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Abstract

This work provides improved guarantees for streaming fplacomponent analysis (PCA). Given
Ay, ... A, € R4 sampled independently from distributions satisfylagA ;] = X for £ = 0, this
work provides arO(d)-space linear-time single-pass streaming algorithm fomesing the top eigen-
vector ofX. The algorithm nearly matches (and in certain cases imgropen) the accuracy obtained
by the standard batch method that computes top eigenvefctoe @mpirical covarianc% Zie[n] A,
as analyzed by the matrix Bernstein inequality. Moreovegdhieve constant accuracy, our algorithm
improves upon the best previous known sample complexifisg@aming algorithms by either a multi-
plicative factor ofO(d) or 1/gap wheregap is the relative distance between the top two eigenvalues of
3.

These results are achieved through a novel analysis of &issiclOja’s algorithm, one of the oldest
and most popular algorithms for streaming PCA. In particulais work shows that simply picking
a random initial pointw, and applying the update rule; ; = w; + 1;A;w; suffices to accurately
estimate the top eigenvector, with a suitable choice;ofWe believe our result sheds light on how to
efficiently perform streaming PCA both in theory and in pigetand we hope that our analysis may
serve as the basis for analyzing many variants and extensf@ireaming PCA.
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1 Introduction

Principal component analysis (PCA) is one of the most furefgal problems in machine learning, numer-
ical linear algebra, and data analysis. It is commonly usediata compression, image processing, and
visualization [[__il] etc.

When we desire to perform PCA on large data sets, it may beatbe that we cannot afford more than
single pass over the data (or worse to even store the data ifirgh place) |I|2[|3|:|4]. To alleviate this
issue, a popular line of research over the past several dedas been to consider streaming algorithms
for PCA under the assumption that the data has reasonalikticsh properties Hd]fﬂﬂ ﬂ 9]. There have
been significant breakthroughs in getting near-optima&asiing PCA algorithms under fairly specialized
models, e.g. spiked covariance [9].

This work considers one of the most natural variants of PGAmting the top eigenvector of a sym-
metric matrix, under a mild (and standard) set of assumgtimrder which concentration of measure applies
(under the matrix Bernstein inequalib—d 11]). In pautar, the setting is as follows:

Definition 1 (Streaming PCA)Let A1, As, ..., A,, € R?*? be a sequence of (not necessarily symmetric)
matrices sampled independently from distributions thasfgethe following:

1. E[A;] = = for symmetric positive semidefinite (PSD) matbixe R?*¢,

2. |A; — 2|, < M with probability 1, and

3. max {HE [(Ai ~)(A; - zﬂ (

Jefis-mriam]]} v

Letvy,...,v4 denote the eigenvectors Bf andA; > ... > \; denote the corresponding eigenvalues. Our
. o . : . A
goal is to compute asrapproximation tos1, that is a unit vectow such thakin?(w,vi) = 1 —(w'v{)2 <

€, in a single pass while minimizing space, time, and errer. ¢). Note thatsin(w, v;) denotes thein of
the angle betweew andv;.

A special case of Streaming PCA is to estimate the top eigéovef the covariance matrix of a distribu-
tion D overR?, i.e. given independent samples ..., a,, € R? estimate the top eigenvector Bfplaa'].
This encompasses the popular "spiked covariance md@].” [12

It is well known that to solve the Streaming PCA problem, oae simply compute the empirical
covariance matri% Zie[n] A,; and compute the right singular vector of this matrix. Herafnw Bernstein
inequality m)] and Wedin’s theoreriﬂl?)] implies theldaling standard sample complexity bound for
the Streaming PCA problem:

Theorem 1.1(Eigenvector Concentration using matrix Bernstein andiwetheorem) Under the assump-
tions of Definitior 1L, the top right singular vecterof ¥ = % > A, is ane-approximation to the top
eigenvector; of X with probability 1 — ¢, where

1€[n]

. 2~
sin®(v,vy) <e < 3

d d\ 2
16V1ogs 1 n 4Mlog § 1
()\1 — )\2)2 n )\1 — )\2

Theoren 11l is essentially the previous best sample complknown for estimating the top eigenvec-
torfl. Unfortunately, the above is purely a statistical claind,aigorithmically, there are least two concerns.

In recent work in] it was shown that tlieg(d/0) factor in the first term could be removed asymptotically foedl enough
e if only constant success probability is required.



