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Abstract
Matrix completion is the problem of recovering a low rank matrix by observing a small fraction of
its entries. A series of recent works (Keshavan, 2012; Jain et al., 2013; Hardt, 2014) have proposed
fast non-convex optimization based iterative algorithms to solve this problem. However, the sample
complexity in all these results is sub-optimal in its dependence on the rank, condition number and
the desired accuracy.

In this paper, we present a fast iterative algorithm that solves the matrix completion problem
by observing O

(
nr5 log3 n

)
entries, which is independent of the condition number and the desired

accuracy. The run time of our algorithm is O
(
nr7 log3 n log 1/ε

)
which is near linear in the di-

mension of the matrix. To the best of our knowledge, this is the first near linear time algorithm for
exact matrix completion with finite sample complexity (i.e. independent of ε). Our algorithm is
based on a well known projected gradient descent method, where the projection is onto the (non-
convex) set of low rank matrices. There are two key ideas in our result: 1) our argument is based on
a `∞ norm potential function (as opposed to the spectral norm) and provides a novel way to obtain
perturbation bounds for it. 2) we prove and use a natural extension of the Davis-Kahan theorem to
obtain perturbation bounds on the best low rank approximation of matrices with good eigen gap.
Both of these ideas may be of independent interest.
Keywords: Matrix completion, Matrix perturbation theory, Non-convex Optimization

1. Introduction

In this paper, we study the problem of low-rank matrix completion (LRMC) where the goal is to re-
cover a low-rank matrix by observing a tiny fraction of its entries. That is, givenM = {Mij , (i, j) ∈
Ω}, where M ∈ Rn1×n2 is an unknown rank-r matrix and Ω ⊆ [n1] × [n2] is the set of observed
indices, the goal is to recover M. An optimization version of the problem can be posed as follows:

(LRMC) : min
X
‖PΩ (X −M)‖2F , s.t. rank(X) ≤ r, (1)

where PΩ (A) is defined as:

PΩ (A)ij =

{
Aij , if (i, j) ∈ Ω,

0, otherwise.
(2)

LRMC is by now a well studied problem with applications in several machine learning tasks such
as collaborative filtering (Bell and Koren, 2007), link analysis (Gleich and Lim, 2011), distance
embedding (Candès and Recht, 2009) etc. Motivated by widespread applications, several practical
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algorithms have been proposed to solve the problem (heuristically) (Recht and Ré, 2013; Hsieh
et al., 2012).

On the theoretical front, the non-convex rank constraint implies NP-hardness in general (Hardt
et al., 2014). However, under certain (by now) standard assumptions, a few algorithms have been
shown to solve the problem efficiently. These approaches can be categorized into the following two
broad groups:

a) The first approach relaxes the rank constraint in (1) to a trace norm constraint (sum of sin-
gular values of X) and then solves the resulting convex optimization problem (Candès and Recht,
2009). Candès and Tao (2009); Recht (2009) showed that this approach has a near optimal sample
complexity (i.e. the number of observed entries of M) of |Ω| = O

(
rn log2 n

)
, where we abbrevi-

ate n = n1 + n2. However, current iterative algorithms used to solve the trace-norm constrained
optimization problem require O

(
n2
)

memory and O
(
n3
)

time per iteration, which is prohibitive
for large-scale applications.

b) The second approach is based on an empirically popular iterative technique called Alter-
nating Minimization (AltMin) that factorizes X = UV > where U ,V have r columns, and the
algorithm alternately optimizes over U and V holding the other fixed. Recently, Keshavan (2012);
Jain et al. (2013); Hardt (2014); Hardt and Wootters (2014) showed convergence of variants of this
algorithm. The best known sample complexity results for AltMin are the incomparable bounds
|Ω| = O

(
rκ8nlog n

ε

)
and |Ω| = O

(
poly (r) (log κ)n log n

ε

)
due to Keshavan (2012) and Hardt

and Wootters (2014) respectively. Here, κ = σ1(M)/σr(M) is the condition number of M and ε
is the desired accuracy. The computational cost of these methods is O

(
|Ω|r + nr3

)
per iteration,

making these methods very fast as long as the condition number κ is not too large.
Of the above two approaches AltMin is known to be the most practical and runs in near linear

time. However, its sample complexity as well as computational complexity depend on the condition
number of M which can be arbitrarily large. Moreover, for “exact” recovery of M, i.e., with error
ε = 0, the method needs to observe the entire matrix. The dependence of sample complexity on
the desired accuracy arises due to the use of independent samples in each iteration, which in turn is
necessitated by the fact that using the same samples in each iteration leads to complex dependencies
among iterates which are hard to analyze. Nevertheless, practitioners have been using AltMin with
same samples in each iteration successfully in a wide range of applications.

Our results: In this paper, we address this issue by proposing a new algorithm called Stagewise-
SVP (St-SVP) and showing that it solves the matrix completion problem exactly with a sample
complexity |Ω| = O

(
nr5 log3 n

)
, which is independent of both the condition number, and desired

accuracy and time complexity per iteration O
(
|Ω| r2

)
, which is near linear in n.

The basic block of our algorithm is a simple projected gradient descent step, first proposed by
Jain et al. (2010) in the context of this problem. More precisely, given the tth iterate Xt, Jain et al.
(2010) proposed the following update rule, which they call singular value projection (SVP).

(SV P ) : Xt+1 = Pr

(
Xt +

n1n2

|Ω|
PΩ (M−Xt)

)
, (3)

where Pr is the projection onto the set of rank-r matrices and can be efficiently computed using
singular value decomposition (SVD). Note that the SVP step is just a projected gradient descent step
where the projection is onto the (non-convex) set of low rank matrices. Jain et al. (2010) showed
that despite involving projections onto a non-convex set, SVP solves the related problem of low-
rank matrix sensing, where instead of observing elements of the unknown matrix, we observe dense
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linear measurements of this matrix. However, their result does not extend to the matrix completion
problem and the correctness of SVP for matrix completion was left as an open question.

Our preliminary result resolves this question by showing the correctness of SVP for the matrix
completion problem, albeit with a sample complexity that depends on the condition number and
desired accuracy. We then develop a stage-wise variant of this algorithm, where in the kth stage, we
try to recover Pk (M), thereby getting rid of the dependence on the condition number. Interestingly,
our stage-wise variant not only admits better theoretical bounds, it also improves the algorithm in
practice (see Appendix E). Finally, in each stage, we use independent samples for log n iterations,
but use same samples for the remaining iterations, thereby eliminating the dependence of sample
complexity on ε.

Our techniques: Our analysis relies on two key novel techniques that enable us to understand
SVP style projected gradient methods even though the projection is onto a non-convex set. Firstly,
we use `∞ norm of the error Xt−M as our potential function, instead of its spectral norm that most
existing analysis of matrix completion use. In general, bounds on the `∞ norm are much harder to
obtain as projection via SVD is optimal only in the spectral and Frobenius norms. We obtain `∞
norm bounds by writing down explicit eigenvector equations for the low rank projection and using
this to control the `∞ norm of the error. Secondly, in order to analyze the SVP updates with same
samples in each iteration, we prove and use a natural extension of the Davis-Kahan theorem. This
extension bounds the perturbation in the best rank-k approximation of a matrix (with large enough
eigen-gap) due to any additive perturbation; despite this being a very natural extension of the Davis-
Kahan theorem, to the best of our knowledge, it has not been considered before. We believe both of
the above techniques should be of independent interest.

Paper Organization: We first present the problem setup, our main result and an overview of
our techniques in the next section. We then present a “warm-up” result for the basic SVP method in
Section 3. We then present our main algorithm (St-SVP) and its analysis in Section 4. We conclude
the discussion in Section 5. The proofs of all the technical lemmas will follow thereafter in the
appendix.

Notation: We denote matrices with boldface capital letters (M) and vectors with boldface letters
(x). mi denotes the ith column and Mij denotes the (i, j)th entry respectively of M. SVD and
EVD stand for the singular value decomposition and eigenvalue decomposition respectively. Pk(A)
denotes the projection of A onto the set of rank-k matrices. That is, if A = UΣV > is the SVD of
A, then Pk(A) = UkΣkV

>
k where Uk ∈ Rn1×k and Vk ∈ Rn2×k are the k left and right singular

vectors respectively of A corresponding to the k largest singular values σ1 ≥ σ2 ≥ · · · ≥ σk. ‖u‖q
denotes the `q norm of u. We denote the operator norm of M by ‖M‖2 = maxu,‖u‖2=1 ‖Mu‖2.
In general, ‖α‖2 denotes the `2 norm of α if it is a vector and the operator norm of α if it is a matrix.
‖M‖F denotes the Frobenius norm of M.

2. Our Results and Techniques

In this section, we will first describe the problem set up and then present our results as well as the
main techniques we use.

2.1. Problem Setup

Let M be an n1 × n2 matrix of rank-r. Let Ω ⊆ [n1] × [n2] be a subset of the indices. Recall that
PΩ (M) (as defined in (2)) is the projection of M on to the indices in Ω. Given Ω, PΩ (M) and r,
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the goal is to recover M. The problem is in general ill posed, so we make the following standard
assumptions on M and Ω Candès and Recht (2009).

