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Abstract

In regression problems involving vector-valued outputs (or equivalently, multiple
responses), it is well known that the maximum likelihood estimator (MLE), which
takes noise covariance structure into account, can be significantly more accurate
than the ordinary least squares (OLS) estimator. However, existing literature com-
pares OLS and MLE in terms of their asymptotic, not finite sample, guarantees.
More crucially, computing the MLE in general requires solving a non-convex op-
timization problem and is not known to be efficiently solvable. We provide fi-
nite sample upper and lower bounds on the estimation error of OLS and MLE, in
two popular models: a) Pooled model, b) Seemingly Unrelated Regression (SUR)
model. We provide precise instances where the MLE is significantly more ac-
curate than OLS. Furthermore, for both models, we show that the output of a
computationally efficient alternating minimization procedure enjoys the same per-
formance guarantee as MLE, up to universal constants. Finally, we show that for
high-dimensional settings as well, the alternating minimization procedure leads
to significantly more accurate solutions than the corresponding OLS solutions but
with error bound that depends only logarithmically on the data dimensionality.

1 Introduction

Regression problems with vector-valued (or, equivalently, multiple) response variables – where we
want to predict multiple responses based on a set of predictor variables– is a classical problem that
arises in a wide variety of fields such as economics [1, 2, 3], and genomics [4]. In such problems,
it is natural to assume that the noise, or error, terms in the underlying linear regression model are
correlated across the response variables. For example, in multi-task learning, the errors in different
task outputs can be heavily correlated due to similarity of the tasks.

Regression with multiple responses is a classical topic. Textbooks in statistics [5, 6] and economet-
rics [7] cover it in detail and illustrate practical applications. [2] and [3] provide recent overviews
of the Seemingly Unrelated Regressions (SUR) model and the associated estimation procedures. It
is well known that for SUR models, the standard Ordinary Least Squares (OLS) estimator may not
be (asymptotically) efficient (i.e., may not achieve the Cramer-Rao lower bound on the asymptotic
variance) and that efficiency can be gained by using an estimator that exploits noise correlations
[3] such as the Maximum Likelihood Estimator (MLE). The two well-known exceptions to this un-
derperformance of OLS are: when the noise across tasks is uncorrelated and when the regressors
are shared across tasks. The later is the well-known multivariate regression (MR) setting (see [5,
Chapter 6]). However, there are at least two limitations of the existing MLE literature in this context.

First, despite being a classical and widely studied problem, little attention has been paid to the fact
that MLE involves solving a non-convex optimization problem in general and is not known to be
efficiently solvable. For example, a standard text in econometrics [7, p. 298, footnote 15], when
discussing the SUR model, says, “We note, this procedure [i.e., AltMin] produces the MLE when it
converges, but it is not guaranteed to converge, nor is it assured that there is a unique MLE.” The
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text also cites [8] to claim that “if the [AltMin] iteration converges, it reaches the MLE” but the result
[8, Theorem 1] itself only claims that “the iterative procedure always converges to a solution of the
first-order maximizing conditions” and not necessarily to “the absolute maximum of the likelihood
function” (emphasis on the word “absolute” is in the original text).

Second, improvement claims for MLE over OLS are based on asymptotic efficiency comparisons
[7, Chapter 10] that are valid only in the limit as the sample size goes to infinity. Little is known
about the estimation error with a finite number of samples. When discussing the failure of AltMin
to converge even after 1,000 iterations, the text [7] says that the “problem with this application may
be the very small sample size, 17 observations”. This is consistent with our theoretical results that
guarantee error bounds for AltMin once the sample size is large enough (in a quantifiable way).

The main contribution of this paper is quantifying, via finite sample bounds, the improvement in es-
timation error resulting from joint estimation of the regression coefficients and the noise covariance.
Our approach is firmly rooted in the statistical learning theory tradition: we pay attention to efficient
computation and use concentration inequalities, rather than limit theorems, to derive finite sample
guarantees. In order to have a computationally efficient approach, we adopt an alternating mini-
mization (AltMin) procedure that alternatingly estimates the regression coefficients and the noise
covariance matrix, while keeping the other unknown fixed. While both of the individual problems
are “easy” to solve and can be implemented efficiently, the general problem is still non-convex and
such a procedure might lead to local optima. Whereas practitioners have long recognized that Alt-
Min works well for such problems [1, Chapter 5], we are not aware of any provable guarantees for
it in the setting of multiple response regression.

We consider two widely-used vector-output models, namely the Pooled model (Section 2) and the
Seemingly Unrelated Regression (SUR) model (Section 3). For both models, we show that the es-
timation error of AltMin matches the MLE solution’s error up to log factors. Moreover, we show
that in general, the error bounds of MLE (and AltMin) are significantly better than that of OLS. To
derive our finite sample guarantees, we rely on concentration inequalities from random matrix the-
ory. For AltMin, our proof exploits a virtuous circle: better estimation of the regression coefficients
helps covariance estimation and vice-versa. As a result, we are able to show that the both parameter
estimation errors reduce by at least a constant factor in each iteration of AltMin.

Illustrative Example. To whet the reader’s appetite for what follows, we consider here a simple
regression problem with two responses: yi,1 = X>i,1w∗ + ηi, yi,2 = X>i,2w∗ + ηi, 1 ≤ i ≤ n,
whereXi,1, Xi,2 ∈ Rd are drawn i.i.d. from the spherical normal distribution. The coefficient vector
w∗ is shared across the two problems, which holds true in the pooled model studied in Section 2.
Later in Section 3, we also consider the SUR model that allows for different coefficient vectors
across problems. More importantly, notice that the i.i.d. noise, ηi (say, it is standard Gaussian) is
shared across the two problems. If we estimate w∗ using OLS:

wOLS = arg min
w

1

n

n∑
i=1

(yi,1 −X>i,1w)2 +
1

n

n∑
i=1

(yi,1 −X>i,2w)2

then we will have ‖wOLS − w∗‖2 = Ω(1/
√
n). However, subtracting the two equations gives:

yi,1 − yi,2 = (Xi,1 −Xi,2)>w∗, 1 ≤ i ≤ n. That is, as soon as we have n ≥ d samples, we will
recover w∗ exactly by solving the above system of linear equations!

Our toy example motivates the fundamental question that this paper answers: how much can we
improve OLS by exploiting noise correlations? Let us make the example more realistic by assuming
the model: yi = Xiw∗ + ηi, 1 ≤ i ≤ n, where yi ∈ Rm is a vector of m responses, each element
of Xi ∈ Rm×d is sampled i.i.d. from the standard Gaussian and noise vector ηi is drawn from
N (0,Σ∗). A corollary of the main result in Section 2 shows that MLE (see (3)) improves upon the
OLS parameter error bound by a factor of ErrorOLS/ErrorMLE = tr(Σ∗) tr(Σ−1

∗ )/m2. This factor
can easily be seen to be larger than 1 by using Cauchy-Schwarz inequality: tr(Σ∗) tr(Σ−1

∗ )/m2 =
(
∑
j λj)(

∑
j 1/λj)/m

2 ≥ (
∑
j

√
λj · 1/

√
λj)

2/m2 = 1, where λj be the j-th largest eigenvalue
of Σ∗. The inequality is tight when

√
λj = c/

√
λj for some constant c. That is, when Σ∗ = cI

which holds true iff the noise in each response is mutually independent and has same variance.
The more Σ∗ departs from being c · I , the larger the improvement factor. For example, consider
m = 2 case again, but rather than ηi,1 = ηi,2, we have highly correlated [ηi,1, ηi,2] with covariance

matrix Σ∗ =

[
1 1− ε

1− ε 1

]
. So, Σ−1

∗ = 1
2ε−ε2

[
1 −1 + ε

−1 + ε 1

]
. The improvement factor becomes
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tr(Σ∗) tr(Σ−1
∗ )/m2 = 1/(2ε− ε2) which blows up to∞ as ε→ 0. As mentioned earlier, we show

a similar improvement for the output of a computationally efficient AltMin procedure.