First, computing the empirical covariance matiix= L Zle[n A; naively requires)(d?) time and space,
and second, computing the top eigenvector of the emplrmairdance matrix in general may require super
linear time [LTJS]. While there have been many attempts toycedstreaming algorithms that use oflyd)
space to solve the streaming PCA problem, to our knowledgesewvious methods either lose a multiplica-
tive factor of either or d in the analysis in order to achieve constant accuracy whephegpin our
setting IEVDS.d]de

In an attempt to overcome this limitation and improve thergagees for solving the streaming PCA
problem, this work seeks to address the following question:

Can we match the sample complexity of matrix Bernstein + it&ettieorem with an algorithm
that useD(d) space only and takes a single linear-time pass over the fput

This work answers this question in the affirmative, showimat bne can succeed with constant proba-
bility matching the sample complexity of Theorém]1.1 up tgadthmic terms and small additive factors.
Interestingly, this is achieved by providing a novel aniaslyaf the classical Oja’s algorithm, which is per-
haps, the most popular algorithm for Streaming PCA [6].

Algorithm 1 Oja’s algorithm for computing top eigenvector
Input: Aq,---,A,.
Choosew( uniformly at random from the unit sphere
fort=1,--- ,ndo
Wi < Wi_1 + 0 A;wi_g
wi < wi/ [[will
end for
Output: wy

Oja’s algorithm is one of the simplest algorithms one wouldgine for the streaming PCA problem
(See Algorithni1l). In fact, due to its simplicity, it was paged a neurally plausible algorithm. In the case
that eachA,; comes from the same distributidn it corresponds to simply performing projected stochas-
tic gradient descent on the objective function of maxindzthe Rayleigh Quotient over the distribution
Max||y|,=1 Ea-pw ' Aw. Itis well known that under very mild conditions on the sigpsequence, Oja’s
algorithm asymptotically converges to the top eigenveofathe covariance matri¥x [6]. However, ob-
taining optimal rates of convergence, let alone finite sangpiarantees, for Streaming PCA has been quite
challenging. The best known results are off from Thedrerb.a factor ofO (d [IQ]

This work shows that for proper choice of learning rajg<Oja’s algorithm in fact can improve the best
known results for streaming PCA and answer our questiondraffirmative. In particular, we have that:

Theorem 1.2. Let the assumptions of Definitih 1 hold. Suppose the stegsguence for Algorithid 1 is

chosen to bey;, = %, where

Mlogd (V + ()\1)2> log2 d
(A1 —=22)" (M1 —Ag)?

Then the outputv,, of Algorithm[1 is ane-approximation to the top eigenvectei of X satisfying

| Vlogd 1 25 2logd
2 <e < VUV I n
sin®(wy,,vy) <e < C((,\l—/\g)Q n+<”> ’
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with probability greater tharg /4. HereC' is an absolute numerical constant.

The error above should be interpreted as being the sum@®@f(A) higher order term and another
O ((28/n)*!e4) lower order term which is at most(—L) (oncen > 45%). In particular, this result

nlogd

shows that, up to an additive lower order term, one can makgoen{ Ll with an asymptotic error of

@ (%) with constant probability. The lower order term haswhich is themax of three parts:
A2 log?d

(Af\fl_of;l), fllig;‘)ﬁ and ;.5 5. The first part, depending a1, is exactly the same as what appears in
Theore . The second one, depending’dmas an additiondlbg d factor over the first order term and
is irrelevant once, say > 103. Notably, the third part, depending od, does not appear in Theorém]1.1;
it arises here entirely due to computational reasons: ttimgeallows only asingle linear-time passver
the matrices, while Theorein 1.1 makes no such assumptianingtance, consider the ca¥e= 0 which
meansA; = X. Matrix Bernstein tells us that one sample is sufficient tmpatev;. However, it is not
evident how to compute it using a single pass oAgr Note however, that the rate at which the lower order
terms, i.e.o ( L ), decrease is much better thé(1/n?) guaranteed by Theorem1.1.

nlogd

In fact, this result also improves the asymptotic error mitined by Theorefn 1.1. In particular, the
following result shows that Oja’s algorithm gets an asyriptate of O (W) which is better than

that of matrix Bernstein by a factor @? (log d)E

Theorem 1.3. Let the assumptions of Definitibh 1 hold. Suppose the stegsguence for Algorithid 1 is

2
52720max< M VA >

(A1 —=X2)” (A1 — A2)?

Suppose: > 312d%!. Then the outputv,, of Algorithm[] is are-approximation to the top eigenvecter
of X satisfying

V 1 1
.2
sin®(wy,vi) <e < C(()\1—)\2)2 'E—Fn?)’

with probability greater tharg /4. HereC'is an absolute numerical constant.