Assumption 1 (Incoherence) M ∈ Rn1×n2 is a rank-r, µ-incoherent matrix i.e., maxi ‖eTi U∗‖2 ≤
µ
√
r√
n1

and maxj ‖eTj V ∗‖2 ≤
µ
√
r√
n2

, where M = U∗ΣV ∗> is the singular value decomposition of
M.

Assumption 2 (Uniform sampling) Ω is generated by sampling each element of [n1]× [n2] inde-
pendently with probability p.

The incoherence assumption ensures that the mass of the matrix is well spread out and a small
fraction of uniformly random observations give enough information about the matrix. Both of the
above assumptions are standard and are used by most of the existing results, for instance (Candès
and Recht, 2009; Candès and Tao, 2009; Keshavan et al., 2010; Recht, 2009; Keshavan, 2012). A
few exceptions include the works of Meka et al. (2009); Chen et al. (2014); Bhojanapalli and Jain
(2014).

2.2. Main Result

The following theorem is the main result of this paper.

Theorem 1 Suppose M and Ω satisfy Assumptions 1 and 2 respectively. Also, let

E[|Ω|] ≥ Cαµ4r5n log3 n,

where α > 1, n := n1 + n2 and C > 0 is a global constant. Then, the output M̂ of Algorithm 2
satisfies:

∥∥∥M̂−M
∥∥∥
F
≤ ε, with probability greater than 1− n−10−logα. Moreover, the run time of

Algorithm 2 is O
(
|Ω| r2 log(1/ε)

)
.

Algorithm 2 is based on the projected gradient descent update (3) and proceeds in r stages where
in the k-th stage, projections are performed onto the set of rank-k matrices. See Section 4 for a
detailed description and the underlying intuition behind our algorithm.

Table 1 compares our result to that for nuclear norm minimization, which is the only other poly-
nomial time method with finite sample complexity guarantees (i.e. no dependence on the desired
accuracy ε). Note that St-SVP runs in time near linear in the ambient dimension of the matrix (n),
where as nuclear norm minimization runs in time cubic in the ambient dimension. However, the
sample complexity of St-SVP is suboptimal in its dependence on the incoherence parameter µ and
rank r. We believe closing this gap between the sample complexity of St-SVP and that of nuclear
norm minimization should be possible and leave it for future work.

Sample complexity Comp. complexity
Nuclear norm minimization Recht (2009) O

(
µ2rn log2 n

)
O
(
n3 log 1

ε

)
St-SVP (This paper) O

(
µ4r5n log3 n

)
O
(
µ4r7n log3 n log(1/ε)

)
Table 1: Comparison of our result to that for nuclear norm minimization.
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2.3. Overview of Techniques

In this section, we briefly present the key ideas and lemmas we use to prove Theorem 1. Our
proof revolves around analyzing the basic SVP step (3): Xt+1 = Pk

(
Xt + 1

pPΩ (M−Xt)
)

=

Pk(M+ Ĥ) where p is the sampling probability, Ĥ := Xt−M− 1
pPΩ (Xt −M) = E− 1

pPΩ(E)

and E := Xt −M is the error matrix. Hence, Xt+1 is given by a rank-k projection of M + Ĥ,
which is a perturbation of the desired matrix M.

Bounding the `∞ norm of errors: As the SVP update is based on projection onto the set of
rank-k matrices, a natural potential function to analyze would be ‖E‖2 or ‖E‖F . However, such a
potential function requires bounding norms of E− 1

pPΩ(E) which in turn would require us to show
that E is incoherent. This is the approach taken by papers on AltMin (Keshavan, 2012; Jain et al.,
2013; Hardt, 2014).

In contrast, in this paper, we consider ‖E‖∞ as the potential function. So the goal is to show that∥∥∥Pk (M + Ĥ
)
−M

∥∥∥
∞

is much smaller than ‖E‖∞. Unfortunately, standard perturbation results
such as the Davis-Kahan theorem provide bounds on spectral, Frobenius or other unitarily invariant
norms and do not apply to the `∞ norm.

In order to carry out this argument, we write the singular vectors of M + Ĥ as solutions to
eigenvector equations and then use these to write Xt+1 explicitly via Taylor series expansion. We
use this technique to prove the following more general lemma.

Lemma 2 Suppose M ∈ Rn×n is a symmetric matrix satisfying Assumption 1. Let σ1 ≥ · · · ≥ σr
denote its singular values. Let H ∈ Rn×n be a random symmetric matrix such that each Hij is
independent with E [Hij ] = 0 and E [|Hij |a] ≤ 1/n for 2 ≤ a ≤ log n. Then, for any α > 1 and
|β| ≤ σk

200
√
α logn

we have:

‖M− Pk (M + βH)‖∞ ≤
µ2r2

n

(
σk+1 + 15|β|

√
α log n

)
,

with probability greater than 1− n−10−logα.

Proceeding in stages: If we applied Lemma 2 with k = r, we would require |β| to be much smaller
than σr. Now, β can be thought of as β ≈

√
n
p ‖E‖∞. If we start with X0 = 0, we have E = −M,

and so ‖E‖∞ = ‖M‖∞ ≤ σ1µ2r
n . To make β ≤ σr, we would need the sampling probability p

to be quadratic in the condition number κ = σ1/σr . In order to overcome this issue, we perform
SVP in r stages with the kth stage performing projections on to the set of rank-k matrices while
maintaining the invariant that at the end of (k − 1)th stage, ‖E‖∞ = O(σk/n). This lets us choose
a p independent of κ while still ensuring β ≈

√
n
p ‖E‖∞ ≤ σk. Lemma 2 tells us that at the end of

the kth stage, the error ‖E‖∞ is O
(σk+1

n

)
, thereby establishing the invariant for the (k+ 1)th stage.

Using same samples: In order to reduce the error fromO
(
σk
n

)
toO

(σk+1

n

)
, the kth stage would

require O
(

log σk
σk+1

)
iterations. Since Lemma 2 requires the elements of H to be independent,

in order to apply it, we need to use fresh samples in each iteration. This means that the sample
complexity increases with σk

σk+1
, or the desired accuracy ε if ε < σk+1. This problem is faced by

all the existing analysis for iterative algorithms for matrix completion (Keshavan, 2012; Jain et al.,
2013; Hardt, 2014; Hardt and Wootters, 2014). We tackle this issue by observing that when M is
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Algorithm 1 SVP for matrix completion
1: Input: Ω, PΩ(M), r, ε

2: T ← log
(n1+n2)‖M‖F

ε
3: Partition Ω randomly into T subsets {Ωt : t ∈ [T ]}
4: Xt ← 0
5: for t← 1, · · · , T do
6: Xt ← Pr

(
Xt−1 − n1n2

|Ωt| PΩt (Xt−1 −M)
)

7: end for
8: Output: XT

ill conditioned and ‖E‖F is very small, we can show a decay in ‖E‖F using the same samples for
SVP iterations:

Lemma 3 Let M and Ω be as in Theorem 1 with M being a symmetric matrix. Further, let M be ill
conditioned in the sense that ‖M− Pk(M)‖F <

σk
n2 , where σ1 ≥ · · · ≥ σr are the singular values

of M. Then, the following holds for all rank-kX s.t. ‖X − Pk(M)‖F <
σk
n2 (w.p. ≥ 1−n−10−α):

‖X+ − Pk(M)‖F ≤
1

10
‖X − Pk(M)‖F +

1

p
‖M− Pk(M)‖F ,

where X+ := Pk

(
X − 1

pPΩ (X −M)
)

denotes the rank-k SVP update of X and p = E[|Ω|]/n2 =

Cαµ4r5 log3 n
n is the sampling probability.

The following lemma plays a crucial role in proving Lemma 3. It is a natural extension of the
Davis-Kahan theorem for singular vector subspace perturbation.

Lemma 4 Suppose A is a matrix such that σk+1(A) ≤ 1
4σk(A). Then, for any matrix E such that

‖E‖F <
1
4σk(A), we have:

‖Pk (A + E)− Pk (A)‖F ≤ c
(√

k ‖E‖2 + ‖E‖F
)
,

for some absolute constant c.

In contrast to the Davis-Kahan theorem, which establishes a bound on the perturbation of the space
of singular vectors, Lemma 4 establishes a bound on the perturbation of the best rank-k approxima-
tion of a matrix A with good eigen gap, under small perturbations. This is a very natural quantity
while considering perturbations of low rank approximations, and we believe it may find applications
in other scenarios as well. A naı̈ve argument using Davis-Kahan theorem would only yield a weaker
version of Lemma 4 with a bound that depends on σ1(A)/σk(A). Our proof of Lemma 4 is much
more intricate where we keep track of perturbations in various subspaces simultaneously. A final
remark regarding Lemma 4: we suspect it might be possible to tighten the right hand side of the
result to cmin

(√
k ‖E‖2 , ‖E‖F

)
, but have not been able to prove it.
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3. Singular Value Projection

Before we go on to prove Theorem 1, in this section we will analyze the basic SVP algorithm
(Algorithm 1), bounding its sample complexity and thereby resolving a question posed by Jain et al.
(2010). This analysis also serves as a warm-up exercise for our main result and brings out the
key ideas in analyzing the `∞ norm potential function while also highlighting some issues with
Algorithm 1 that we will fix later on.