Related Works. Vector-output regression problems are also studied in the context of multi-task
learning. Following the terminology introduced by [9], we can classify this literature as exploit-
ing task structure (shared structure in the regression coefficients) or output structure (correlation in
noise across tasks) or both. The large body of work [10, 11, 12] on structured sparsity regularization
and on using (reproducing) kernels for multi-task learning [13, 14], falls mostly into the former cat-
egory. In this body of work, problem formulations are often convex and efficient learning algorithms
with finite sample guarantees can be derived. Our focus in this paper, however, is on methods that
exploit noise correlation. Rai et al. [9] summarize the relevant multitask literature on exploiting
output structure and provide novel results by exploiting both task and output structure simultane-
ously. Neither they, nor the work they cite, provide any finite sample guarantees for the iterative
procedures employed. The same comment applies to work in high-dimensional settings on learning
structured sparsity as well as output structure via joint regularization of regression coefficients and
noise covariance matrix [15, 16, 17]. We hope that techniques developed in this paper pave the way
for studying such joint regularization problems involving non-convex objectives.

Recent results have shown that alternating minimization leads to exact parameter recovery in certain
observation models such as matrix completion [18], and dictionary learning [19]. However, most
of the existing results are concerned with exact parameter estimation and their techniques do not
apply to our problems. In contrast, we provide better statistical rates by exploiting the hidden noise
covariance matrix. To the best of our knowledge, ours is first such result for AltMin in the statistical
setting where AltMin leads to dramatic improvement in the error rates.

Notations. Vectors are in general represented using bold-face letters, e.g. w. Matrices are repre-
sented by capital letters, e.g. W . For data matrix X ∈ Rm×d, Xj ∈ R1×d represents the j-th row
of X. Throughout the paper, ΣX = EX [XTX] is the covariance of the data matrix and Σ∗ denotes
the covariance of the noise matrix. λj(Σ) denotes the j-largest eigenvalue of Σ ∈ Rm×m. That is,
λmax(Σ) = λ1(Σ) ≥ λ2(Σ) · · · ≥ λm(Σ) = λmin(Σ) are the eigenvalues of Σ. Universal constants
denoted by “C” can take different values in different steps. ‖A‖2 = maxu,‖u‖2=1 ‖Au‖2 denotes
the spectral norm of A, while ‖A‖F denotes the Frobenius norm of A. Following Matlab notation,
diag(A) represents the vector of diagonal entries of A.

2 The Pooled Model

We first consider a pooled model where a single coefficient vector is used across all data points
and tasks (hence the name “pooled” [7]). It may seem that the model is very restrictive compared
to the MR and SUR models. However, as we show later, by vectorizing the coefficient matrices,
both MR and SUR models can be thought of as special cases of the pooled model. Moreover, the
pooled model is in itself interesting for several applications, such as query-document rankings. For
example, the ranking method of [20] is equivalent to OLS estimation under the pooled model.
Let D = {(X1,y1), . . . , (Xn,yn)} where the i-th data point Xi ∈ Rm×d, and its output yi ∈ Rm.
m denotes the number of “tasks” and d is the “data” dimensionality. Given D, the goal is to learn
weights w ∈ Rd s.t. Xw ≈ y for a novel data point X and the target output y. We assume that the
data is generated according to the following model:

yi = Xiw∗ + ηi, 1 ≤ i ≤ n, (1)

where w∗ ∈ Rd is the optimal parameter vector we wish to learn, data pointsXi
i.i.d.∼ PX , 1 ≤ i ≤ n

and the noise vectors ηi
i.i.d.∼ N (0,Σ∗) are sampled independent of Xi’s.

A straightforward approach to estimating w∗ is to ignore correlation in the noise vector ηi and treat
the problem as a large regression problem with m ·n examples. That is, perform the Ordinary Least
Squares (OLS) procedure:

wOLS = arg min
w

1

n

n∑
i=1

‖yi −Xiw‖22. (2)

It is easy to see that the above solution is “consistent”. That is, for n→∞, we haveEX∼PX
[‖Xw−

Xw∗‖22] → 0. However, intuitively, by using the noise correlations, one should be able to obtain
significantly more accurate solution for finite n.
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Algorithm 1 AltMin-Pooled: Alternating Minimization for the Pooled Model
Require: D = {(X1,y1) . . . (X2nT ,y2nT )}, Number of iterations: T

1: Randomly partition D = {DΣ
0 ,Dw

0 ,DΣ
1 ,Dw

1 , . . . ,DΣ
T ,Dw

T }, where |Dw
t | = |DΣ

t | = n, ∀t
2: Initialize w0 = 0
3: for t = 0, . . . , T − 1 do
4: Covariance Estimation: Σ̂t = 1

n

∑
i∈DΣ

t
(yi −Xiwt)(yi −Xiwt)

T

5: Least-squares Solution: wt+1 = arg minw
1
n

∑
i∈Dw

t
‖Σ̂−

1
2

t (yi −Xiw)‖22
6: end for
7: Output: wT

Ideally, if Σ∗ was known, we would like to estimate w∗ by decorrelating the noise1. That is,

wMLE = arg min
w

1

n

n∑
i=1

‖Σ−
1
2
∗ (yi −Xiw)‖22. (3)

However, Σ∗ is not known apriori and in general can only be estimated if w∗ is known. To avoid
this circular requirement, we can jointly estimate (w∗,Σ∗) by maximizing the joint likelihood. The
joint maximum likelihood estimation (MLE) problem for (w,Σ) is given by:

(ŵ, Σ̂) = arg max
w,Σ�0

− log |Σ| − 1

n

n∑
i=1

(yi −Xiw)TΣ−1(yi −Xiw). (4)

The problem above is non-convex in (Σ,w) jointly, and hence standard convex optimization tech-
niques do not apply to the problem. A straightforward heuristic approach is to use alternating min-
imization (AltMin) where we alternately solve for ŵ (and Σ̂) while keeping Σ̂ (and ŵ) fixed. Note
that, each of the above mentioned individual problems are fairly straightforward and can be solved
efficiently (see Steps 4, 5 of Algorithm 1). Despite its simplicity and availability of optimal solutions
at each iteration, AltMin need not converge to a global optima of the joint problem. Below, we show
that despite non-convexity of (4), we can still show that the the AltMin procedure has a matching
error bound when compared to the optimal MLE solution.

Specifically, we analyze Algorithm 1 which is just the standard AltMin method but uses fresh sam-
ples (y, X) for each of the covariance estimation and the least squares step. Practical systems do
not perform such re-sampling, but fresh samples at every iteration ensure that errors do not get cor-
related in adversarial fashion and allows us to use standard concentration bounds. Moreover, since
we show convergence at a geometric rate, the number of iterations is not large and hence the sample
complexity does not increase by a significant factor.

To prove our convergence results, we require the probability distribution PX to be a sub-Gaussian
distribution with the sub-Gaussian norm (‖X‖ψ2 ) defined as:

Definition 1. Let X ∈ Rm×d be a random variable (R.V.) with distribution PX . Then, the sub-
Gaussian norm of X is given by:

‖X‖ψ2 = max
u,‖u‖2=1
v,‖v‖2=1

‖vTΣ
− 1

2

XuX
Tu‖ψ2 , where, ΣXu = EX∼PX

[XTuuTX].

