM 4740 131545 3099 3306 134260 IBM 10K:p=653,r=1,d=2,c=4,k;8;.8699,
Microsoft 4740 N/A 3099 3306 N/Al & b=25, L=19,m=17767
Stanford/MIT 4790 130035 3082 3275 132703 Y 100K:p=653,r=1,d=2,c=4,k=86.8699,b=25,

L=19,m=17767

. Helib:
Plaintext data 0.076s____0.118s 1.145s 5K: p=2, r=1, d=1, c=2, k=80, w=64,
IBM 79.4s 86.8s 472.2s Microsoft L=7, m=8191
Microsoft 44.019s N/A 44.664s 80.031s N/A 10K: p=2, r=1, d=1, c=2, k=80, w=64,
=7, m=8191

Stanford/MIT 20m25s 1h54m1ls 20m37s 36m27s 2h2m26s
Helib for BGV encryption scheme:

p=19259, m=19258, phi(m)=9629, k=80

Plaintext data 243M  13.52M 1.64M 243M  13.52M Stanford/ Hashing: HMAC-SHA-256

IBM 1.416G  2.165G 1.416G  1.419G  2.168G MIT 5K: k=1000000 b=1 m=3

. 10K: k=1700000 b=1 m=3
Microsoft

513.5M N/A 513.7M  720.5M N/A e

Stanford/MIT 2.765G 7.489G  2.765G 4.025g  7.502G

J/
Microsoft Research A
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Results for Task 1.2 (Approximate Edit distances)

oSk 100k oK 10k 100k

Plaintext data 7446 198705 9089 16667 191986
IBM* 5777 153266 5328 8318 153266
Microsoft 7446 N/A 9089 16665

<O0O>PATOO>

Plaintext data 0.103s 1.489s 0.106s 0.144s 1.528s
IBM* 96.9s 552.6s 91.7s 106.3s 555.2s
Microsoft N/A 91.09s 181.92s N/A

Plaintext data 2.45M 25.78M 2.45M 2.53M 25.78M
IBM* 1.416G 2.294G 1.418G 1.451G 2.295G
Microsoft 701.1M N/A 700.8M 1.295G N/A

S e

Helib

5K:p=653,r=1,d=2,b=25,c=4,k=86.87,
L=19,m=17767

IBM 10K:p=653,r=1,d=2,c=4,k=86.8699,

b=25, L=19,m=17767
100K:p=653,r=1,d=2,c=4,k=86.8699,

b=25, L=19,m=17767

Helib

5K: p=2, r=1, d=1, c=2, k=80, w=64,

Microsoft =9, m=8191
10K: p=2, r=1, d=1, c=2, k=80, w=64,

=11, m=8191

*An approximate algorithm (with about 22% error), which was not considered in the competition.
, 5 - '"».:,'," -
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Results for Task 2.1: y*-statistics (large dataset with
610 SNPs)

Communication (MB)

Memory (KB)

VM2 VM2
Baseline 187 1.2 1.4 1.4 70.0
uv 59 6.9 9.7 3.6 309.3
UND 23 36.2 49.8 36.0 79 7.4 7.2
SuU 54* 187 175 9645.7 93.0
UMD 20 71.3 64.6 1.6 90.7
CAS 57 0.1 0.1 0.1 0.007 0.007 0.007

* Updated results on April 2

Microsoft Research
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Results for Task 2.2: Hamming Distance (over
~100K variation sites)

Memory(MB) Communication(MB)
\\", P \\", P
uv 553 0.3 0.3 156.5 9672.9
UND 5077 3044 3048 3048 4118.5 3361.7 3167.3
UMD 604 1260 1252 63.4 2973.3
UMD (BF)** 83 0.1 0.1 19.8 150.8
UClI 788 0.4 0.4 28.8 24.4
CAS* 128 0.4 0.4 0.4 0.1 0.1 0.1

*The algorithm involves intensive computation on the third server, and thus was not considered in the competition.
**An approximate algorithm (with about 0.8% error) based on Bloom filter, which was not considered in the competition.

4 | N / 5'—’ - :S‘ '.‘-.".,-
l & § ty’-:’.:-". (
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Results for Task 2.2: Edit Distance (over ~100K
variation sites)

Memory(KB) Communication(MB)
VM2 \\", P
Baseline 254 290 292 92.0 5595.0
UMD >20h
UMD (BF)** 233 145 125 50.2 424.5
UClI 998 434 398 39.1 32.7
Al >20h

**An approximate algorithm (with about 0.8% error) based on Bloom filter, which was not considered in the competition.

Microsoft Research ’ (f- . / ;:."t' 5‘&». |
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Moving Closer to Practical Use

e Analyzing Encrypted DNA

e Hamming and Edit distance approximation over 100K can be done within 10
minutes

e Secure collaboration across the Internet

e y?based GWAS over hundreds of SNPs can be done, securely, in a few minutes
e Hamming distance can be calculated in 10 minutes and Edit distance in 20
minutes over 100K across the Internet (Indiana to San Diego)

e \We are really close to protecting some types of DNA analyses at a
practical scale

Microsoft Research
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But Still not There, Yet

e A full-fledged GWAS still cannot be efficiently done on encrypted DNA

e Due to the challenge of performing divisions efficiently

e HME needs multi-gigabytes of memory and SMC needs to transmit multi-
gigabytes of data across the Internet, for analyzing a 100K sequence

e QOperations that can be conducted in seconds can take a dozen minutes or
hours to compute

e Accurate edit distance is still off the table

Microsoft Research
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; O 1 6 IDASH pRlVACY & SECURITY WORKSHUP 2016 ABOUT COMPETITION TASKS AGENDA ORGANIZERS MORE...

RIGHT BEFORE TS =
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Workshop preparation and registration statistics

Workshop Location Registered Teams
* 13 countries
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Theme of 2016 (humangenomeprivacy.org)

Tackles emerging and practical problems,comestitionorganizers

. X L e Haixu Tang (Indiana University)
evaluann will balance performance,  Fensans (o Univerit
security guarantee and, importantly, the — « shuangwang(ucso)

. . e Xiaogian Jiang (UCSD)
generality of the solution

Local organizers

Track 1: Practical Protection of Genomic Data Sharing through Beacon * Bradiey Malin (Vanderbilt University)

Services (privacy-preserving output release)
Track 2: Privacy-Preserving Search of Similar Cancer Patients across General chair

Organizatiops (secure mqltiparty computing) e LucilaOhno-Machado (UCSD)
Track 3: Testing for Genetic Diseaseson Encrypted Genomes (secure

outsourcing)

e Abel Kho (Northwestern University)

Microsoft Research
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