As is clear from the pseudocode in Algorithm 1, SVP is a simple projected gradient descent
method for solving the matrix completion problem. Note that Algorithm 1 first splits the set Ω into
T random subsets and updates iterate Xt using Ωt. This step is critical for analysis as it ensures that
Ωt is independent of Xt−1, allowing for the use of standard tail bounds. The following theorem is
our main result for Algorithm 1:

Theorem 5 Suppose M and Ω satisfy Assumptions 1 and 2 respectively with

E [|Ω|] ≥ Cαµ4κ2r5n
(
log2 n

)
T,

where n = n1 + n2, α > 1, κ =
(
σ1
σr

)
with σ1 ≥ · · · ≥ σr denoting the singular values of M,

T = log
100µ2r‖M‖F

ε and C > 0 is a large enough global constant. Then, the output of Algorithm 1
satisfies (w.p. ≥ 1− Tmin(n1, n2)−10−logα): ‖XT −M‖F ≤ ε

Proof Using a standard dilation argument (Lemma 6), it suffices to prove the result for symmet-
ric matrices. Let p = E[|Ωt|]

n2 = E[|Ω|]
n2T

be the probability of sampling in each iteration. Now, let
E = Xt−1−M and Ĥ = E− 1

pPΩt(E). Then, the SVP update (line 6 of Algorithm 1) is given by:

Xt = Pr(M + Ĥ). Since Ωt is sampled uniformly at random, it is easy to check that E[Ĥij ] = 0

and E
[∣∣∣Ĥij

∣∣∣s] ≤ βs/n where β =
2
√
n‖E‖∞√
p ≤ 2µ2rσ1√

np (Lemma 8). By our choice of p, we

have β < σr
200
√
α

. Applying Lemma 2 with k = r, we have ‖Xt −M‖∞ ≤
15µ2r2

n β
√
α log n ≤

(1/
√

30C) ‖E‖∞ = 1
2 ‖Xt−1 −M‖∞, where the last inequality is obtained by selecting C large

enough. The theorem is immediate from this error decay in each step.

3.1. Detailed Proof of Lemma 2

We are now ready to present a proof of Lemma 2. Recall that X+ = Pk(M + βH), hence,

(M + βH)ui = λiui, ∀1 ≤ i ≤ k, (4)

where (ui, λi) is the ith (i ≤ k) top eigenvector-eigenvalue pair (in terms of magnitude).
Now, as H satisfies conditions of Definition 7, we can apply Lemma 10 to obtain:

|β| ‖H‖2 ≤ |β| · 3
√
α ≤ |σk|

5
. (5)

Using Lemma 11 and (5), we have:

|λi| ≥ |σi| − |β| ‖H‖2 ≥
4 |σk|

5
∀ i ∈ [k]. (6)
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Using (4), we have:
(
I− β

λi
H
)
ui = 1

λi
Mui. Moreover, using (6), I − β

λi
H is invertible.

Hence, using Taylor series expansion, we have:

ui =
1

λi

(
I +

β

λi
H +

β2

λ2
i

(H)2 + · · ·
)

Mui.

Letting UΛU> denote the eigenvalue decomposition (EVD) of X+, we obtain:

X+ = UΛU> =
∑
a,b≥0

βa+b(H)a MUΛ−(a+b+1)U>M (H)b.

Using triangle inequality, we have:

‖X+ −M‖∞ ≤
∥∥∥MUΛ−1U>M−M

∥∥∥
∞

+
∑
a,b≥0

a+b≥1

|β|a+b
∥∥∥(H)a MUΛ−(a+b+1)U>M> (H)b

∥∥∥
∞
.

(7)

Using Lemma 12, we have the following bound for the first term above:∥∥∥MUΛ−1U>M−M
∥∥∥
∞
≤ µ2r

n

∥∥∥MUΛ−1U>M−M
∥∥∥

2
. (8)

Furthermore, using Lemma 13 we have:∥∥∥MUΛ−1U>M−M
∥∥∥

2
≤ |σk+1|+ 5 |β| ‖H‖2 , and (9)∥∥∥MUΛ−aU>M

∥∥∥
2
≤ 4

(
|σk|
2

)−a+2

∀ a ≥ 2. (10)

Plugging (9) into (8) gives us:∥∥∥MUΛ−1U>M−M
∥∥∥
∞
≤ µ2r

n
(|σk+1|+ 5 |β| ‖H‖2) . (11)

Let M = U∗Σ (U∗)> denote the EVD of M. We now bound the terms in the summation in (7)
for 1 ≤ a+ b < log n.

|β|a+b
∥∥∥(H)a MUΛ−(a+b+1)U>M (H)b

∥∥∥
∞

= |β|a+b max
i,j

ei
> (H)a MUΛ−(a+b+1)U>M (H)b ej

≤ |β|a+b

(
max
i

∥∥∥ei> (H)a U∗
∥∥∥

2

)∥∥∥Σ (U∗)>UΛ−(a+b+1)U>U∗Σ
∥∥∥

2

(
max
j

∥∥∥(U∗)> (H)b ej

∥∥∥
2

)
≤ |β|a+b

(√
rmax

i
‖(H)a u∗i ‖∞

)∥∥∥MUΛ−(a+b+1)U>M
∥∥∥

2

(√
rmax

j

∥∥∥(H)b u∗j

∥∥∥
∞

)
(ζ1)

≤ µ2r2

n
|β|a+b (10

√
α log n

)a+b
∥∥∥MUΛ−(a+b+1)U>M

∥∥∥
2

(ζ2)

≤ µ2r2

n
|β|a+b (10

√
α log n

)a+b · 4
(

2

|σk|

)a+b−1

≤ µ2r2

n

(
80 |β|

√
α log n

|σk|

)a+b−1 (
10 |β|

√
α log n

)
≤ µ2r2

n

(
1

20

)a+b−1

· 10 |β|
√
α log n,

(12)
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where (ζ1) follows from Lemma 9 and (ζ2) follows from (10).
For a+ b ≥ log n, we have

|β|a+b
∥∥∥(H)a MUΛ−(a+b+1)U>M (H)b

∥∥∥
∞
≤ |β|a+b

∥∥∥(H)a MUΛ−(a+b+1)U>M (H)b
∥∥∥

2

≤ |β|a+b ‖H‖a2
∥∥∥MUΛ−(a+b+1)U>M

∥∥∥
2
‖H‖b2

≤ |β|a+b ‖H‖a+b
2

(
5

4 |σk|

)a+b−1

≤
(

15 |β|
√
α

4 |σk|

)a+b−1

· 3 |β|
√
α

≤ µ2r2

n

(
1

20

)a+b−1 (
10 |β|

√
α log n

)
, (13)

where we used Lemma 13 to bound
∥∥MUΛ−(a+b+1)U>M

∥∥
2

and Lemma 10 to bound ‖H‖2. The

last inequality follows from using (1/2)a+b ≤ 1/n ≤ µ2r2

n as a+ b > log n.
Plugging (11), (12) and (13) in (7) gives us:

‖X+ −M‖∞ ≤
µ2r

n
(|σk+1|+ 5 |β| ‖H‖2) +

µ2r2

n

∑
a,b≥0

a+b≥1

(
1

20

)a+b

(10 |β|
√
α log n)

≤ µ2r2

n

(
|σk+1|+ 15 |β|

√
α log n

)
.

This proves the lemma.

4. Stagewise-SVP

Theorem 5 is suboptimal in its sample complexity dependence on the rank, condition number
and desired accuracy. In this section, we will fix two of these issues – the dependence on condi-
tion number and desired accuracy – by designing a stagewise version of Algorithm 1 and proving
Theorem 1.

Our algorithm, St-SVP (pseudocode presented in Algorithm 2) runs in r stages, where in the
kth stage, the projection is onto the set of rank-k matrices. In each stage, the goal is to obtain an
approximation of M up to an error of σk+1. In order to do this, we use the basic SVP updates, but
in a very specific way, so as to avoid the dependence on condition number and desired accuracy.

• (Step I) Apply SVP update with fresh samples for log n iterations: Run log n steps of
SVP update (3), with fresh samples in each iteration. Using fresh samples allows us to use
Lemma 2 ensuring that the `∞ norm of the error between our estimate and M decays to
‖Xk,logn −M‖∞ = O

(
1
n

(
σk+1 + σk

n3

))
.

• (Step II) Determine if σk+1 >
σk
n3 : Note that we can determine this, by using the (k+1)th sin-

gular value of the matrix obtained after the gradient step, i.e., σk+1(Xk,logn−1
pPΩk,logn

(Xk,logn−
M)). If true, the error ‖Xk,logn −M‖∞ = O

(σk+1

n

)
, and so the algorithm proceeds to the

(k + 1)th stage.