Sub-Gaussian norm of a univariate variable Q is defined as: ‖Q‖ψ2
= maxp≥1

1√
p · E[|Q|p]

1
p . If

ΣXu is not invertible for any fixed u then, we define ‖X‖ψ2
=∞

We pre-multiplyXTu by Σ
− 1

2

Xu for normalization, so that for GaussianX , ‖X‖ψ2
= 1. For bounded

variables X , s.t., each entry |Xij | ≤M , we have: ‖X‖ψ2 ≤M
√
md ·maxu,‖u‖2=1 ‖Σ−1

Xu‖2.

Theorem 2 (Result for Pooled Model). Let Xi
i.i.d.∼ PX , 1 ≤ i ≤ n with sub-Gaussian norm

‖Xi‖ψ2
< ∞ and ηi

i.i.d.∼ N (0,Σ∗) are independent of Xi’s. Let w∗ ∈ Rd be a fixed vector and

1For simplicity of exposition, throughout the remaining paper, we assume that Σ∗ is invertible. Non-
invertible Σ∗ can be handled using simple limit arguments and in fact, our results get significantly better if
Σ∗ is not invertible
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n ≥ C · (m+ d)‖X‖ψ2
. Then, the output wT of Algorithm 1 satisfies (w.p. ≥ 1− T

n10 ):

EX∼PX

[
‖X(wT −w∗)‖22

]
≤ Cd log n

n
· 1

λ∗min

+
λ∗max

λ∗min

2−T ,

where λ∗min = λmin(ΣX∗), λ∗max = λmax(ΣX∗), and ΣX∗ = EX∼PX
[Σ
− 1

2

X XTΣ−1
∗ XΣ

− 1
2

X ]. Also,
ΣX = EX∼PX

[XTX] is the covariance of the regressors.

Remarks: Using Theorem 15, we also have the following bound for the OLS solution:

EX∼PX

[
‖X(wOLS −w∗)‖22

]
≤ C · d log n

n
· ‖Σ∗‖2.

The above bound for OLS can be shown to be tight as well (up to log n factor) by selecting each
Xi = umax; umax is the eigenvector of Σ∗ corresponding to λmax(Σ∗). Now, it is easy to see that:

1
λ∗

min
≤ ‖Σ∗‖2 (see Claim 17). Hence, our bound for AltMin (as well as MLE) is tighter than that

of OLS. Sub-sections 2.1 and 2.2 demonstrates gains over OLS in several standard settings.

Our proof of the above theorem critically uses the following lemma which shows that a particular
potential function drops (up to MLE error) geometrically at each step of the AltMin procedure.
Lemma 3. Assume the notation of Theorem 2. Let wt+1 be the (t + 1)-th iterate of Algorithm 1.
Then, the following holds w.p. ≥ 1− 1/n10:

EX∼PX

[
‖Σ−

1
2
∗ X(wt+1 −w∗)‖22

]
≤ 2C · d log n

n
+

1

2
· EX∼PX

[
‖Σ−

1
2
∗ X(wt −w∗)‖22

]
.

See Appendix C for detailed proofs of both of the results given above.

2.1 Gaussian X: Independent Rows

We first consider a special case where each row of X is sampled i.i.d. from a Gaussian distribution.
That is,

Xj
i
i.i.d.∼ N (0,Λ), ∀1 ≤ i ≤ n, 1 ≤ j ≤ m,

where Λ � 0 ∈ Rd×d is a covariance matrix and ΣX = EX∼PX
[XTX] = m · Λ. Let Σ∗ =∑m

j=1 λi(Σ∗)uiu
T
i be the eigenvalue decomposition of Σ∗. Then,

ΣX∗ = EX∼PX
[Σ
− 1

2

X XTΣ−1
∗ XΣ

− 1
2

X ] =
∑
j

EX∼PX
[Σ
− 1

2

X XTuiu
T
i XΣ

− 1
2

X ]

λi(Σ∗)
=

tr(Σ−1
∗ )

m
Id×d.

We now combine the above given observation with Theorem 2 to obtain our error bound for AltMin
procedure. Using a slightly stronger version of Theorem 15, we can also obtain the error bound for
the OLS (Ordinary Least Squares) solution as well the MLE solution.
Corollary 4 (Result for Pooled Model, Gaussian Data, Independent Rows). Let Xi be sampled s.t.
each row Xj

i ∼ N (0,Λ) and Λ � 0. Also, let yi = Xiw∗+ηi, where ηi ∼ N (0,Σ∗), Σ∗ � 0. Let
n ≥ C(m+ d) log(m+ d). Then, the OLS solution (2) and the MLE solution (3) has the following
error bounds (w.p. ≥ 1− 1/n10):

EX [‖X(wOLS −w∗)‖22] ≤ Cd log n

n
· tr(Σ∗)

m
, EX [‖X(wMLE −w∗)‖22] ≤ Cd log n

n
· m

tr(Σ−1
∗ )

.

Moreover, the output wT (T = log 1
ε ) of Algorithm 1 satisfies (w.p. ≥ 1− T/n10):

ErrorT = EX∼PX
[‖X(wT −w∗)‖22] ≤ 8Cd log n

n
· m

tr(Σ−1
∗ )

+ ε.

Lower Bound for OLS and MLE: We now show that the error bounds for both the OLS as well as
the MLE solution stated above are in fact tight up to log-factors.
Lemma 5. Let the assumptions of Corollary 4 hold. Then, we have (w.p. ≥ 1− 1/n10− exp(−d)):

EX [‖X(wOLS −w∗)‖22] ≥ Cd

n
· tr(Σ∗)

m
, EX [‖X(wMLE −w∗)‖22] ≥ Cd

n
· m

tr(Σ−1
∗ )

,

where C > 0 is a universal constant.
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Remarks: As mentioned in the introduction, m
tr(Σ−1

∗ )
≤ tr(Σ∗)

m and the gap becomes larger as Σ∗

moves away from c · I . Hence, in the light of the above two lower-bound and upper-bound results,
it is clear that AltMin (and MLE) solutions are significantly more accurate than OLS, especially for
highly correlated noise vectors. This claim is also bore out from our simulation results (Figure 4).

2.2 Gaussian X: Dependent Rows

We now generalize the above given special case by removing the row-wise independence assump-
tion. That is, X = Σ

1
2

RZΛ
1
2 , where Zij

i.i.d.∼ N (0, 1) ∀ i, j and ΣR ∈ Rm×m, Λ ∈ Rd×d are the
row and the column correlation matrices, respectively. It is easy to see that (see Claim 18),

ΣX∗ = EX∼PX
[Σ
− 1

2

X XTΣ−1
∗ XΣ

− 1
2

X ] =
tr(ΣRΣ−1

∗ )

tr(ΣR)
· Id×d, where ΣX = tr(ΣR) · Λ.

Using Theorem 2 with Theorem 15 and (32) (with certain A, B) we obtain the following corollary.
Corollary 6 (Result for Pooled Model, Gaussian Data, Dependent Rows). Let Xi be as defined
above. Let n ≥ C(m+ d) log(m+ d). Then the followings holds (w.p. ≥ 1− T/n10):

EX∼PX
[‖X(wT −w∗)‖22] ≤ 8Cd log n

n
· m

tr(ΣRΣ−1
∗ )

+ ε,

where wT is the output of Algorithm 1 with T = log 1
ε .

Similarly, bound for OLS is given by: EX∼PX
[‖X(wOLS −w∗)‖22] ≤ Cd logn

n · m·tr(ΣRΣ∗)
tr(ΣR)2 . Here

again, it is easy to see that the output of AltMin is significantly more accurate than the OLS solution.
ΣR also plays a critical role here. In fact, if ΣR is nearly orthogonal to Σ−1

∗ , then the gain over OLS
is negligible. To understand this better, consider the following 2-task example:

y1
i = 〈xi,w∗〉+ ηi, y

2
i = 〈xi,w∗〉+ ηi.