Note that Theorenis 1.2 ahd1l.3 guarantee success propabilif4. One way to boost the probability
to 1 — 4§, for somes > 0, is to runO (log 1/J) copies of the algorithm, each wily4 success probability
and then output the geometric median of the solutions, wbarhbe done in nearly linear ti 17]. The
detailes are omitted here.

Beyond the improved sample complexities we believe ouryaigkheds light on the type of step sizes
for which Oja’s algorithm converges quickly and therefdhenninates how to efficiently perform streaming
PCA. We note that we have essentially assumed an oracle saiislhe step size sequence, and an important
guestion is how to set the step size in a robust and data datandananner. Moreover, we believe that our
analysis is fairly general and hope that it may be extendedaie progress on analyzing the many variants
of PCA that occur in both theory and in practice.

2A similar asymptotic result was recently obtained E [1L4pwever, their result requires an initial vector that is ¢ansclose
to vi, which itself is a difficult problem.



Algorithm Error O (d) space?
Oja’s (this work, Theorem[4.1) | O ((All’M)Q . %) Yes
Matrix Bernstein + Wedin's 0 ( Viegd 1) No
theorem (Theoreiin 11.1) (A1=A2)? n
Alecton [9] o ((AlffiQ)Q : IOEL") Yes
Block Power Method [[16] | © ( (‘Ql_l;f)‘i . log ”) Yes

Table 1. Asymptotic error guaranteed by various method€uadsumptions of Definitidd 1 with at least
constant probability, and ignoring constant factors. Rebat the error is defined asn?(w,v;) = 1 —

(w Tv1)2. Our analysis provides the optimbin error decay rate as compared to Alecton and Block power
method which obtam}M Moreover, our bound i§(d) tighter than that of Alecton [[9] and)(A -5)
tighter bound than that of Block Power Methdﬂ[16] The agstions made |n|]9] for Alecton are dlﬁerent
from our (more standard) assumption; we have optimized thminds are optimized in our setting. See
Sectior 1.1l for a concrete example where our analysis peswitese improvements over [@ 16].

1.1 Comparison with Existing Results

Here we compare our sample complexity bounds with existirayges of various methods. Recall that the
error of the estimatev is sin?(w,vy) = 1 — (w'vy)2

We consider three popular methods used for compwing The first one is the batch method which
computes largest eigenvector of empirical covariance aed Wedin’s theorem with matrix Bernstein in-
equality (cf. Theorerh 111). The second method is Alectonickvis very similar to Oja’s algorithm DQ]
Finally, consider a block-power method (BPMD[ﬂS, 8] whiclkiides samples into different blocks and
applies power iteration to the empirical estimate from dalokbk. See Tablel1 for the comparison.

We stress that some of the results we compare to make diffassamptions than Definitidd 1. The
bounds stated for them are our best attempt to adapt theirdsoin the setting of Definition] 1 (which is
quite standard). The next paragraph provides a simple deampich demonstrates the improvement in
our result as compared to existing work.

Let A; = x;x., wherex; € R? andx; = e; with probability 1/d andx; = ce;,1 < j < d with

probability 1/d whereej denotes the/" standard basis vector and < 1. Note thatX = E[A;] =
(l%ﬁelef 1621, ||A;]]2 < 1forall i, and||E [A;A]] |2 < 5. Even for constant accuraey= (1),
Theoren IR teIIs us that = O (%) is sufficient. On the other hand, Theordnof [9] requires

(1-02)
n=0 (%) while Theorem2.4 of [1€] requiresn = O (ﬁ%"ﬁ%) Asymptotically, as: becomes

larger, our error scales &3 ((TZTE ) while that of [Sb] scales a® ((isz . loﬂ) and that of |L—lb]

scales a®) (ﬁW . log ”) Combining matrix Bernstein and Wedin’s theorems givessymngtotic error
of O ( dlogd . l).

(1-02)2 n

1.2 Additional Related Work

Existing results for computing largest eigenvector of adaivariance matrix using streaming samples can
be divided into three broad settings: a) stochastic datartijrary sequence of data, ¢) regret bounds for
arbitrary sequence of data.



Stochastic data Here, the data is assumed to be sampled i.i.d. from a fixéddbdison. The analysis of
Oja’s algorithm as well as those of block power method andtle mentioned earlier are in this settinﬁl [8]
also obtained a result in the restricted spiked covariarnmgem B’] provides an analysis of a modification of
Oja’s algorithm but with an extré(d”®) multiplicative factor compared to oursi:[14] provides agagithm
based on shift and invert framework that obtains the sanmisfic error as ours. However, their algorithm
requires warm start with a vector that is already constargecto the top eigenvector, which itself is a hard
problem.

