
ar
X

iv
:1

60
2.

06
92

9v
2

 [c
s.

LG
]

28
 M

ar
 2

01
6

Streaming PCA: Matching Matrix Bernstein and Near-Optimal
Finite Sample Guarantees for Oja’s Algorithm

Prateek Jain∗ Chi Jin† Sham M. Kakade‡ Praneeth Netrapalli§ Aaron Sidford¶

March 29, 2016

Abstract

This work provides improved guarantees for streaming principle component analysis (PCA). Given
A1, . . . ,An ∈ R

d×d sampled independently from distributions satisfyingE [Ai] = Σ for Σ � 0, this
work provides anO(d)-space linear-time single-pass streaming algorithm for estimating the top eigen-
vector ofΣ. The algorithm nearly matches (and in certain cases improves upon) the accuracy obtained
by the standard batch method that computes top eigenvector of the empirical covariance1

n

∑
i∈[n] Ai

as analyzed by the matrix Bernstein inequality. Moreover, to achieve constant accuracy, our algorithm
improves upon the best previous known sample complexities of streaming algorithms by either a multi-
plicative factor ofO(d) or 1/gap wheregap is the relative distance between the top two eigenvalues of
Σ.

These results are achieved through a novel analysis of the classic Oja’s algorithm, one of the oldest
and most popular algorithms for streaming PCA. In particular, this work shows that simply picking
a random initial pointw0 and applying the update rulewi+1 = wi + ηiAiwi suffices to accurately
estimate the top eigenvector, with a suitable choice ofηi. We believe our result sheds light on how to
efficiently perform streaming PCA both in theory and in practice, and we hope that our analysis may
serve as the basis for analyzing many variants and extensions of streaming PCA.

∗Microsoft Research India. Email: prajain@microsoft.com
†UC Berkeley. Email: chijin@cs.berkeley.edu
‡University of Washington. Email: sham@cs.washington.edu
§Microsoft Research New England. Email: praneeth@microsoft.com
¶Microsoft Research New England. Email: asid@microsoft.com

1

http://arxiv.org/abs/1602.06929v2

1 Introduction

Principal component analysis (PCA) is one of the most fundamental problems in machine learning, numer-
ical linear algebra, and data analysis. It is commonly used for data compression, image processing, and
visualization [1] etc.

When we desire to perform PCA on large data sets, it may be the case that we cannot afford more than
single pass over the data (or worse to even store the data in the first place) [2, 3, 4]. To alleviate this
issue, a popular line of research over the past several decades has been to consider streaming algorithms
for PCA under the assumption that the data has reasonable statistical properties [5, 6, 7, 8, 9]. There have
been significant breakthroughs in getting near-optimal streaming PCA algorithms under fairly specialized
models, e.g. spiked covariance [9].

This work considers one of the most natural variants of PCA, estimating the top eigenvector of a sym-
metric matrix, under a mild (and standard) set of assumptions under which concentration of measure applies
(under the matrix Bernstein inequality [10, 11]). In particular, the setting is as follows:

Definition 1 (Streaming PCA). Let A1,A2, ...,An ∈ R
d×d be a sequence of (not necessarily symmetric)

matrices sampled independently from distributions that satisfy the following:

1. E [Ai] = Σ for symmetric positive semidefinite (PSD) matrixΣ ∈ R
d×d,

2. ‖Ai −Σ‖2 ≤M with probability1, and

3. max
{∥∥∥E

[
(Ai −Σ)(Ai −Σ)⊤

]∥∥∥
2
,
∥∥∥E
[
(Ai −Σ)⊤(Ai −Σ)

]∥∥∥
2

}
≤ V.

Let v1, ...,vd denote the eigenvectors ofΣ andλ1 ≥ ... ≥ λd denote the corresponding eigenvalues. Our

goal is to compute anǫ-approximation tov1, that is a unit vectorw such thatsin2(w,v1)
△
= 1−(w⊤v1)

2 ≤
ǫ, in a single pass while minimizing space, time, and error (i.e. ǫ). Note thatsin(w,v1) denotes thesin of
the angle betweenw andv1.