Note that the noise ηi is perfectly correlated here. However, as rows Xj
i = xi are also completely

correlated. So, the two equations are just duplicates of each other and hence, AltMin cannot obtain
any gains over OLS (as predicted by our bounds as well).

3 Seemingly Unrelated Regression

Seemingly-unrelated regression (SUR) model [21, 22] is a generalization of the basic linear re-
gression model to handle vector valued outputs and has applications in several domains including
multi-task learning, economics, genomics etc. Below we present the SUR model and our main result
for estimating the coefficients in such a model.

Let Xi ∈ Rm×d, 1 ≤ i ≤ n be sampled i.i.d. from a fixed distribution PX . Let W∗ ∈ Rm×d be a
fixed matrix of coefficients. The vector-valued output for each data point Xi is given by:

yi = Xi •W∗ + ηi, (5)

where Xi •W∗ = diag(XiW
T
∗ ) and ηi ∼ N (0,Σ∗) is the noise vector with covariance Σ∗.

OLS and MLE solution can be defined similar to the Pooled model:

WOLS = arg min
W

1

n

n∑
i=1

‖yi −Xi •W‖22, WMLE = arg min
W

1

n

n∑
i=1

∥∥∥Σ
− 1

2
∗ (yi −Xi •W )

∥∥∥2

2
.

(6)
Here again, we expect MLE to provide significantly better estimation of W∗ by exploiting noise
correlation. As Σ∗ is not available apriori, both Σ∗ and W∗ are estimated by solving the following
MLE problem:

(Ŵ , Σ̂) = arg max
W,Σ
− log |Σ| − 1

n

n∑
i=1

∥∥∥Σ−
1
2 (yi −Xi •W )

∥∥∥2

2
(7)

Here again, the MLE problem is non-convex and hence standard analysis does not provide strong
convergence guarantees. Still, alternating minimization (of negative log-likelihood) for Ŵ , Σ̂ leads
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Algorithm 2 AltMin-SUR: Alternating Minimization for SUR
Require: D = {(X1,y1) . . . (X2nT ,y2nT )}, Number of iterations: T

1: Randomly partition D = {DΣ
0 ,DW0 ,DΣ

1 ,DW1 , . . . ,DΣ
T ,DWT }, where |Dw

t | = |DΣ
t | = n, ∀t

2: Initialize W0 = 0
3: for t = 0, . . . , T − 1 do
4: Covariance Estimation: Σ̂t = 1

n

∑
i∈DΣ

t
(yi −Xi •W )(yi −Xi •W )T

5: Least-squares Solution: Wt+1 = arg minW
1
n

∑
i∈DW

t
‖Σ̂−

1
2

t (yi −Xi •W )‖22
6: end for
7: Output: WT

to accurate answers in practice. Below, we analyze the AltMin procedure (see Algorithm 2) and
show that the finite sample error bound of AltMin matches (up to logarithmic factors) the error rate
of the MLE solution. Similar to the previous section, we modify the standard AltMin procedure to
include fresh samples at each step of the algorithm.

Theorem 7 (Result for SUR Model). LetXi
i.i.d.∼ PX , 1 ≤ i ≤ n, where ‖X‖ψ2

is the sub-Gaussian
norm of each Xi. Let ηi ∼ N (0,Σ∗), Σ∗ � 0, and W∗ ∈ Rm×d be a fixed coefficients matrix. Let
WT be the T -th iterate of Algorithm 2. Also, let n ≥ C · md‖X‖ψ2

, where C > 0 is a global
constant. Then, the following holds (w.p. ≥ 1− T/n10):

EX∼PX

[
‖Σ−

1
2
∗ (X •WT −X •W∗)‖22

]
≤ 4C2d log(n)

n
·m+ ‖Σ∗‖22 · 2−T .

Moreover, if PX is such that each row Xp is sampled independently and has zero mean, i.e.,
Xp ⊥ Xq,∀p, q and EX∼PX

[X] = 0, then the following holds (w.p. ≥ 1− T/n10):
m∑
j=1

(Σ−1
∗ )jjEXj∼Pj

X

[〈
Xj ,W j

T −W
j
∗

〉2
]
≤ 4C2d log(n)

n
·m+ ‖Σ∗‖22 · 2−T .

Remarks: It is easy to obtain error bounds for OLS in this case as it solves each equation indepen-
dently. In particular, standard single-output linear regression analysis [23] gives:

EX [
∑
j

1

(Σ∗)jj
〈W j

OLS −W
j
∗ , X

j〉2] ≤ Cd

n
·m. (8)

The weight for each individual error term
〈
W j
T −W

j
∗ , X

j
〉2

in the AltMin error bound is (Σ−1
∗ )jj

while it is 1
(Σ∗)jj

for OLS. Using Claim 20, (Σ−1
∗ )jj ≥ 1

(Σ∗)jj
. Hence, the error terms of AltMin

should be significantly smaller than that of OLS. Similar to Section 1, we now provide an illustrative
example to demonstrate prediction accuracy of AltMin (and MLE) solution vs. OLS solution.

Illustrative Example: Consider a two-valued output SUR problem, where X1 ∼ N (0, Id×d) and
X2 ∼ N (0, Id×d) are sampled independently and the noise covariance by:

Σ∗ =

[
1 1− ε

1− ε 1

]
,Σ−1
∗ =

1

2ε

[
1 −(1− ε)

−(1− ε) 1

]
,

where 0 < ε < 1.We sample n ≥ 2d points from this model. That is, yi = Xi•W∗+ηi, 1 ≤ i ≤ n.
Hence, the estimation error of AltMin and OLS are given by:

‖WT −W∗‖2F ≤
4Cd log n

n
· ε, ‖WOLS −W∗‖2F ≤

2Cd

n
.

Clearly, the error of AltMin decreases to 0 as ε→ 0 (and n ≥ Cd log d), i.e., as noise is getting more
correlated. In contrast, the error bound of OLS is independent of ε and remains a large constant even
for ε = 0 and n = O(d).

Multivariate Regression Model: We now briefly discuss the popular Multivariate Regression (MR)
model (arises in many applications including multitask learning with shared regressors), where each
output yi ∈ Rm is modeled as:

yi = W∗xi + ηi, (9)
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Figure 1: (a), (b), (c): Pooled Model. Estimation error ‖w −w∗‖2 for different algorithms (MLE,
OLS, AltMin) with varying noise dependencies (ε), m, n, (d): SUR Model. Comparison of estima-
tion error ‖W −W∗‖2 with increasing ε. Low ε implies badly conditioned noise covariance, i.e.,
tr(Σ∗) tr(Σ−1

∗ )� m2. In (a), (b), MLE and AltMin have almost overlapping error curves.

where xi ∈ Rd are all sampled i.i.d. from a fixed distribution and ηi ∼ N (0,Σ∗) is the noise
vector. W∗ ∈ Rm×d is the coefficients matrix. Model (9) can be easily re-written as a SUR problem
(5) where each row of Xi is given by xTi . That is, Xi = [xi | xi | . . . | xi]T . However, for
the MR model, it is well known that the optimal solution to MLE problem is same as the OLS
solution [6, Chapter 7]. Naturally, our AltMin/MLE error bounds also do not provide an advantage
over OLS bounds. For general W∗ in the MR model, the MLE solution is independent of Σ∗.
But, by imposing certain special structures on W∗, MLE indeed leads to significantly more accurate
solution. For example, the Pooled and the SUR model can be posed as special cases of the MR
model but with specially structured W∗. Similarly, other structures like reduced rank regression
[24, 25] also allows exploitation of the noise correlation. We leave further investigation of other
type of structural assumptions on W∗ as a topic of future research.