Arbitrary data : In this setting, each row of the data matrix is provided iradpitrary order. Most of
the existing methods here first compute a sketch of the maiiikuse that to compute an estimate of the
top eigenvector mﬂﬂm 23]. However, a dire@liegtion of such techniques to the stochastic
setting leads to sample complexity bounds which are largea ultiplicative factor ofO(d) (ignoring
other factors like variance etc). Finallﬂﬁ] El 14] gisovide methods for eigenvector computation, but
they require multiple passes over the data and hence do plgttaphe streaming setting.

Regret bounds Here, at each step the algorithm has to output an estimaiév; for which we get
reward ofw’ A;w and the goal is to minimize the regret w.rt;;. The algorithms in this regime are
mostly based on online convex optimization and applyingitiveour setting would again result in a loss of
multiplicative O(d). Moreover, typical algorithms in this setting are not meyneificient @5].

1.3 Notation

Bold lowercase letters such asv, w are used to denote vectors and bold uppercase letters siciBaC
to denote matrices. For symmetric matricesandB, A < B denotes the condition that' Ax < xBx
for all x and defineB > A analogously. A symmetric matriA is positive semidefinite ifA = 0. For

symmetric matrices\, B, define their inner product d&\, B) 2Ty (A™B).

1.4 Paper Organization

The rest of this paper is organized as follows. Sedflon Déhtces basic mathematical facts used throughout
the paper and also provides a proof of the error bound of #melard batch method (Theoréml1.1). Sedtion 3
provides an overview of our approach to analyzing Oja’s rigan and provides the main technical result
of the paper. This technical result is used in Sedilon 4 tegtbe running time for Oja’s algorithm and to
justify the choice of step size. Sectigh 5 presents the btife main technical result. Sectibh 6 concludes
and mentions a few interesting future directions.

2 Preliminaries

The following basic inequalities regarding power serikg,gxponential, and PSD matrices are used through-
out. The facts are summarized here:

Lemma 2.1(Basic Inequalities) The following are true:
o 1+ a2 <exp(z)forall z

° 1+x2exp(w—$2) forall z >0

1 o] 1
[ ] 1_’_—1, S Zi:l (:B+i)2 é

8=



e (A,B) < (A,C) for PSD matricesA, B, CwithB < C
e Tr (ATB) < 3Tr (ATA + B'B) for all matricesA, B € R™*".

Proof. The first inequality follows from the Taylor expansionesfp(x). The second comes froin+ 0 =
exp(0 — 0?%) and%(l +z) < % exp(z — %) for z > 0. The third follows by considering upper and lower
Riemann sums ofyc’i1 1/(x + y). The fourth from the fact that sinc& is PSD there is a matrif with

DD = A and therefore
(A,B) = Tr (ATB) _ (DBDT> <Tr (DCDT) — (A,C) .

The final follows from Cauchy Schwarz and Young's inequaliy. = - y < (2% + ¢?) as

T (BTA) = S 1BTAL < 3 ALl - [BL; < 5 3 (IALIE + [B13)

i€[n] i€[n] i€[n]

The following is a matrix Bernstein based proof of the erroutd of the batch method.

Proof of Theorerh 111Using Theorem 1.4 ofml], we have (w.p.1 — 9):

< 2-max Uzlogg,ﬂlogg . Q)
n ' n 0

Let v be the top eigenvector & = % Yo, A, Using Wedin's theorem|__[_i3], implies:

i o < [T A3
sin®(vy, V) < 22 |/<11_/\22|2 2

n

1
EZAZ-—z

1=1

2

()

Theorem now follows by combiningl(1) ard (2). O

3 Approach

Let us now describe the approach to analyze Oja’s algorithf@ provide our main theorem regarding the
convergence rate of Oja’s algorithm and discuss how it isguto The details of the proof are deferred to
Sectiorl b and the use of the theorem to choose step sizeséstini$4.

One of the primary difficulties in analyzing Oja’s algorithor more broadly any algorithm for streaming
PCA, is choosing a subtle potential function to analyze tlethad. If we try to analyze the progress of
Oja’s algorithm in every iteratioi, by measuring the quality of7;, we run the risk that during the first few
iterations of Oja’s algorithm a step may actually yieleévya, ; that is orthogonal te;. If this happens, even
in the typical best case, where all future samplesaitself, we would still fail to converge. In short, if we
do not account for the randomnessvaf in our potential function then it is difficult to show that grdly
convergent algorithm does not catastrophically fail.