9
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Algorithm 2 Stagewise SVP (St-SVP) for matrix completion
1: Input: Ω, PΩ(M), ε, r

2: T ← log
100µ2r‖M‖F

ε
3: Partition Ω into 2r log n subsets {Ωk,t : k ∈ [r], t ∈ [log n] ∪ {T + log n+ 1, · · · , T + 2 log n}}

uniformly at random
4: k ← 1, Xk,0 ← 0
5: for k ← 1, · · · , r do
6: /* Stage-k */
7: for t = 1, · · · , log n do
8: Xk,t ← PGD(Xk,t−1, PΩk,t(M),Ωk,t, k)/* SVP Step with re-sampling*/

 Step I
9: end for

10: if σk+1

(
GD

(
Xk,logn, PΩk,logn

(M),Ωk,logn

))
>

σk(Xk,logn)
n2 then

11: Xk+1,0 ←Xk,logn /* Initialize for next stage and continue*/

 Step II
12: continue
13: end if
14: for t = log n+ 1, · · · , log n+ T do
15: Xk,t ← PGD(Xk,t−1, PΩ(M),Ω, k) /* SVP Step without re-sampling */

 Step III
16: end for
17: for t = log n+ T + 1, · · · , log n+ T + log n do
18: Xk,t ← PGD(Xk,t−1, PΩk,t(M),Ωk,t, k) /* SVP Step with re-sampling */

 Step IV
19: end for
20: Xk+1,0 ←Xk,t /* Initialization for next stage */
21: Output: Xk,t if σk+1

(
GD(Xk,t−1, PΩk,t(M),Ωk,t)

)
< ε

10µ2r
22: end for

Sub-routine 3 Projected Gradient Descent (PGD)
1: Input: X ∈ Rn1×n2 , PΩ(M),Ω, k
2: Output: Xnext ← Pk(X − n1n2

|Ω| PΩ(X −M))

Sub-routine 4 Gradient Descent (GD)
1: Input: X ∈ Rn1×n2 , PΩ(M),Ω
2: Output: Xnext ← X − n1n2

|Ω| PΩ(X −M)

• (Step III) If not (i.e., σk+1 ≤ σk
n3 ), apply SVP update for T = log 1

ε iterations with same
samples: If σk+1 ≤ σk

n3 , we can use Lemma 3 to conclude that after log 1
ε iterations, the

Frobenius norm of error is ‖Xk,logn+T −M‖F = O (nσk+1 + ε).

• (Step IV) Apply SVP update with fresh samples for log n iterations: To set up the invari-
ant ‖Xk+1,0 −M‖∞ = O (σk+1/n) for the next stage, we wish to convert our Frobenius
norm bound ‖Xk,logn+T −M‖F = O (nσk+1) to an `∞ bound ‖Xk,2 logn+T −M‖∞ =

O
(σk+1

n

)
. Since σk+1 <

σk
n3 , we can bound the initial Frobenius error byO

(
1
n

((
1
2

)T̂
σk + σk+1

))
for some T̂ = O

(
log σk

n2σk+1

)
. As in Step I, after log n SVP updates with fresh samples,

10
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Lemma 2 lets us conclude that ‖Xk,2 logn+T −M‖∞ = O
(σk+1

n

)
, setting up the invariant

for the next stage.

4.1. Analysis of St-SVP (Proof of Theorem 1)

We will now present a proof of Theorem 1.
Proof [Proof of Theorem 1] Just as in Theorem 5, it suffices to prove the result for when M is
symmetric.For every stage, we will establish the following invariant:

‖Xk,0 −M‖∞ <
4µ2r2

n
σk+1, for k < r. (14)

We will use induction. (14) clearly holds for the base case k = 1. Now, suppose (14) holds for
the kth stage, we will prove that it holds for the (k + 1)th stage. The analysis follows the four step
outline in the previous section:

Step I: Here, we will show that for every iteration t, we have:

‖Xk,t −M‖∞ <
4µ2r2

n
γk,t, where γk,t := σk+1 +

(
1

2

)t−1

σk. (15)

(15) holds for t = 0 by our induction hypothesis (14) for the k-th stage. Supposing it true for
iteration t, we will show it for iteration t+ 1. The (t+ 1)th iterate is given by:

Xk,t+1 = Pk (M + βH) , where H =
1

β

(
E− 1

p
PΩk,t(E)

)
,E = Xk,t −M, (16)

p =
E[|Ωk,t|]

n2 = Cαµ4r4 log2 n
n , and β =

2
√
n‖E‖∞√
p ≤ 8µ2r2γk,t√

n·p . Our hypothesis on the sample size

tells us that β ≤ 8γk,t√
Cα logn

and Lemma 8 tells us that H satisfies the hypothesis of Lemma 2. So we
have:

‖Xk,t+1 −M‖∞ <
µ2r2

n

(
σk+1 + 15β

√
α log n

)
<
µ2r2

n

(
σk+1 +

1

9
γk,t

)
≤ 10µ2r2

9n
γk,t+1.

This proves (15). Hence, after O (log n) steps, we have:

‖Xk,logn −M‖∞ <
10µ2r2

9n

(σk
n3

+ σk+1

)
. (17)

Step II: Let G := Xk,logn− 1
pPΩk,logn

(Xk,logn −M) = M+βH be the gradient update with
notation as above. A standard perturbation argument (Lemmas 10 and 11) tells us that:

‖G−M‖2 < 3β
√
α ≤

24µ2r2√αγk,logn√
np

<
1

100

(σk
n3

+ σk+1

)
.

So if σk+1(G) > σk(G)
n3 , then we have σk+1 > 9σk

10n3 . Since we move on to the next stage with
Xk+1,0 = Xk,logn, (17) tells us that:

‖Xk+1,0 −M‖∞ = ‖Xk,logn −M‖∞ ≤
10µ2r2

9n

(σk
n3

+ σk+1

)
≤ 2µ2r2

n
(2σk+1) ,

11
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showing the invariant for the (k + 1)th stage.
Step III: On the other hand, if σk+1(G) ≤ σk(G)

n3 , Lemmas 10 and 11 tell us that σk+1 ≤ 11σk
10n3 .

So, using Lemma 3 with T = log nσk
ε iterations, we obtain:

‖Xk,T+logn − Pk (M)‖F ≤ max

(
ε,

2

p
‖M− Pk (M)‖F

)
. (18)

If ε > 2
p ‖M− Pk (M)‖F , then we have:

‖Xk,T+logn −M‖F ≤ ‖Xk,T+logn − Pk (M)‖F + ‖M− Pk (M)‖F ≤ 2ε.

On the other hand, if ε ≤ 2
p ‖M− Pk (M)‖F , then we have:

‖Xk,T+logn −M‖∞ ≤ ‖Xk,T+logn − Pk (M)‖F + ‖M− Pk (M)‖∞

≤ 2

p
‖M− Pk (M)‖F +

µ2r2σk+1

n
≤
(

2
√
rn+

µ2r2

n

)
σk+1

≤ 2µ2r2

n

((
1

2

)log
σk

n2σk+1
σk + σk+1

)
. (19)

Step IV: Using (19) and “fresh samples” analysis as in Step I (in particular (15)), we have:

‖Xk,T+2 logn −M‖∞ ≤
10µ2r2

9n

((
1

2

)log
σk
σk+1

σk + σk+1

)
≤ 2µ2r2

n
(2σk+1) ,

which establishes the invariant for the (k + 1)th stage.
Combining the invariant (14) with the exit condition after Step IV, we have: ‖M̂ −M‖F ≤ ε

where M̂ is the output of the algorithm. As there are r stages, and in each stage, we need 2 log n
sets of samples of size O(pn2). Hence, the total samplexity is |Ω| = O

(
αµ4r5n log3 n

)
. Similarly,

total computation complexity is O
(
αµ4r7n log3 n log(‖M‖F /ε)

)
.

5. Discussion and Conclusions

In this paper, we proposed a fast projected gradient descent based algorithm for solving the matrix
completion problem. The algorithm runs in time O

(
nr7 log3 n log 1/ε

)
, with a sample complexity

of O
(
nr5 log3 n

)
. To the best our knowledge, this is the first near linear time algorithm for exact

matrix completion with sample complexity independent of ε and condition number of M.
The first key idea behind our result is to use the `∞ norm as a potential function which entails

bounding all the terms of an explicit Taylor series expansion. The second key idea is an extension
of the Davis-Kahan theorem, that provides perturbation bound for the best rank-k approximation
of a matrix with good eigen-gap. We believe both these techniques may find applications in other
contexts.

Designing an efficient algorithm with information-theoretic optimal sample complexity |Ω| =
O (nr log n) is still open; our result is suboptimal by a factor of r4 log2 n and nuclear norm approach
is suboptimal by a factor of log n. Another interesting direction in this area is to design optimal
algorithms that can handle sampling distributions that are widely observed in practice, such as the
power law distribution (Meka et al., 2009).

12
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Appendix A. Preliminaries and Notations for Proofs

The following lemma shows that wlog we can assume M to be a symmetric matrix. A similar result
is given in Section D of Hardt (2014).

Lemma 6 Let M ∈ Rn1×n2 and Ω ⊆ [n1] × [n2] satisfy Assumption 1 and 2, respectively. Then,
there exists a symmetric M̃ ∈ Rn×n, n = n1 + n2, s.t. M̃ is of rank-2r, incoherence of M̃ is twice
the incoherence of M. Moreover, there exists |Ω̃| ⊆ [n] × [n] that satisfy Assumption 2, P

Ω̃
(M̃) is

efficiently computable, and the output of a SVP update (3) with PΩ(M) can also be obtained by the
SVP update of P

Ω̃
(M̃).

Proof [Proof of Lemma 6] Define the following symmetric matrix from M using a dilation tech-
nique:

M̃ =

[
0 M

M> 0

]
.