4 Experiments
In this section, we present results from simulations which were conducted with the following two-
fold objective: a) demonstrate that both MLE and AltMin estimators indeed perform significantly
better than the Ordinary Least Squares (OLS) estimator when the noise vector has significant depen-
dencies, b) study scaling behavior of the three estimators (OLS, MLE, AltMin) w.r.t. m,n.

Solving MLE for the Pooled as well as SUR model is difficult in general. So, we we set Σ = Σ∗ in
the MLE optimization ((4) for Pooled, (7) for SUR), where Σ∗ is the true noise covariance matrix. In
this case, the estimator reduces to a least squares problem. We implemented all the three estimators
in Matlab and provide results averaged over 20 runs. We run AltMin for at most 50 iterations.

Pooled Model: For the first set of experiments, we generated the data (Xi,yi) using the Pooled
Model (Section 2). We generated Xi’s from spherical multi-variate Gaussian and selected w∗ to be

a random vector. In the first sub-experiment, we considered m = 2 and set Σ∗ =

[
1 1− ε

1− ε 1

]
.

Using Theorem 2, AltMin as well as MLE estimator should have error ‖w −w∗‖22 ≤ Cd
n · (ε− ε

2)

while for OLS it is ‖w −w∗‖22 ≤ Cd
n . Figure 4 (a) shows that our simulations also exhibit exactly

the same trend as predicted by our error bounds. Moreover, errors of both MLE and AltMin are
exactly the same, indicating that AltMin indeed converged to the MLE estimate.

Next, we set Σ∗ as:

Σ∗ =

[
1 1− ε 0

1− ε 1 0
0 0 Im−2×m−2

]
, (10)

with ε = 0.005 and measure recovery error (‖w − w∗‖2) while varying m and n. Note that for
AltMin and MLE, the error bound for such Σ∗ is ‖w − w∗‖22 ≤ Cd

n ·
(ε−ε2)

(m−2)(ε−ε2)+1 and hence
AltMin and MLE’s error does not change significantly with increasing m. But for OLS the error
goes down with m as ‖w − w∗‖22 ≤ Cd

n ·
1
m which can be observed in the Figure 4(b) as well.

Finally, Figure 4(c) clearly indicates that ‖w − w∗‖ = O( 1√
n

) for all the three methods, hence
matching our theoretical bounds.

SUR Model: Here we generated data (Xi,yi) using the SUR model (Section 3) but withXi sampled
from spherical Gaussians. W∗ was selected to be a random Gaussian matrix. Σ∗ is given by (10).
As illustrated in Section 3, the error of MLE/AltMin is at most O(ε) while the error of OLS is
independent of ε. Figure 4 (d) clearly demonstrates the above mentioned error trends.
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A High-dimensional Setting

We now study the vector-output regression problems in the high-dimensional setting, where d� n
but the parameter vector is required to be s-sparse with s � d. Our goal is to provide an algorithm
with error bounds that are at most logarithmic in d and are linear in s. Here, we provide our result
for a special case of the Pooled model, where data is sampled from a Gaussian distribution. Our
analysis can be easily extended to the SUR model as well.

Let Xi = Σ
1
2

RZiΛ
1
2 where each entry of Zi is sampled i.i.d. from the univariate normal distribution

and ΣR � 0, Λ � 0. Let w∗ ∈ Rd be such that w∗ is s-sparse, i.e., ‖w∗‖0 ≤ s. The outputs are
given by, yi = Xiw∗ + ηi, ηi ∼ N (0,Σ∗), where Σ∗ � 0.

For the above setting, we analyze Algorithm 1, but where Least Squares Estimation step (Step 5) is
replaced by sparsity constrained optimization:

ŵ = arg min
‖w‖0≤s

f(w) = arg min
‖w‖0≤s

1

n

∑
i∈Dw

t

‖Σ̂−
1
2

t (yi −Xiw)‖22 (11)

Note that the above problem is in general NP-hard to solve due to the sparsity constraint. But,
we can use the Iterative Hard Thresholding (IHT) method [26] to solve (11), if f(w) satisfies the
restricted strong smoothness (RSS) and the restricted strong convexity (RSC) properties (defined
in (12)). Below, we re-state the IHT convergence result by by [26].
Theorem 8 (Theorem 1 of [26]). Let f have RSC and RSS parameters given by L3s̃ = L and
α3s̃ = α respectively. Let IHT algorithm (Algorithm 1, [26]) be invoked with f , s̃ = κ2 · s. Then,
the τ -th iterate of IHT (wt+1), for τ = O(Lα · log ‖Σ∗‖2

ε ) satisfies: f(wt+1) ≤ f(ŵ) + ε, where ŵ
is any global optimum of (11).

As the algorithm has only logarithmic dependence on ε, we can set ε to be arbitrary small (say
.001f(ŵ)). For simplicity, we ignore ε for now. Note that the proof of Lemma 3 only requires that
the least squares step satisfies: f(wt+1) ≤ f(w∗). Moreover, columns of X corresponding to the
index set St+1 = supp(wt)∪ supp(wt+1)∪ supp(w∗) are used by Σ̂t and the least squares solution.
So, Lemma 3 applies directly but with d = |St+1| ≤ 3s̃2.

Hence, we obtain the following error bound for the T -th iterate of Algorithm 1:

EX∼PX
[‖X(wT −w∗)‖22] ≤ 8Cs̃ log d

n
· m

tr(ΣRΣ−1
∗ )

+ 2−T ,

Recall that s̃ =
(
L
α

)2 · s, where L, α are the RSS and the RSC constants of f . Hence, we now only
need to provide RSS/RSC constants for the above given f .
Lemma 9 (RSC/RSS). Let Xi be as given above. Also, let n ≥ Cŝ log d. Then the following holds
for all fixed A (w.p. ≥ 1− exp(−n)):

0.5 · λmin(Λ) tr(ATAΣR)‖v‖22 ≤
1

n

n∑
i=1

vTXT
i A

TAXiv ≤ 2 tr(ATAΣR) · λmax(Λ)‖v‖22,

where v ∈ Rd is any ŝ-sparse vector.

The above lemma shows that for any ŝ-sparse w,w′, we have:

α2ŝ

2
‖w−w′‖22+〈∇f,w −w′〉+f(w′) ≤ f(w) ≤ f(w′)+〈∇f,w −w′〉+L2ŝ

2
‖w−w′‖22, (12)

where L = L2ŝ = 2λmax(Λ) is the RSS constant of f and α = α2ŝ = λmin(Λ)
2 is the RSC constant.

That is the error bound for AltMin procedure is given by:

EX∼PX
[‖X(wT −w∗)‖22] ≤ 8Cs log d

n
·
(
λmax(Λ)

λmin(Λ)

)2

· m

tr(ΣRΣ−1
∗ )

+ 2−T . (13)

2For simplicity, we ignore a technicality regarding assuming that St+1 is a fixed set. The assumption can
be easily removed by taking a union bound over all sets of size 3s̃.
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Note that the above bound is linear in s but has a condition number (of Λ) dependence. The condition
number factor appears in the analysis of the standard linear regression as well [26], and is in general
unavoidable for computationally efficient algorithms [27].