Rather than analyzing the convergencewgfdirectly we instead analyze the convergence of Oja’s algo-
rithm as an operator ow,. Oja’s algorithm simply considers the matrix

A
n =

B T+ AT+ np—1Ap—1) - T4+ mAy) 3)

7



and outputs the normalized result of applying this maidy, to the random initial vector, i.e.

BnWO

(4)

W, = 0 .
[Brwollz

Rather than analyze the improvemensaf ; overw,, we analyzeB,,,1’s improvement oveB,,.
Another interpretation of {3) andl(4) is that Oja’s algamitlsimply approximatess,, by performing

1 step of the power method on the matky,. Fortunately, analyzing when 1 step of the power method

succeeds is fairly straightforward as we show below:

Lemma 3.1(One Step Power Method) et B € R%*4 letv € R? be a unit vector, and leV | be a matrix
whose columns form an orthonormal basis of the subspacegutial tov. If w € R? is chosen uniformly
at random from the surface of the unit sphere then with prdialat least1 — ¢

sn? (v, B ) __ (¥ Bw 2<010g(1/5)Tr<VIBBTVL>
Bwll2) Bwl,) = o ~TRETS

whereC is an absolute constant.

Proof. As w is distributed uniformly over the sphere, we have:= g/|/g||» whereg ~ N(0, ). Conse-
quently, with probability at least — §

(GTBw>2 _ g BTI-W)Bg & C1g"BT(I-VW )Bg

Bw], g"BTBg =5  v'BBTv
& Clog(1/9) Tr (BT(I-vv")B)
= 5 VIBBTv ’

whereC andC are absolute constants. follows asg 'B'Bg > (v Bg)? > 4-v' BB’ v where the sec-

ond inequality follows from the fact that” Bg is a Gaussian random variable with variatﬂ@TGH; Sim-
ilarly, ¢; follows from the fact that" B" (I - vv ' )Bg is ax?* random variable witfr (B" (I — vv')B)-
degrees of freedom. O

This lemma makes our goal clear. To show that Oja’s algoriturceeds we simply need to show
that with constant probability B, B,] v, is relatively large andx (V B, B, V) is relatively small,
whereV | is a matrix whose columns form an orthonormal basis of thesgate orthogonal te,. This
immediately alleviates the issues of catastrophic faithe¢ plagued analyzings,,. So long as we picky;
sufficiently small, i.en; = O(1/ max{M, \;}) thenI + n;A; is invertible. In this cas®, B, is invertible
andv{ B,B/v; > 0. In short, so long as we picl; sufficiently small the quantity we wish to bound
Tr (V.B,B, V) /v{ B,B, vy is always finite.

To actually boundv{ B, B, v andTr (V| B, B V) we split the analysis into several parts in Sec-
tion[3. First, we show thak [Tr (V[B,B, V)] is small, which implies by Markov’s inequality that
Tr (V|[B,B, V) is small with constant probability. Then, we show tfiat] B,,B} v, is large and that
Var [v{ BB v;] is small. By Chebyshev's inequality this implies thatB,, B, v; is large with con-
stant probability. Putting these together we achieve thia teahnical result regarding the analysis of Oja’s
method. Once we devise this roadmap, the proof is fairlygtiteorward.



Theorem 3.1(Oja’s Algorithm Convergence Rateleté > 0 and step sizes; < m
wy, of Algorithm[1 is anc-approximation tov; with probability at leastl — § where

e < %exp (51) Z 7722) (d exp ( (A —X2) Z nz) + VZU: exp ( Z 2nj (A1 — Az)))

i€[n] j=i+1

The output

whereQ £ #?1/5) (1 - %\/exp (18Y Y1 n?) — 1) V2V + A2, andC is an absolute constant,

Theoren{ 3.1l is proved in Sectigh 5. Theorem 3.1 serves asatie for our results regarding Oja’s
algorithm. In the next section we show how to use this thedieohoose step sizes and achieve the main
results of this paper.

4 Main Results

Theoreni 3.1, from the previous section, leads to our mairteegrovided here. The theorem and proof are
below and essentially consist of choosing appropriaterpaters to efficiently apply Theordm B.1. Once we
have this theorem, Theoreilns]1.2 1.3 follow by choosirglog d anda = 6 respectively.