Note that the rank of M̃ is 2 · r and the incoherence of M̃ is bounded by (n1 + n2)/n2µ (assume
n1 ≤ n2). Note that if n2 > n1, then we can split the columns of M in blocks of size n1 and apply
the argument separately to each block.

Now, we can split Ω to generate samples from M and MT , and then augment redundant samples
from the 0 part above to obtain Ω̃ = [n]× [n].

Moreover, if we run the SVP update (3) with input M̃, X̃ and Ω̃, an easy calculation shows that
the iterates satisfy:

X̃+ =

[
0 X+

X+
> 0

]
,

where X+ is the output of (3) with input M, X , and Ω. That is, a convergence result for X̃+ would
imply a convergence result for X+ as well.

For the remaining sections, we assume (wlog) that M ∈ Rn×n is symmetric and M = U∗ΣU∗>

is the eigenvalue decomposition (EVD) of M. Also, unless specified, σi denotes the i-th eigenvalue
of M.

Appendix B. Proof of Lemma 2

Recall that we assume (wlog) that M ∈ Rn×n is symmetric and M = U∗ΣU∗> is the eigenvalue
decomposition (EVD) of M. Also, the goal is to bound ‖X+−M‖∞, where X+ = Pk(M+βH)
and H is such that it satisfies the following definition:

Definition 7 H is a symmetric matrix with each of its elements drawn independently, satisfying the
following moment conditions:

E [hij ] = 0, |hij | < 1, E
[
|hij |k

]
≤ 1

n ,

for i, j ∈ [n] and 2 ≤ k ≤ 2 log n.
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That is, we wish to understand ‖X+ −M‖∞ under perturbation H. To this end, we first
present a few lemmas that analyze how H is obtained in the context of our St-SVP algorithm and
also bounds certain key quantities related to H. We then present a few technical lemmas that are
helpful for our proof of Lemma 2. The detailed proof of the lemma is given in Section 3.1. See
Section B.3 for proofs of the technical lemmas.

B.1. Results for H

Recall that the SVP update (3) is given by: X+ = Pk(X − 1
pPΩ(X −M)) = Pk(M + H) where

H = E− 1
pPΩ(E) and E = X−M. Our first lemma shows that matrices of the form E− 1

pPΩ(E),
scaled appropriately, satisfy Definition 7, i.e., satisfies the assumption of Lemma 2.

Lemma 8 Let A be a symmetric n × n matrix. Suppose Ω ⊆ [n] × [n] is obtained by sampling
each element with probability p ∈

[
1

4n , 0.5
]
. Then the matrix

B :=

√
p

2
√
n ‖A‖∞

(
A− 1

p
PΩ (A)

)
satisfies Definition 7.

We now present a critical lemma for our proof which bounds ‖Hau‖∞ for 2 ≤ a ≤ log n. Note
that the entries of Ha can be dependent on each other, hence we cannot directly apply standard
tail bounds. Our proof follows along very similar lines to Lemma 6.5 of Erdos et al. (2013); see
Appendix D for a detailed proof.

Lemma 9 Suppose Ĥ satisfies Definition 7. Fix 1 ≤ a ≤ log n. Let er denote the rth standard
basis vector. Then, for any fixed vector u, we have:∣∣∣〈er, Ĥau

〉∣∣∣ ≤ (c log n)a ‖u‖∞ ∀ r ∈ [n],

with probability greater than 1− n1−2 log c
4 .

Next, we bound ‖H‖2 using matrix Bernstein inequality by Tropp (2012); see Appendix B.3 for a
proof.

Lemma 10 Suppose H satisfies Definition 7. Then, w.p. ≥ 1 − 1/n10+logα, we have: ‖H‖2 ≤
3
√
α.

B.2. Technical Lemmas useful for Proof of Lemma 2

In this section, we present the technical lemmas used by our proof of Lemma 2.
First, we present the well known Weyl’s perturbation inequality Bhatia (1997):

Lemma 11 Suppose B = A + N . Let λ1, · · · , λn and σ1, · · · , σn be the eigenvalues of B and
A respectively. Then we have:

|λi − σi| ≤ ‖N‖2 ∀ i ∈ [n].

The below given lemma bounds the `∞ norm of an appropriate incoherent matrix using its `2
norm.
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Lemma 12 Suppose M is a symmetric matrix with size n and satisfying Assumption 1. For any
symmetric matrix B ∈ Rn×n, we have:

‖MBM−M‖∞ ≤
µ2r

n
‖MBM−M‖2 .

Next, we present a natural perturbation lemma that bounds the spectral norm distance of A to
AB−1A where B = Pk(A+ E) and E is a perturbation to A.

Lemma 13 Let A ∈ Rn×n be a symmetric matrix with eigenvalues β1, · · · , βn, where |β1| ≥
· · · ≥ |βn|. Let W = A + E be a perturbation of A, where E is a symmetric matrix with
‖E‖2 < |βk|

2 . Also, let Pk(W ) = UΛU> be the eigenvalue decomposition of the best rank-k
approximation of W . Then, Λ−1 exists. Furthermore, we have:∥∥∥A−AUΛ−1U>A

∥∥∥
2
≤ |βk+1|+ 5 ‖E‖2 , and∥∥∥AUΛ−aU>A

∥∥∥
2
≤ 4

(
|βk|
2

)−a+2

∀ a ≥ 2.

B.3. Proofs of Technical Lemmas from Section B.1, Section B.2

Proof [Proof of Lemma 8] Since (PΩ (A))ij is an unbiased estimate of Aij , we see that E [Bij ] = 0.
For k ≥ 2, we have:

E
[
|Bij |k

]
=

( √
pAij

2
√
n ‖A‖∞

)k(
p

(
1

p
− 1

)k
+ (1− p)

)
≤
( p

2n

) k
2 · 2

pk−1
≤ 1

n (np)
k
2
−1
≤ 1

n
.

Proof [Proof of Lemma 10]
Note that, H =

∑
ij hijeiej

> =
∑

i≤j Gij where Gij = hij
1{i6=j}+1

2

(
eiej

> + ejei
>). Now,

E [Gij ] = 0, maxij ‖Gij‖2 = 2, and,

∥∥∥E [GijG
>
ij

]∥∥∥
2

=

∥∥∥∥∥∥E
∑

ij

h2
ijeiei

>

∥∥∥∥∥∥
2

= max
i

∑
j

E
[
h2
ij

]
≤ 1.

The lemma now follows using matrix Bernstein inequality (Lemma 21).

Proof [Proof of Lemma 12] Let M = U∗ΣU∗> be the eigenvalue decomposition M. We have:

‖MBM−M‖∞ = max
i,j

ei
> (MBM−M) ej

= max
i,j

ei
>
(
U∗ΣU>BU∗ΣU∗> −U∗ΣU∗>

)
ej

≤
(

max
i

∥∥∥ei>U∗∥∥∥
2

)∥∥∥ΣU∗>BU∗Σ−Σ
∥∥∥

2

(
max
j

U∗>ej

)
(ζ1)

≤ µ2r

n

∥∥∥U∗ (ΣU∗>BU∗Σ−Σ
)
U∗>

∥∥∥
2

=
µ2r

n
‖MBM−M‖2 ,

17



JAIN NETRAPALLI

where (ζ1) follows from the incoherence of M.

Proof [Proof of Lemma 13] Let W = UΛU> + ŨΛ̃Ũ> be the eigenvalue decomposition of W
where ŨΛ̃Ũ> corresponds to the botton n−k singular components. Since Pk(W ) = UΛU>, we
see that |λk| ≥

∣∣∣λ̃i∣∣∣.
From Lemma 11, we have:

|λi − βi| ≤ ‖E‖2 , ∀ i ∈ [k], and,
∣∣∣λ̃i − βk+i

∣∣∣ ≤ ‖E‖2 , ∀ i ∈ [n− k]. (20)

Since ‖E‖2 ≤
βk
2 , we see that

|λk| ≥ |βk| /2 > 0. (21)

Hence, we conclude that Λ ∈ Rk×k is invertible proving the first claim of the lemma.
Using the eigenvalue decomposition of W , we have the following expansion:

AUΛ−1U>A−A =
(
UΛU> + ŨΛ̃Ũ> −E

)
UΛ−1U>

(
UΛU> + ŨΛ̃Ũ> −E

)
−A

= UΛU> −UU>E −EUU> + EUΛ−1U>E −UΛU> − ŨΛ̃Ũ> + E

= −UU>E −EUU> + EUΛ−1U>E − ŨΛ̃Ũ> + E. (22)

Applying triangle inequality and using ‖BC‖2 ≤ ‖B‖2 ‖C‖2, we get:∥∥∥A−AUΛ−1U>A>
∥∥∥

2
≤ 3 ‖E‖2 +

‖E‖22
|λk|

+
∣∣∣λ̃1

∣∣∣ .
Using the above inequality with (21), we obtain:∥∥∥A−AUΛ−1U>A>

∥∥∥
2
≤ |βk+1|+ 5 ‖E‖2 .

This proves the second claim of the lemma.
Now, similar to (22), we have:

AUΛ−aU>A =
(
UΛU> + ŨΛ̃Ũ> −E

)
UΛ−aU>

(
UΛU> + ŨΛ̃Ũ> −E

)
= UΛ−a+2U> −UΛ−a+1U>E −EUΛ−a+1U> + EUΛ−aU>E.