Proof of Lemma 9. Consider a “fixed” support set S s.t. |S| = ŝ. Also, let Σ
1/2
R ATAΣ

1/2
R =∑

j λ̂juju
T
j be the eigenvalue decomposition of ATA. Then, w.p. ≥ 1 − exp(−n), the following

holds for all v ∈ Rd s.t. ‖v‖0 ≤ ŝ and supp(v) ⊆ S:

vT
n∑
i=1

XiA
TAXiv =

m∑
j=1

λ̂jv
T
S

(
n∑
i=1

(XT
i )Suju

T
j (Xi)S

)
vS ,

=

m∑
j=1

λ̂jv
T
SΛ

1
2

SS

(
n∑
i=1

Λ
− 1

2

SS (Xi)
T
Suju

T
j (Xi)SΛ

− 1
2

SS

)
Λ

1
2

SSvS ,

ζ1
≥ n

2

m∑
j=1

λ̂jv
T
SΛSSvS =

n

2
tr(ATAΣR)vTΛv, (14)

where ζ1 follows by Lemma 10, (Xi)S denotes the submatrix of Xi corresponding to index set S.
Similarly, vS and ΛSS can be defined to be sub-vector and sub-matrix of v and Λ, respectively.
The lower bound of the theorem follows by taking a union bound on all O(dŝ) sets S and setting
n ≥ Cŝ log d.

The upper bound on vT
(

1
n

∑n
i=1X

T
i A

TAXi

)
v also follows similarly.

B Technical Lemmas

Lemma 10. Let zi
i.i.d.∼ Pz, 1 ≤ i ≤ n, where Pz is such that Ez∼Pz [zzT ] = Id×d and the

sub-Gaussian norm of z is given by ‖z‖ψ2 . Let n ≥ Cd · ‖z‖ψ2 . Then, the following holds w.p.
≥ 1− exp(−C · n): ∥∥∥∥∥ 1

n

n∑
i=1

ziz
T
i − Id×d

∥∥∥∥∥
2

≤ 1

10
.

Proof. Lemma follows directly by Corollary 5.50 of [28].

Lemma 11 (Corollary 5.35 of [28]). Let M ∈ Rm×n be s.t. Mij
i.i.d.∼ N (0, 1), ∀i, j. Also, let

n ≥ 4m, then the following holds w.p. ≥ 1− exp(−C · n):

1

2

√
n ≤ σm(M) ≤ σ1(M) ≤ 2

√
n,

where σi(M) is the i-th singular value of M .
Lemma 12. Let g = Aη, where η ∼ N (0, In×n) ∈ Rn and A ∈ Rm×n is a fixed matrix indepen-
dent of η. Also, let n ≥ Cm. Then, w.p. ≥ 1− 1/n10, we have:

‖g‖22 ≤ C‖A‖2F log(n).

Proof. First consider the j-th coordinate of gj = eTj Aη. As η is a Gaussian vector and A is a fixed
matrix, gj ∼ ‖eTj A‖2 · N (0, 1). Hence, w.p. 1 − 1/n11, gj ≤ C‖eTj A‖2

√
log n. Lemma now

follows by combining the above observation with ‖g‖22 =
∑
j(e

T
j Aη)2 and the union bound.

Lemma 13. Let g =
∑
iAiηi, where Ai ∈ Rd×m, ηi

i.i.d.∼ N (0, Im×m) ∈ Rm. Also, let n ≥ Cm.
Then, w.p. ≥ 1− 1/n10, we have:

‖g‖22 ≤ C

(
n∑
i=1

‖Ai‖2F

)
log n.
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Proof. Lemma now follows by applying Lemma 12 to g = Aη whereA = [A1 . . . An] ∈ Rd×mn,
η = [ηT1 . . . ηTn ]T .

Lemma 14. Let Xi ∼ PX , 1 ≤ i ≤ n be sub-Gaussian random variables. Also, let n ≥
Cd‖X‖ψ2 log d, where ‖X‖ψ2 is the sub-Gaussian norm of each Xi (see Definition 1). Let A
be any fixed matrix. Then, w.p. ≥ 1−m exp(−C · n), the following holds for all v ∈ Rd:

1

2
vT
(
EX∼PX

[
XTATAX

])
v ≤ vT

(
1

n

n∑
i=1

XT
i A

TAXi

)
v ≤ 2vT

(
EX∼PX

[
XTATAX

])
v.

Proof. Let ATA =
∑
j λj(A

TA)uju
T
j be the eigenvalue decomposition of ATA. Then, ∀v ∈ Rd:

vT
n∑
i=1

XiA
TAXiv =

m∑
j=1

λj(A
TA)vT

(
n∑
i=1

XT
i uju

T
j Xi

)
v

=

m∑
j=1

λj(A
TA)vTΣ

1
2

Xuj

(
n∑
i=1

Σ
− 1

2

Xuj
XT
i uju

T
j XiΣ

− 1
2

Xuj

)
Σ

1
2

Xuj
v, (15)

where ΣXuj
= EX∼PX

[XTuju
T
j X]. Let zij = Σ

− 1
2

Xuj
XT
i uj . Then, by definition of ΣXuj

, we
have:

E[zijz
T
ij ] = Id×d.

Moreover, ‖zij‖ψ2
≤ ‖X‖ψ2

by definition (see Definition 1). Hence, using Lemma 10 and the
union bound for m uj’s (recall that A and hence uj’s are fixed), w.p. ≥ 1 − m exp(−Cn) the
following holds for all v ∈ Rd:

vT
n∑
i=1

XiA
TAXiv ≥

n

2

m∑
j=1

λj(A
TA)vTΣXuj

v =
n

2

m∑
j=1

λj(A
TA)vTEX∼PX

[Xuju
T
j X]v,

=
n

2
vT
(
EX∼PX

[XTATAX]
)
v. (16)

The upper bound on vT
(

1
n

∑n
i=1X

T
i A

TAXi

)
v also follows similarly.

C Proofs of Claims from Section 2

We first provide analysis for a general estimator that decorrelates noise using certain fixed A,B
matrices. Our bounds for OLS, MLE follow directly using the below given general theorem.

Theorem 15. Let Xi
i.i.d.∼ PX , 1 ≤ i ≤ n where PX is a sub-Gaussian distribution with sub-

Gaussian norm ‖X‖ψ2
< ∞ (see Definition 1). Also, let ηi ∼ N (0, Im×m). Let w∗ ∈ Rd be a

fixed weight vector and A,B be fixed matrices. Let,

ŵ = arg min
w

1

n

n∑
i=1

‖AXi(w −w∗)−Bηi‖22. (17)

Also, let n ≥ C ·(m+d) log(m+d) ·‖X‖ψ2 , where C > 0 is a global constant. Then, the following
holds (w.p. ≥ 1− 1/n10):

EX∼PX

[
‖AX(ŵ −w∗)‖22

]
≤ C2d log(n)

n
· ‖B‖22.
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Proof. As ŵ is the optimal solution to (17), we have:
n∑
i=1

‖AXi(ŵ −w∗)−Bηi‖22 ≤
n∑
i=1

‖Bηi‖22,

n∑
i=1

‖AXi(ŵ −w∗)‖22 ≤ 2(ŵ −w∗)
TF

1
2F−

1
2

n∑
i=1

XT
i A

TBηi,

‖F 1
2 (ŵ −w∗)‖22

ζ1
≤ 2‖F 1

2 (ŵ −w∗)‖2‖F−
1
2

n∑
i=1

XT
i A

TBηi‖2, (18)

where F =
∑n
i=1X

T
i A

TAXi and ζ1 follows from Cauchy-Schwarz inequality. Also, using
Lemma 14, λmin(F ) ≥ 1

2λmin(EX∼PX
[XTATAX]). Using the fact that ‖X‖ψ2

<∞ (see Defini-
tion 1), we have λmin(F ) ≥ 1

2λmin(EX∼PX
[XTATAX]) > 0. Hence, F−1/2 is well-defined.