Theorem 4.1. Fix anyd > 0 and suppose the step sizes are se; te- for a > % and

=) (BFD

Mo (v+ o)) a2 )

A
= 20 max s
f ((Al = X2)" (A1 — A2)2log (1 + )

Suppose the number of samples- 3. Then the outputv,, of Algorithm[ satisfies:

C'log(1/0) B\ a?y 1
L= (wavi)* < R (d <E> i 2 — 1) (M — A2)? E) 7

with probability at leastl — 6. HereC'is an absolute numerical constant.

Proof. Recall that Theoreiin 3.1 gives a bound of

%exp <5V Z 77,2) (d exp ( (A1 — A\2) Z m) +VZ77, exp ( Z 2n; (M1 — /\2))) (5)

i€n) j=it1

A 52 oy n H (o]
whereQ = &e75 (1 - %\/exp (18V Y n?) — 1>. Sincen; = oy We havedsc(, n7 <
ﬁrﬁ and by our assumption thg%rﬁ < Llog (1+ 135), we have:

2
exp (1812277@) <\/_ = Q_#(l/& (6)

i€[n]



Moreover, sinc& _, ., 7 = x5 log (1 +n/p), we have

2c
exp (2()\1 — A2) Z m) < <5in> . (7

i€[n]

Note thaty~"_, | 7; < 125 log 5571, Moreover, asy > 1/2, we have:

> nfexp (20\1 ~ ) > 77]')
=1

j=i+1

IN

a? " 1 )
o = G (2“ o m) ’

i=1

IN

(B+1)? o’ :
B2 (\ = Xe)2(n+ B+ 1) Z::(
202

. n i 1
o Oy MR AT (Sneea>1/2and) i < /(1Y > 1) (@)

1=1

<
— (
Substituting[(6),[(7) and8) int@](5) proves the theorem. O

5 Bounding the Convergence of Oja’s Algorithm

In this section, we present a detailed proof of Theokem 3 e froof follows the approach outlined in
Sectior B and uses the notation of that section, i.e.

o WeletB, 2 (I+ A, - (I+mA;) with By 2
o WeletV £V + A2

e We letV, € R4~ denote a matrix whose columns form an orthonormal basishstibspace
orthogonal tov; .

We first provide several technical lemmas bounding the drpedoehavior ofB,, and ultimately use these
lemmas to prove Theorem 3.1. We begin with a straightforvlandma bounding the rate of increase of
E [B,B/ | in spectral norm.

Lemma5.1. For all £ > 0 andn; > 0 we have

HE [BtBﬂ H2 < exp (Z 2\ + 772-21}) .
1€[t]
Proof. Leta, £ ||E [B;B]] ||z, i.e.,E [B,;B] ] < a,I. Forallt > 0,

E [BtB;r] =K [(I +mA)B B (I+ ntAt)T} X E [(I +mA)(I+ TItAtT)] )

= o1 E [I + A+ ’I’}tA;r + ’I’}?AtA;r:| =1 [I + 23 + 77?(22 + VI)] , 9

10



where the last inequality follows froffi [A;] = ¥ and,
E [AtAtT] — 2| E [(At ~B)(A, - z)T] <%24 VI,
Using [9) along with|E [B;B/ ] [|2 = oy, & < M1, and=? < A?1, we have foivt > 0:
ar < (14 2mA1 + 17 (A + V)1

The result follows by using induction along witly = 1 and1 4+ x < e”. O

Using Lemmd5]1 we next bound the expected valugdfV | B, B, V| ). Ultimately this will allow
us to bound the valuér (V| B, B, V| ) with by Markov’s inequality.

Lemmab5.2. Forall t > 0 andn; < All the following holds

t
E [Tr (VIBtBtTVLﬂ < exp %:t] 21\ + 77?—7 ld+V 27722 exp %:} 21;(A1 — X2)
J 1= JE

Proof. Leta, 2 E [Tr (V] B,B] V,)]. We first simplifya, as follows:
Q= <IE [BtBﬂ ,VLVI> - <IE [BHBI_J E [(I +mA) VIV (I + ntAtT)} > (10)

Recall thatf [A;] = . Now, the second term on the right hand side can be boundedl@sd:

E [(I + A VLIV] (I + ﬁtAth)] ;

= VIV +gEVIV] 49 VIVIS + 7R [AVIVIA]],

=V.V] +pEV V] + 3V V]S + SV V| 4+ [(At —S)V.IVI(A - E)T] ;

% VIV 4200V V] + 973V V] +n/E [(At -3) (A - E)T] ;