The last claim of the lemma follows by using triangle inequality and (21) in the above equation.

Appendix C. Proof of Lemma 3

We now present a proof of Lemma 3 that show decrease in the Frobenius norm of the error matrix,
despite using same samples in each iteration. In order to state our proof, we will first introduce
certain notations and provide a few perturbation results that might be of independent interest. Then,
in next subsection, we will present a detailed proof of Lemma 3. Finally, in Section C.3, we present
proofs of the technical lemmas given below.
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C.1. Notations and Technical Lemmas

Recall that we assume (wlog) that M ∈ Rn×n is symmetric and M = U∗ΣU∗> is the eigenvalue
decomposition (EVD) of M.

In order to state our first supporting lemma, we will introduce the concept of tangent spaces of
matrices Bhatia (1997).

Definition 14 Let A be a matrix with EVD (eigenvalue decomposition) U∗ΣU∗>. The following
space of matrices is called the tangent space of A:

T (A) :=
{
U∗Λ0U

∗> + U∗Λ1U
> + UΛ2U

∗>
}
,

where U ∈ Rn×n,UTU = I , and Λ0,Λ1,Λ2 are all diagonal matrices.

That is, if A = U∗ΣU∗> is the EVD of A, then any matrix B can be decomposed into four
mutually orthogonal terms as

B = U∗U∗>BU∗U∗> + U∗U∗>BU∗⊥U
∗
⊥
> + U∗⊥U

∗
⊥
>BU∗U∗> + U∗⊥U

∗
⊥
>BU∗⊥U

∗
⊥
>,
(23)

where U∗⊥ is a basis of the orthogonal space of U∗. The first three terms above are in T (A) and the
last term is in T (A)⊥. We let PT (A) and PT (A)⊥ denote the projection operators onto T (A) and
T (A)⊥ respectively.

Lemma 15 Let A and B be two symmetric matrices. Suppose further that B is rank-k. Then, we
have: ∥∥∥PT (A)⊥ (B)

∥∥∥
F
≤
‖A−B‖2F
σk(B)

.

Next, we present a few technical lemmas related to norm of M − PΩ(M):

Lemma 16 Let M , Ω be as given in Lemma 3 and let p = |Ω|/n2 be the sampling probability.
Then, For every r × r matrix Σ̂, we have (w.p. ≥ 1− n−10−α):∥∥∥∥(U∗Σ̂U∗> − 1

p
PΩ

(
U∗Σ̂U∗>

))
U∗
∥∥∥∥
F

≤ 1

40

∥∥∥Σ̂∥∥∥
F
.

Lemma 17 Let M , Ω, p be as given in Lemma 3. Then, for every i, j ∈ [r], we have (w.p. ≥
1− n−10−α): ∥∥∥∥u∗ju∗i> − 1

p
PΩ

(
u∗ju

∗
i
>
)∥∥∥∥

2

<
1

40r
√
r
.

Lemma 18 Let M , Ω, p be as given in Lemma 3. Then, for every i, j ∈ [r] and s ∈ [n], we have
(w.p. ≥ 1− n−10−α): ∣∣∣∣∣∣〈u∗i ,u∗j〉− 1

p

∑
(s,l)∈Ω

(u∗i )s
(
u∗j
)
l

∣∣∣∣∣∣ < 1

40r
√
r
.
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C.2. Detailed Proof of Lemma 3

Let E := X − Pk (M), H := E − 1
pPΩ (E) and G := X − 1

pPΩ (X −M) = Pk (M) + H −
1
pPΩ (M− Pk (M)). That is, X+ = Pk (G).

For simplicity, in this section, we let M = U∗ΣU∗> + U∗⊥ΣU∗⊥
> denote the eigenvalue

decomposition (EVD) of M with Pk (M) = U∗ΣU∗>, and also let M = U∗⊥ΣU∗⊥
>. We also use

the shorthand notation T := T (Pk (M)).
Representing X in terms of its projection onto T and its complement, we have:

X = U∗Λ0U
∗> + U∗Λ1U

∗
⊥
> + U∗⊥Λ1

>U∗> + U∗⊥Λ3U
∗
⊥
>, (24)

and also conclude that:

‖Σ−Λ0‖F ≤ ‖X − Pk (M)‖F , ‖Λ1‖F ≤ ‖X − Pk (M)‖F , and ‖Λ3‖F ≤
‖X − Pk (M)‖F

n2
,

where the last conclusion follows from Lemma 15 and the hypothesis that ‖X − Pk (M)‖F <
|σk|
n2 .

Using ‖E‖F ≤ σk/n2, we have:

‖H‖F ≤
2

p
‖E‖F ≤

2

p

σk
n2
≤ σk

8
, and,∥∥∥∥1

p
PΩ (M)

∥∥∥∥
F

≤ 1

p
‖M‖F ≤

1

p

σk
n2
≤ σk

8
,

where we used the hypothesis that ‖M− Pk (M)‖F <
σk
n2 in the second inequality.

The above bounds implies:∥∥∥∥PT (H− 1

p
PΩ (M)

)∥∥∥∥
F

≤
∥∥∥∥H− 1

p
PΩ (M)

∥∥∥∥
F

≤ ‖H‖2 +

∥∥∥∥1

p
PΩ (M)

∥∥∥∥
F

≤ σk
4
. (25)

Similarly, ∥∥∥∥PT ⊥ (H− 1

p
PΩ (M)

)∥∥∥∥
2

≤ σk
4
. (26)

Since X+ = Pk

(
Pk (M) + H− 1

pPΩ (M)
)

, using Lemma 4 with (25), (26), we have:

‖Pk (M)−X+‖F =

∥∥∥∥Pk (Pk (M) + PT ⊥
(

H− 1

p
PΩ (M)

))
− Pk

(
Pk (M) + H− 1

p
PΩ (M)

)∥∥∥∥
F

≤ c
∥∥∥∥PT (H− 1

p
PΩ (M)

)∥∥∥∥
F

.

Now, using Claim 1, we have
∥∥∥PT (H− 1

pPΩ (M)
)∥∥∥

F
< 1

10 ‖Pk (M)−X‖F+ 2√
p ‖M‖F , which

along with the above equation establishes the lemma. We now state and prove the claim bounding∥∥∥PT (H− 1
pPΩ (M)

)∥∥∥
F

that we used above to finish the proof.

Claim 1 Assume notation defined in the section above. Then, we have:∥∥∥∥PT (H− 1

p
PΩ (M)

)∥∥∥∥
F

<
1

10
‖Pk (M)−X‖F +

2
√
p
‖M‖F .
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Proof We first bound ‖PT (H)‖F . Recalling that Pk (M) = U∗ΣU∗> is the EVD of Pk (M), we
have:

‖PT (H)‖F < 2 ‖HU∗‖F .

Using (24), we have:

HU∗ =

[
U∗ (Σ−Λ0)U∗> − 1

p
PΩ

(
U∗ (Σ−Λ0)U∗>

)]
U∗ +

[
U∗Λ1U

∗
⊥
> − 1

p
PΩ

(
U∗Λ1U

∗
⊥
>
)]

U∗

+

[
U∗⊥Λ2U

∗> − 1

p
PΩ

(
U∗⊥Λ2U

∗>
)]

U∗ +

[
U∗⊥Λ3U

∗
⊥
> − 1

p
PΩ

(
U∗⊥Λ3U

∗
⊥
>
)]

U∗.

(27)

Step I: To bound the first term in (27), we use Lemma 16 to obtain:∥∥∥∥(U∗ (Σ−Λ0)U∗> − 1

p
PΩ

(
U∗ (Σ−Λ0)U∗>

))
U∗
∥∥∥∥
F

≤ 1

40
‖(Σ−Λ0)‖F ≤

1

40
‖X − Pk (M)‖F .

(28)

Step II: To bound the second term, we let U := U∗⊥Λ1
>, and proceed as follows:

∥∥∥∥[U∗Λ1U
∗
⊥
> − 1

p
PΩ

(
U∗Λ1U

∗
⊥
>
)]

u∗i

∥∥∥∥
2

=

∥∥∥∥∥∥
r∑
j=1

(
u∗juj

> − 1

p
PΩ

(
u∗juj

>
))

u∗i

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
r∑
j=1

(
u∗ju

∗
i
> − 1

p
PΩ

(
u∗ju

∗
i
>
))

uj

∥∥∥∥∥∥
2

≤
r∑
j=1

∥∥∥∥u∗ju∗i> − 1

p
PΩ

(
u∗ju

∗
i
>
)∥∥∥∥

2

‖uj‖2

(ζ1)

≤ 1

40r
√
r

r∑
j=1

‖uj‖2 ≤
1

40
√
r

∥∥∥Λ1U
∗
⊥
>
∥∥∥
F
≤ 1

40
√
r
‖Pk (M)−X‖F ,

where (ζ1) follows from Lemma 17. This means that we can bound the second term as:∥∥∥∥[U∗Λ1U
∗
⊥
> − 1

p
PΩ

(
U∗Λ1U

∗
⊥
>
)]

U∗
∥∥∥∥
F

≤ 1

40
‖Pk (M)−X‖F . (29)

Step III: We now let U := U∗⊥Λ2 and turn to bound the third term in (27). We have:

∥∥∥∥[U∗⊥Λ2U
∗> − 1

p
PΩ

(
U∗⊥Λ2U

∗>
)]

u∗i

∥∥∥∥
2

=

∥∥∥∥∥∥
r∑
j=1

〈
u∗j ,u

∗
i

〉
uj − uj � e〈u∗j ,u∗i 〉Ω

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
r∑
j=1

uj �
(〈

u∗j ,u
∗
i

〉
1− e〈u∗j ,u∗i 〉Ω

)∥∥∥∥∥∥
2

(ζ1)

≤ 1

40r
√
r

r∑
j=1

‖uj‖2

≤ 1

40
√
r
‖U∗⊥Λ2‖F ≤

1

40
√
r
‖Pk (M)−X‖F ,
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where 1 denotes the all ones vector, and e〈u∗j ,u∗i 〉Ω
denotes a vector whose sth coordinate is given

by 1
p

∑
l:(s,l)∈Ω

(
u∗j

)
l
(u∗i )l. Note that (ζ1) follows from Lemma 18. So, we again have:∥∥∥∥[U∗⊥Λ2U
∗> − 1

p
PΩ

(
U∗⊥Λ2U

∗>
)]

U∗
∥∥∥∥
F

≤ 1

40
‖Pk (M)−X‖F . (30)

Step IV: To bound the last term in (27), we use Lemma 15 to conclude∥∥∥∥[U∗⊥Λ3U
∗
⊥
> − 1

p
PΩ

(
U∗⊥Λ3U

∗
⊥
>
)]

U∗
∥∥∥∥
F

≤
∥∥∥∥U∗⊥Λ3U

∗
⊥
> − 1

p
PΩ

(
U∗⊥Λ3U

∗
⊥
>
)∥∥∥∥

F

≤ 2

p

∥∥∥U∗⊥Λ3U
∗
⊥
>
∥∥∥
F

=
2

p
‖PT ⊥ (X)‖F ≤

2

p

‖Pk (M)−X‖2F
σk(X)

≤ 1

40n
‖Pk (M)−X‖F . (31)

Combining (28), (29), (30) and (31), we have:

‖PT (H)‖F ≤
1

10
‖Pk (M)−X‖F . (32)

On the other hand, we trivially have:∥∥∥∥1

p
PΩ (M)

∥∥∥∥
F

≤ 2

p
‖M‖F . (33)

Claim now follows by combining (32) and (33).

C.3. Proofs of Technical Lemmas from Section C.1

Proof [Proof of Lemma 15] Let B = UΛU> be EVD of B. Then, we have:∥∥∥PT (A)⊥ (B)
∥∥∥
F

=
∥∥∥U∗⊥U∗⊥>BU∗⊥U

∗
⊥
>
∥∥∥
F

=
∥∥∥U∗⊥>UΛU>U∗⊥

∥∥∥
F

=
∥∥∥U∗⊥>UΛΛ−1ΛU>U∗⊥

∥∥∥
F

≤
∥∥∥U∗⊥>UΛ

∥∥∥
F

∥∥Λ−1
∥∥

2

∥∥∥ΛU>U∗⊥

∥∥∥
F

= ‖A−B‖F
∥∥Λ−1

∥∥
2
‖A−B‖F

≤
‖A−B‖2F
σk(B)

.

Hence Proved.

We will now prove Lemma 4, which is a natural extension of the Davis-Kahan theorem. In order
to do so, we will first recall the Davis-Kahan theorem:

Theorem 19 (Theorem VII.3.1 of Bhatia (1997)) Let A and B be symmetric matrices. Let S1, S2 ⊆
R be subsets separated by ν. Let E = PA(S1) and F = PB(S2) be an orthonormal basis of the
eigenvectors of A with eigenvalues in S1 and that of the eigenvectors of B with eigenvalues in S2

respectively. Then, we have:

‖EF‖2 ≤
1

ν
‖A−B‖2 , ‖EF‖F ≤

1

ν
‖A−B‖F .
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Proof [Proof of Lemma 4] Let A = U∗ΣU∗> + U∗⊥Σ̂U∗⊥
> be the EVD of A with Pk (A) =

U∗ΣU∗>. Similarly, let A + E = UΛU> + U⊥Λ̂U⊥
> denote the EVD of A + E with

Pk (A + E) = UΛU>. Expanding Pk (A + E) into components along U∗ and orthogonal to
it, we have:

UΛU> = U∗U∗>UΛU>U∗U∗> + U∗⊥U
∗
⊥
>UΛU>U∗U∗> + UΛU>U∗⊥U

∗
⊥
>.

Now,

‖Pk (A + E)− Pk (A)‖F
=
∥∥∥U∗U∗>UΛU>U∗U∗> + U∗⊥U

∗
⊥
>UΛU>U∗U∗> + UΛU>U∗⊥U

∗
⊥
> −U∗ΣU∗>

∥∥∥
F

≤
∥∥∥U∗U∗>UΛU>U∗U∗> −U∗ΣU∗>

∥∥∥
F

+
∥∥∥U∗⊥U∗⊥>UΛU>U∗U∗>

∥∥∥
F

+
∥∥∥UΛU>U∗⊥U

∗
⊥
>
∥∥∥
F

≤
∥∥∥U∗U∗>UΛU>U∗U∗> −U∗ΣU∗>

∥∥∥
F

+
∥∥∥U∗⊥U∗⊥>UΛU>

∥∥∥
F

+
∥∥∥UΛU>U∗⊥U

∗
⊥
>
∥∥∥
F

=
∥∥∥U∗U∗>UΛU>U∗U∗> −U∗ΣU∗>

∥∥∥
F

+ 2
∥∥∥UΛU>U∗⊥U

∗
⊥
>
∥∥∥
F

≤
∥∥∥U∗U∗>UΛU>U∗U∗> + U∗U∗>U⊥Λ̂U⊥

>U∗U∗> −U∗ΣU∗>
∥∥∥
F

+
∥∥∥U∗U∗>U⊥Λ̂U⊥

>U∗U∗>
∥∥∥
F

+ 2
∥∥∥ΛU>U∗⊥

∥∥∥
F

=
∥∥∥U∗U∗>EU∗U∗>

∥∥∥
F

+
∥∥∥U∗>U⊥Λ̂U⊥

>U∗
∥∥∥
F

+ 2
∥∥∥ΛU>U∗⊥

∥∥∥
F

≤ ‖E‖F +
∥∥∥U∗>U⊥Λ̂U⊥

>U∗
∥∥∥
F

+ 2
∥∥∥ΛU>U∗⊥

∥∥∥
F

(34)

Before going on to bound the terms in (34), let us make some observations. We first use
Lemma 11 to conclude that

3

4
|σi| ≤ |λi| ≤

5

4
|σi| , and

∣∣∣λ̂k+i

∣∣∣ ≤ |σk|
2
.

Applying Theorem 19 with S1 =
[
−|σk|

2 , |σk|2

]
and S2 =

(
−∞, −3|σi|

4

]
∪
[

3|σi|
4 ,∞

)
, with separa-

tion parameter ν = |σi|
4 , we see that∥∥∥ui>U∗⊥∥∥∥

2
≤ 4

|σi|
‖E‖2 , and (35)∥∥∥U⊥>U∗∥∥∥

F
≤ 4

|σk|
‖E‖F . (36)

We are now ready to bound the last two terms in the right hand side of (34). Firstly, we have:∥∥∥U∗>U⊥Λ̂U⊥
>U∗

∥∥∥
F
≤
∥∥∥Λ̂∥∥∥

2

∥∥∥U∗>U⊥∥∥∥
2

∥∥∥U⊥>U∗∥∥∥
F
≤
∣∣∣λ̂k+1

∣∣∣ ∥∥∥U⊥>U∗∥∥∥2

F
≤ 2 ‖E‖F ,

where the last step follows from (36) and the assumption on ‖E‖F . For the other term, we have:∥∥∥ΛU>U∗⊥

∥∥∥2

F
=
∑
i

λ2
i

∥∥∥ui>U∗⊥∥∥∥2

2
≤ 25

16

∑
i

σ2
i

16 ‖E‖22
σ2
i

= 25k ‖E‖22 ,
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where we used (35). Combining the above two inequalities with (34) proves the lemma.

Finally, we present proofs for Lemma 16, Lemma 17, Lemma 18.
Proof [Proof of Lemma 16] Using Theorem 1 by Bhojanapalli and Jain (2014), the followings ∀Σ̂
(w.p. ≥ 1− n−10−α):∥∥∥∥U∗Σ̂U∗> − 1

p
PΩ

(
U∗Σ̂U∗>

)∥∥∥∥
2

≤ µ2r
√
np
‖Σ̂‖2 ≤

1√
r · C · α log n

‖Σ̂‖2.

Lemma now follows by using the assumed value of p in the above bound along with the fact that(
U∗Σ̂U∗> − 1

pPΩ

(
U∗Σ̂U∗>

))
U∗ is a rank-r matrix.

Proof [Proof of Lemma 17] LetH = 1
β

(
u∗ju

∗
i
> − 1

pPΩ

(
u∗ju

∗
i
>
))

, where β = 2µ2r√
n·p . Then, using

Lemma 8, H satisfies the conditions of Definition 7. Lemma now follows by using Lemma 10 and
using p as given in the lemma statement.