Note that g =
∑n
i=1 F

− 1
2XT

i A
TBηi. Using Lemma 13, we have (w.p. ≥ 1− 1/n10):

‖g‖22 ≤ log n ·
n∑
i=1

‖F− 1
2XT

i A
TB‖2F = log n · tr

(
n∑
i=1

XiF
−1XT

i A
TBBTA

)
,

≤ log n · ‖B‖22 tr

(
F−1

n∑
i=1

XT
i A

TAXi

)
,

= d log n · ‖B‖22, (19)

where the last equality follows from the definition of F .

Now, using Lemma 14, we have (w.p. ≥ 1−m exp(−Cn)):

(ŵ −w∗)
T

n∑
i=1

XT
i A

TAXi(ŵ −w∗) ≥
n

2
(ŵ −w∗)

T
(
EX∼PX

[XTATAX]
)

(ŵ −w∗). (20)

Theorem now follows by combining (18), (19), and (20).

We now provide proofs of both Theorem 2 as well as Lemma 3 which is the key component used by
our proof of the main theorem.

Proof of Theorem 2. Theorem follows using Lemma 3 and observing that:

EX∼PX

[
‖Σ−

1
2
∗ X(wT −w∗)‖22

]
= EX∼PX

[
‖Σ−

1
2
∗ XΣ

− 1
2

X Σ
1
2

X(wT −w∗)‖22
]

≥ λmin (ΣX∗) ‖Σ
1
2

X(wT −w∗)‖22,
= λmin (ΣX∗)EX∼PX

[
‖X(wT −w∗)‖22

]
, (21)

where the second inequality follows from the definition of ΣX∗ and the last equality follows by
using ΣX = EX∼PX

[XTX].

Proof of Lemma 3. Recall that,

Σ̂t =
1

n

∑
i∈DΣ

t

(yi −Xiwt)(yi −Xiwt)
T , Σt = ∆ + Σ∗,

where ∆ = 1
n

∑
i∈DΣ

t
Xi(w∗ − wt)(w∗ − wt)

TXT
i . Now, using Lemma 14, λmin(Σ̂t) ≥

1
2λmin(Σt) > 0 as Σ∗ � 0. So, Σ̂t is invertible.

Note that the samples of setDΣ
t are independent of wt as well asDw

t . Moreover,Dw
t is independent

of wt and hence is independent of ∆. Also,

wt+1 = arg min
w

1

n

∑
i∈Dw

t

‖Σ̂−
1
2

t Xi(w −w∗)− Σ̂
− 1

2
t ηi‖22. (22)

13



Let A = Σ̂
− 1

2
t and B = Σ̂

− 1
2

t Σ
1
2
∗ . Note that, A, B are both fixed matrices w.r.t. Dw

t as ∆ itself
is independent of Dw

t . Now, applying Theorem 15 with the above mentioend A, B, we get (w.p.
≥ 1− 1/n10):

EX∼PX

[
‖Σ̂−

1
2

t X(wt+1 −w∗)‖22
]
≤ C2d log(n)

n
· ‖Σ

1
2
∗ Σ̂−1

t Σ
1
2
∗ ‖2. (23)

Now, the following holds (w.p. ≥ 1− exp(−cn)):

‖Σ
1
2
∗ Σ̂−1

t Σ
1
2
∗ ‖2 = max

v,‖v‖2=1
vTΣ

1
2
∗ Σ̂−1

t Σ
1
2
∗ v

ζ1
≤ max

v,‖v‖2=1
2vTΣ

1
2
∗ Σ−1

t Σ
1
2
∗ v,

= 2‖(Im×m + Σ
− 1

2
∗ ∆Σ

− 1
2
∗ )−1‖2 ≤ 2, (24)

where ζ1 follows from Lemma 16 and the fact that DΣ
t is independent of wt. The last inequality

follows as ∆ is a p.s.d. matrix, so, λmin(Im×m + Σ
− 1

2
∗ ∆Σ

− 1
2
∗ ) ≥ 1.

Next, we have:

EX∼PX

[
‖Σ̂−

1
2

t X(ŵ −w∗)‖22
] ζ1
≥ 1

2
EX∼PX

[
‖Σ−

1
2

t X(ŵ −w∗)‖22
]
,

=
1

2
EX∼PX

[
‖Σ−

1
2

t Σ
1
2
∗ Σ
− 1

2
∗ X(ŵ −w∗)‖22

]
,

ζ2
=

1

2
EX∼PX

[
(ŵ −w∗)

TXTΣ
− 1

2
∗

(
Im×m + Σ

− 1
2
∗ ∆Σ

− 1
2
∗

)−1

Σ
− 1

2
∗ X(ŵ −w∗)

]
,

≥ 1

λmax

(
Im×m + Σ

− 1
2
∗ ∆Σ

− 1
2
∗

)EX∼PX

[
‖Σ−

1
2
∗ X(ŵ −w∗)‖22

]
,

(25)

where ζ1 follows from Lemma 16 and ζ2 follows from the definition of Σt, and the last equation
follows from λmin

(
(Im×m + Σ

− 1
2
∗ ∆Σ

− 1
2
∗ )−1

)
= 1

λmax

(
Im×m+Σ

− 1
2

∗ ∆Σ
− 1

2
∗

) .

Now,

λmax

(
Im×m + Σ

− 1
2
∗ ∆Σ

− 1
2
∗

)
= 1 + ‖Σ−

1
2
∗ ∆Σ

− 1
2
∗ ‖2

≤ 1 +
1

n

n∑
i=1

tr(Σ
− 1

2
∗ Xi(wt −w∗)(wt −w∗)

TXT
i Σ
− 1

2
∗ )

= 1 + (wt −w∗)
T

(
1

n

n∑
i=1

XT
i Σ−1
∗ Xi

)
(wt −w∗)

ζ1
≤ 1 + 2EX∼PX

[
‖Σ−

1
2
∗ X(wt −w∗)‖22

]
, (26)

where ζ1 follows from Lemma 14.

Using (23), (24), (25), and (26), we have:

EX∼PX

[
‖Σ−

1
2
∗ X(wt+1 −w∗)‖22

]
≤ 2C2d log(n)

n
+

4C2d log(n)

n
·EX∼PX

[
‖Σ−

1
2
∗ X(wt −w∗)‖22

]
.

Theorem now follows, as n ≥ 16Cd log d.

Proof of Lemma 5. We show the error bound for a general estimator:

ŵ = arg min
w

1

n

n∑
i=1

‖AXi(w −w∗)−Bηi‖22,

where A,B ∈ Rm×m are fixed p.s.d. matrices.
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Now, the optimal solution is given by:(
1

n

n∑
i=1

XT
i A

TAXi

)
(ŵ −w∗) =

1

n

n∑
i=1

XT
i A

TBηi,(
1

n

n∑
i=1

Λ−
1
2XT

i A
TAXiΛ

− 1
2

)
Λ

1
2 (ŵ −w∗) =

1

n

n∑
i=1

Λ−
1
2XT

i A
TBηi. (27)

Note that, Xi = ZiΛ
1
2 where Zji ∼ N (0, Id×d). Also, let ATA =

∑
j λi(A

TA)uju
T
j be the

eigenvalue decomposition of ATA. Then,

1

n

n∑
i=1

Λ−
1
2XT

i A
TAXiΛ

− 1
2 =

m∑
j=1

λj(A
TA)

(
1

n

n∑
i=1

ZTi uju
T
j Zi

)
. (28)

Also, note that ZTi uj ∼ N(0, Id×d). Hence, using the standard Gaussian concentration result (see
Lemma 11) along with the assumption that n ≥ Cd log d, we have:

λmax

(
1

n

n∑
i=1

Λ−
1
2XT

i A
TAXiΛ

− 1
2

)
≤ 2 tr(ATA). (29)

We now consider RHS of (27). Note that,

1

n

n∑
i=1

Λ−
1
2XT

i A
TBηi ∼ N (0, βId×d), (30)

where β2 = 1
n2

∑n
i=1 ‖ATBηi‖22 = 1

n2 tr(Σ
1
2
∗B

TAATBΣ
1
2
∗
∑n
i=1 η̃iη̃i

T ), where η̃i ∼
N (0, Im×m). Here again, using Lemma 11 we have (w.p. ≥ 1− 1/n10):

β2 ≥ 1

2n
tr(BTAATBΣ∗).