% (1 2000 + 22 VAV 4+ 72V = (14 200 + 1223 + 2V) VAV 4+ 2V - viv],

where(; follows from the fact thalV | is orthogonal tov; and(, follows from defintion of).
Plugging the above intg (10), we get for alb 1,

ap < (14 2n0 + ni (A3 + V)) <E [Bt—lB;I——l} aVLVI> % <E [Bt—le:,r—l] 7V1V1T> )

< (T4 2mAe +miV) w1 + 7V HE [Bt—lBg——l} ‘

)
2

<exp (2mAa + V) apr +mVexp [ D> mid+niV |,
iet—1]

where the last inequality follows froh+ z < ¢* and using Lemm@a5].1.
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Recursing the above inequality, we obtain

oy < Zn?l)exp Z 2152 + nj 2V | exp Z 2n; M1 —Hﬁv + exp Z 2n; Ao + nf-v 0,
i€lt] J=i+l JEli] €l

t
<exp [ Y 2o+ V| (a0 + VD niexp [ D20\ — Ao) + 07V
JE] i=1 JEli]
SinceB, = I we see thatyy = d — 1 < d. Using thaty; < A—ll < %2 completes the proof. O

Next we provide the lemmas that will allow us to lower bOLmIEIBthvl. In Lemma5.B we lower
boundE [v{ B;B/ v1] and in Lemm&%5l4 we upper bountr [v| B,B/ v1]. Ultimately, the lower bound
follows using Chebyshev’s inequality.

Lemma5.3. Forall t > 0 andn; > 0 we have
E |:V1 B;B, vl] > exp 2277@/\1 4772)\2
i€(t]

If we further assume that, < m thenE [v{ BB/ v1] > exp(\ D i -
Proof. Let 3, LR [v{ B,B/ v1]. SinceB; = (I+n:A;) B,_1, we can boung, as

B = < |:Bt 1B 1} E [ (I + 17 As) vivy (I + Ay >}>
< [Bt 1Bt } v1v1 +77t2v1v1 —H7tv1v1 >+ R {AtvlvlTu*TAtTD

< [Bt 1: 1} viv] + Mnevivy +/\177tV1V1T> .

Consequently3; > (1 + 2n:A1)5i—1. FurthermoreB, = I and hences, = ||v1\|§ = 1. Proceeding by
induction and using that + = > exp(z — z2) for all 2 > 0 finishes the proof. O

Lemma 5.4. For t > 0 suppose that; < m for all i € [¢] then.

2
E [(VIBtBj vl) } < exp %%Al + 10m2V

Proof. Let Wy, 2 (T+mAy) - (I+—ss1Ai_ss1) andy, 2 E [(vjwtvswg Sv1)2]. Note that
W;;=B;andy; =E [VlTBtBtTvl]. Now,
v =Tr (E [WztvleWt7tW2:tV1virWt7t})

o T T T T T T

_ (E [(1 + AW vivi W (T mA )T+ m AW/, viv] Wi g (T+m A, )D

=Tr (B [0+ mAD)G 1 T+ mA) T +mA] )G (T+mA)]), (11)

12



whereG,_, 2 W/, _;vivi Wy, 1. In order to bound the above quantity, we first bound the alsave
pression for an arbitrarga;_; = G. We then take an expectation over oy and then finally take an
expectation ovet; 1. That is, for an arbitrary fixed symmetric matiix, we have:

Tr <IE [(I + mAlT) G(I+mA) (I + mAlT) G+ mAl)D
= Tr <IE [(G + mA] G+ GA; + n%AlTGA1>2]>
_ (G2 +mE [AT} G2+ mG2E[A] + G <E [A)] +E [AT]) G
+12E [ATGAlc} +1PE [ATGATG} +1PE[GAGAL] + 7PE [GATGAJ
+ 12 GE [AIAT} G 1 2E [ATGzAl] K [ATG <A1 +A7) GAl]
+n3E [ATGAlATG] +’E [(}AlA1 GAl] +iE [ATGAlATGAlb
= Tr (G?) +4mTr (BG?) + 203Tr (E |A1A] | G?) +0iTr (E [A] GAG )
42T (E [ATGATGD + 2T (E[GALGA1)) + 72T (E [GA1 GA1D
42T (E [AlTG (Al +A] ) GA1D +oiT (E [ATGAlATGAlb (12)

We now bound the various terms above as follows. Each of tbenskeorder terms can be bounded using
LemmdZ.1 as follows:

2 [ (7o) < e re]: imici]
! (Tr (GE [AlAT] G + GE [ATAl} G)) <SG, (13)
The third order terms can be bounded as follows:
E [Tr (AIGAchl)] <E [HA1|]2 Tr (AITGGA1>]
< (M+M\)Tr (GE [AlAlT] G) <M+ M)V-Tr (G2, (14)

where we used the assumption tha, ||, < |A; — ||, + |||, < M + A with probability 1. Finally
the fourth order term can be bounded as