Proof [Proof of Lemma 18] Let δij = I[(i, j) ∈ Ω]. Then,〈
u∗i ,u

∗
j

〉
− 1

p

∑
(s,l)∈Ω

(u∗i )l
(
u∗j
)
l

=
∑
l

(1− δsl
p

) (u∗i )l
(
u∗j
)
l

=
∑
l

Bl, (37)

where E[Bl] = 0, |Bl| ≤ 2µ2r
n·p , and

∑
E[B2

l ] = µ2r
n·p . Lemma follows by using Bernstein inequality

(given below) along with the sampling probability p specified in the lemma.

Lemma 20 (Bernstein Inequality) Let bi be a set of independent bounded random variables, then
the following holds ∀ t > 0:

Pr

(∣∣∣∣∣
n∑
i=1

bi − E[
n∑
i=1

bi]

∣∣∣∣∣ ≥ t
)
≤ exp

(
− t2

E[
∑

i b
2
i ] + tmaxi |bi|/3

)
.

Lemma 21 (Matrix Bernstein Inequality (Theorem 1.4 of Tropp (2012))) Let Bi ∈ Rn×n be a
set of independent bounded random matrices, then the following holds ∀ t > 0:

Pr

(∥∥∥∥∥
n∑
i=1

Bi − E[

n∑
i=1

Bi]

∥∥∥∥∥
2

≥ t

)
≤ n exp

(
− t2

σ2 + tR/3

)
,

where σ2 = E
[∑

iB
2
i

]
and R = maxi ‖Bi‖2.

Appendix D. Proof of Lemma 9

We will prove the statement for r = 1. The lemma can be proved by taking a union bound over all
r. In order to prove the lemma, we will calculate a high order moment of the random variable

X̂a :=
〈
e1, Ĥ

au
〉
,
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and then use Markov inequality. We use the following notation which is mostly consistent with
Lemma 6.5 of Erdos et al. (2013). We abbreviate (i, j) as α and denote ĥij by ĥα. We further let

B(i,j)(k,l) := δjk.

With this notation, we have:

X̂a =
∑

α1,··· ,αa
α1(1)=1

Bα1α2 · · ·Bαa−1αa ĥα1 · · · ĥαauαa(2).

We now split the matrix Ĥ into two parts H and H′ which correspond to the upper triangular and
lower triangular parts of Ĥ. This means

X̂a =
∑

α1,··· ,αa
α1(1)=1

Bα1α2 · · ·Bαa−1αa

(
hα1 + h′α1

)
· · ·
(
hαa + h′αa

)
uαa(2). (38)

The above summation has 2a terms, of which we consider only

Xa :=
∑

α1,··· ,αa
α1(1)=1

Bα1α2 · · ·Bαa−1αahα1 · · ·hαauαa(2).

The resulting factor of 2a does not change the result.
Abbreviating ααα := (α1, · · · , αa), and

ζααα := Bα1α2 · · ·Bαa−1αahα1 · · ·hαauαa(2),

we can write

Xa =
∑
ααα

ζααα,

where the summation runs only over those ααα such that α1(1) = 1.
Calculating the kth moment expansion of Xa for some even number k, we obtain:

E
[
Xk
a

]
=

∑
ααα1,··· ,αααk

E [ζααα1 · · · ζαααk ] . (39)

For each validααα = (αααs) = (αsl ), we define the partition Γ(ααα) of the index set {(s, l) : s ∈ [k]; l ∈ [a]},
where (s, l) and (s′, l′) are in the same equivalence class if αsl = αs

′
l′ . We first bound the contribu-

tion of all ααα corresponding to a partition Γ in the summation (39) and then bound the total number
of partitions Γ possible. Since each hα is centered, we can conclude that any partition Γ that has a
non-zero contribution to the summation in (39) satisfies:

(*) each equivalence class of Γ contains at least two elements.

We further bound the summation in (39) by taking absolute values of the summands

E
[
Xk
a

]
≤

∑
ααα1,··· ,αααk

E [|ζααα1 | · · · |ζαααk |] , (40)
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where the summation runs over (ααα1, · · · ,αααk) that correspond to valid partitions Γ. Fixing one such
partition Γ, we bound the contribution to (40) of all the terms ααα such that Γ(ααα) = Γ.

We denote G ≡ G(Γ) to be the graph constructed from Γ as follows. The vertex set V (G) is
given by the equivalence classes of Γ. For every (s, l), we have an edge between the equivalence
class of (s, l) and the equivalence class of (s, l + 1).

Each term in (40) can be bounded as follows:

E [|ζααα1 | · · · |ζαααk |] ≤ ‖u‖
k
∞

(
k∏
s=1

a−1∏
l=1

Bαslα
s
l+1

)
E

[
k∏
s=1

(
a∏
l=1

∣∣hαsl ∣∣
)]

≤ ‖u‖k∞

(
k∏
s=1

a−1∏
l=1

Bαslα
s
l+1

) ∏
γ∈V (G)

1

n
,

where the last step follows from property (∗) above and Definition 7.
Using the above, we can bound (40) as follows:

E
[
Xk
a

]
≤
‖u‖k∞
nv

∑
α1,··· ,αv

 ∏
{γ,γ′}∈E(G)

Bαγαγ′

 .

where v := |V (G)| denotes the number of vertices in G.
Factorizing the above summation over different components of G, we obtain

E
[
Xk
a

]
≤
‖u‖k∞
nv

l∏
j=1

∑
α1,··· ,αvj

 ∏
{γ,γ′}∈E(Gj)

Bαγαγ′

 , (41)

where l denotes the number of connected components ofG,Gj denotes the jth component ofG, and
vj denotes the number of vertices in Gj . We will now bound terms corresponding to one connected
component at a time. Pick a connected component Gj . Since αs1(1) = 1 for every s ∈ [a], we know
that there exists a vertex αγ ∈ Gj such that αγ(1) = 1. Pick one such vertex as a root vertex and
create a spanning tree Tj of Gj . We use the bound Bαγαγ′ ≤ 1 for every {γ, γ′} ∈ Ej \ Tj . The

remaining summation
∑

α1,··· ,αvj

(∏
{γ,γ′}∈Tj Bαγαγ′

)
can be calculated bottom up from leaves to

the root. Since ∑
αγ′

Bαγαγ′ = n, ∀ γ,

we obtain

∑
α1,··· ,αvj

 ∏
{γ,γ′}∈E(Gj)

Bαγαγ′

 ≤ nvj .
Plugging the above in (41) gives us

E
[
Xk
a

]
≤
‖u‖k∞
nv

n
∑
j vj = ‖u‖k∞ .
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(a) (b) (c) (d)

Figure 1: SVP vs St-SVP: simulations on synthetic datasets. a), b): recovery error and run time
of the two methods for varying rank. c): run time required by St-SVP and SVP with
varying condition number. d): run time of both the methods with varying matrix size.

Noting that the number of partitions Γ is at most (ka)ka, we obtain the bound

E
[
Xk
a

]
≤ (‖u‖∞ (ka)a)k .

Choosing k = 2d logn
a e and applying kth moment Markov inequality, we obtain

Pr [|Xa| > (c log n)a ‖u‖∞] ≤ E
[
|Xa|k

]( 1

(c log n)a ‖u‖∞

)k
≤
(

ka

c log n

)ka
≤ n−2 log c

2 .

Going back to (38), we have:

Pr
[∣∣∣X̂a

∣∣∣ > (c log n)a ‖u‖∞
]
≤ 2aPr

[
|Xa| >

( c
2

log n
)a
‖u‖∞

]
≤ 2aE

[
|Xa|k

]( 1(
c
2 log n

)a ‖u‖∞
)k

≤ 2a
(

ka

c log n

)ka
≤ n−2 log c

4 .

Applying a union bound now gives us the result.

Appendix E. Empirical Results

In this section, we compare the performance of St-SVP with SVP on synthetic examples. We do not
however include comparison to other matrix completion methods like nuclear norm minimization
or alternating minimization; see Jain et al. (2010) for a comparison of SVP with those methods.

We implemented both the methods in Matlab and all the results are averaged over 5 random
trials. In each trial we generate a random low rank matrix and observe |Ω| = 5(n1 + n2)r log(n1 +
n2) entries from it uniformly at random.

In the first experiment, we fix the matrix size (n1 = n2 = 5000) and generate random matrices
with varying rank r. We choose the first singular value to be 1 and the remaining ones to be 1/r,
giving us a condition number of κ = r. Figure 1 (a) & (b) show the error in recovery and the
run time of the two methods, where we define the recovery error as

∥∥∥M̂−M
∥∥∥

2
/ ‖M‖2. We see

that St-SVP recovers the underlying matrix much more accurately as compared to SVP. Moreover,
St-SVP is an order of magnitude faster than SVP.
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In the next experiment, we vary the condition number of the generated matrices. Interestingly,
for small κ, both SVP and St-SVP recover the underlying matrix in similar time. However, for
larger κ, the running time of SVP increases significantly and is almost two orders of magnitude
larger than that of St-SVP. Finally, we study the two methods with varying matrix sizes while keep-
ing all the other parameters fixed (r = 10, κ = 1/r). Here again, St-SVP is much faster than SVP.
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