Hence, w.p. ≥ 1− 1/n10 − exp(−d), we have:∥∥∥∥∥ 1

n

n∑
i=1

Λ−
1
2XT

i A
T ηi

∥∥∥∥∥
2

≥
√
d

2
√
n

√
tr(BTAATBΣ∗). (31)

We obtain the following by combining (27), (29), and (31):

EX∼PX
[‖X(ŵ −w∗)‖22] ≥ d

16n
· m tr(BTAATBΣ∗)

tr(ATA)2
. (32)

Note that the “m” term on RHS appears as EX∼PX
[‖X(ŵ −w∗)‖22] = m‖Λ 1

2 (ŵ −w∗)‖22].

Lemma now follows by using A = B = Im×m for OLS and A = B = Σ
− 1

2
∗ for MLE.

Lemma 16. Let yi, Xi,ηi,w∗ be as defined in Theorem 15 and let wt ∈ Rd be any fixed vector
indpendent of (Xi,ηi). Also, let Σ̂t = 1

n

∑
(yi −Xiwt)(yi −Xiwt)

T ,Σt = ∆ + Σ∗, where,

∆ =
1

n

∑
i

Xi(w∗ −wt)(w∗ −wt)
TXT

i ,

and X ′is are independent of wt. Then, w.p. ≥ 1− exp(−C · n), the following holds ∀v ∈ Rd:
1

2
· vTΣtv ≤ vT Σ̂tv ≤ 2 · vTΣtv.

Proof. Let v ∈ Rm be any vector. Also, Σt = ∆ + Σ∗ � 0 as Σ∗ � 0. Hence,

vT Σ̂tv = vTΣ
1
2
t

(∑
i

ziz
T
i

)
Σ

1
2
t v,

where zi = Σ
− 1

2
t Xi(w∗−wt)+Σ

− 1
2

t ηi is an “uncentered” Gaussian vector and hence, ‖zi‖ψ2
≤ C

for a global constant C > 0. Also, E[ziz
T
i ] = I . Lemma now follows using standard Gaussian

concentration similar to Lemma 10.
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Claim 17. Assume the notation of Theorem 2. Then the following holds:

1

λ∗min

≤ ‖Σ∗‖2.

Proof. Let Σ∗ =
∑
j λj(Σ∗)uju

T
j be the eigenvalue decomposition of Σ∗. Then, we have:

λ∗min = min
v,‖v‖=1

vTEX∼PX
[Σ
− 1

2

X XTΣ−1
∗ XΣ

− 1
2

X ]v,

≥ min
v,‖v‖=1

∑
j

1

λj(Σ∗)
vTEX∼PX

[Σ
− 1

2

X XTuju
T
j XΣ

− 1
2

X ]v

≥ 1

‖Σ∗‖2
min

v,‖v‖=1
vTEX∼PX

[Σ
− 1

2

X XTXΣ
− 1

2

X ]v =
1

‖Σ∗‖2
.

Hence proved.

Claim 18. Assume the notation of Section 2.2. Then, the following holds:

ΣX∗ = EX∼PX
[Σ
− 1

2

X XTΣ−1
∗ XΣ

− 1
2

X ] =
tr(ΣRΣ−1

∗ )

tr(ΣR)
· Id×d, where ΣX = tr(ΣR) · Λ.

Proof.

ΣX = EX∼PX
[XTX] = Λ

1
2 · EZij∼N (0,1)[Z

TΣRZ] · Λ 1
2 = tr(ΣR) · Λ,

ΣX∗ = EX∼PX
[Σ
− 1

2

X XTΣ−1
∗ XΣ

− 1
2

X ] =
1

tr(ΣR)
EZij∼N (0,1)[Z

TΣ
1
2

RΣ−1
∗ Σ

1
2

RZ] =
tr(ΣRΣ−1

∗ )

tr(ΣR)
· Id×d.

Corollary 19 (Result for Pooled Model, Gaussian Data, Dependent Rows). Let Xi be as defined
above. Let n ≥ C(m+ d) log(m+ d). Then the followings holds (w.p. ≥ 1− T/n10):

C ′d

n
· m · tr(ΣRΣ∗)

tr(ΣR)2
≤ EX∼PX

[‖X(wOLS −w∗)‖22] ≤ Cd log n

n
· m · tr(ΣRΣ∗)

tr(ΣR)2
,

C ′d

n
· m

tr(ΣRΣ−1
∗ )
≤ EX∼PX

[‖X(wMLE −w∗)‖22] ≤ Cd log n

n
· m

tr(ΣRΣ−1
∗ )

,

EX∼PX
[‖X(wT −w∗)‖22] ≤ 8Cd log n

n
· m

tr(ΣRΣ−1
∗ )

+ ε,

where, wT is the output of Algorithm 1 with T = log 1
ε .

D Proof of Claims from Section 3

Proof of Theorem 7. Let X̃i ∈ Rm×m·d be defined as:

X̃i =


X1
i 0 · · · 0

0 X2
i · · · 0

...
...

...
...

0 0 · · · Xm
i

 . (33)

Also, let w∗ = vec(W∗) ∈ Rmd×1 and similarly, wt = vec(Wt),∀t.
Then, the observations yi can be re-written as:

yi = X̃iw∗ + ηi.

Similarly, we can rewrite the Step 4 in Algorithm 2 as:

vec(Wt+1) = wt+1 = arg min
w∈Rm·d

1

n

n∑
i=1

‖Σ̂−
1
2

t (X̃iw − yi)‖22.
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That is, the above problem is a special case of the problem discussed in Section 2. First part of the
theorem now follows using Lemma 3.

We now consider the second part of the theorem. Using the above given notation, we have:

EX
[
‖Σ−

1
2
∗ (X •WT −X •W∗)‖22

]
= EX

∑
j,k

(Σ−1
∗ )jk

〈
W j
T −W

j
∗ , X

j
〉 〈
W k
T −W k

∗ , X
k
〉 ,

ζ1
= EX

∑
j

(Σ−1
∗ )jj

〈
W j
T −W

j
∗ , X

j
〉2

 , (34)

where ζ1 follows from the fact that Xj and Xk are independent 0-mean vectors. Theorem now
follows by using the above observation with the first part of the theorem.

Claim 20. Assume hypothesis and notation of Theorem 7. Then, we have: (Σ−1
∗ )jj ≥ 1

(Σ∗)jj
∀ j.

Proof. Let Σ∗ =
∑m
k=1 λk(Σ∗)uku

T
k be the eigenvalue decomposition of Σ∗. Now,

1 =

m∑
k=1

(eTj uk)2 =

m∑
k=1

1√
λk(Σ∗)

·
√
λk(Σ∗)(e

T
j uk)2 ≤ (Σ−1

∗ )jj(Σ∗)jj ,

where the last inequality follows using Cauchy-Schwarz inequality. Hence, (Σ−1
∗ )jj ≥ 1

(Σ∗)jj
.

Moreover, equality holds only when Σ∗ is a diagonal matrix.
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