Tr (IE [AITGAlAlTGAl}) < (M +M\)2Tr (G2E [AlAlTD <M+ M)’V Tr (G2, (15)
Plugging [(138),[(T4) and(15) int (11 2) tells us that
Tr <E [(I + mAT) G(I+mA,) (I + nlAlT) G+ ntAl)D
< Tr (G?) + 4m M Tr (G?) + 59iV - Tr (G?)
At (M A M)V T (G?) + 0 (M +0)° V- Tr (G?)
= (1 + A A+ 502V 4 4F (M + M)V + i (M + Al)ZV) Tr (G?)
< exp (4771)\1 + 1077%?) Tr (Gz)

13



where in the last line we used that< m and thatl + z < exp(z)
Using the valueg = G¢_; = W/, _;viv{ W, and plugging the above intb {11), we have

Ye = Tr (E [(I + 771A1T) Gi1 (I+mAy) (I + ?71A1T) Gy (I+ 771A1)D
<exp (4mA1 + 1007 V) E [Tr (G4—12)] = exp (dm A1 + 10n3V) yi—1,
where we used the fact that_; = E [Tr (G4_1?)]. Sinceyo = 1, induction proves the lemma. O
We now have everything to prove Theoreml3.1.

Proof of Theorerh 3]11As discussed in Sectidd 3 the main idea of this proof to ust Algorithm [ is
essentially one step of power method for the maBjxand use Lemma3.1 to bound the error. To this end,
we lower and upper bound, B,,B, v, andTr (V| B, B, V| ), respectively.

First, using Chebyshev’s inequality, we have:

P “vlTBnBZvl _E [vIBnBIw” > %\/Var [v{B,B]vi]| <.

So with probability greater thah— 6, the following holds:

1
viB,B/v; > E [VIBnB;Lrvl] - %\/Var [VIBnB,l—Vl]

1 2 2
~E [VIBnBl—Vl] - %\/E [(vIBnB,Ivl) } —E[v]B,B] vi]

C n n 1 n .
21 exp <2>\1 Zm — 4\ an) x| 1- 7 exp (18 Zn?V) -1
i=1 i=1 0 i=1

(16)

where(; follows from Lemmd5.B and 5.4.
Furthermore, using Lemnia®.2 and Markov’s inequality, weehaith probability at least — ¢,

Tr <VIBtBtTVl) <

exp (Zie[n} 2n; Ao + U?V) ' (
0

d+ VZ?]ZZ exp (Z 21 (M — /\2))) . A7)

=1 Jj€ld]

Consequently with probability at least— 2§ both [16) and[(1]7) hold and therefore the result follows by
Lemmd3.1 and choosingdahat is smaller by a constant. O

6 Conclusion and Future Work

This work presented a finite sample complexity and asympiminvergence rates for the classic Oja’s
algorithm for topd component streaming PCA that match well known matrix cotraéion and perturbation
results for computing the top eigenvector. In fact, asyrigaty our bound improves upon standard matrix
Bernstein bounds by a factor 6f (log d). Our results are tighter than existing streaming PCA resujta
factor of eitherO (d) or O (1/gap.
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Our analysis relied on a novel view of the algorithm and isitécally fairly simple. We hope that our
analysis opens a way to make progress on the many variantSAfthat occur in both theory and practice.
In particular, we believe the following directions shoulkel &if wide interest:

e Multiple components. Currently, our result holds only for estimating the topesigector of>>. Ex-
tension of our technique to compute tbigenvectors is an important future direction.

e Rayleigh quotient Another standard metric to measure optimalityvef, is Rayleigh quotient:
wn | Zwy,. Converting our bounds asin?(w,, vy ) to Rayleigh quotient loses a multiplicative factor
of O (1/gap compared to the optimal rate. A direct analysis that doedaset this factor is an in-
teresting open problem. Results on Rayleigh quotient msy ladlp in obtaining sample complexity
guarantees that are independent of eigenvalue gap.

e High Probability : This work focused on obtaining tight bounds on the errorwkeler, the depen-
dence of our results on success probability is quite suthgbti One way to fix this is to run many
copies of the algorithm, each with say4 success probability and then output the geometric median
of the solutions, which can be done in nearly linear time [However, we conjecture that a tighter
analysis using our techniques might directly lead to imptbgependency on success probability and
possibly help solve some of the other problems mentionedeabo
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