A special case of Streaming PCA is to estimate the top eigenvector of the covariance matrix of a distribu-
tionD overRd, i.e. given independent samplesa1, ...,an ∈ R

d estimate the top eigenvector ofEa∼D[aa⊤].
This encompasses the popular ”spiked covariance model” [12].

It is well known that to solve the Streaming PCA problem, one can simply compute the empirical
covariance matrix1n

∑
i∈[n]Ai and compute the right singular vector of this matrix. Here, matrix Bernstein

inequality [10, 11] and Wedin’s theorem [13] implies the following standard sample complexity bound for
the Streaming PCA problem:

Theorem 1.1(Eigenvector Concentration using matrix Bernstein and Wedin’s theorem). Under the assump-
tions of Definition 1, the top right singular vector̂v of Σ̂ = 1

n

∑
i∈[n]Ai is an ǫ-approximation to the top

eigenvectorv1 ofΣ with probability1− δ, where

sin2(v̂,v1) ≤ ǫ ≤ 16V log d
δ

(λ1 − λ2)2
· 1
n
+

(
4M log d

δ

λ1 − λ2

)2

· 1
n2

.

Theorem 1.1 is essentially the previous best sample complexity known for estimating the top eigenvec-
tor 1. Unfortunately, the above is purely a statistical claim, and, algorithmically, there are least two concerns.

1In recent work in [14] it was shown that thelog(d/δ) factor in the first term could be removed asymptotically for small enough
ǫ if only constant success probability is required.

2

First, computing the empirical covariance matrixΣ̂ = 1
n

∑
i∈[n]Ai naively requiresO(d2) time and space,

and second, computing the top eigenvector of the empirical covariance matrix in general may require super
linear time [15]. While there have been many attempts to produce streaming algorithms that use onlyO(d)
space to solve the streaming PCA problem, to our knowledge, all previous methods either lose a multiplica-
tive factor of either λ1

λ1−λ2
or d in the analysis in order to achieve constant accuracy when applied in our

setting [7, 8, 16, 9, 14].
In an attempt to overcome this limitation and improve the guarantees for solving the streaming PCA

problem, this work seeks to address the following question:

Can we match the sample complexity of matrix Bernstein + Wedin’s theorem with an algorithm
that usesO(d) space only and takes a single linear-time pass over the input?

This work answers this question in the affirmative, showing that one can succeed with constant proba-
bility matching the sample complexity of Theorem 1.1 up to logarithmic terms and small additive factors.
Interestingly, this is achieved by providing a novel analysis of the classical Oja’s algorithm, which is per-
haps, the most popular algorithm for Streaming PCA [6].

Algorithm 1 Oja’s algorithm for computing top eigenvector

Input: A1, · · · ,An.
Choosew0 uniformly at random from the unit sphere
for t = 1, · · · , n do

wi ← wi−1 + ηiAiwi−1

wi ← wi/ ‖wi‖2
end for

Output: wn

Oja’s algorithm is one of the simplest algorithms one would imagine for the streaming PCA problem
(See Algorithm 1). In fact, due to its simplicity, it was proposed a neurally plausible algorithm. In the case
that eachAi comes from the same distributionD it corresponds to simply performing projected stochas-
tic gradient descent on the objective function of maximizing the Rayleigh Quotient over the distribution
max‖w‖2=1 EA∼Dw⊤Aw. It is well known that under very mild conditions on the stepsize sequence, Oja’s
algorithm asymptotically converges to the top eigenvectorof the covariance matrixΣ [6]. However, ob-
taining optimal rates of convergence, let alone finite sample guarantees, for Streaming PCA has been quite
challenging. The best known results are off from Theorem 1.1by a factor ofO (d) [9].

This work shows that for proper choice of learning ratesηi, Oja’s algorithm in fact can improve the best
known results for streaming PCA and answer our question in the affirmative. In particular, we have that:

Theorem 1.2. Let the assumptions of Definition 1 hold. Suppose the step size sequence for Algorithm 1 is
chosen to beηi =

log d
(λ1−λ2)(β+i) , where

β
△
= 40max


 M log d

(λ1 − λ2)
,

(
V + (λ1)

2
)
log2 d

(λ1 − λ2)2


 .

Then the outputwn of Algorithm 1 is anǫ-approximation to the top eigenvectorv1 of Σ satisfying

sin2(wn,v1) ≤ ǫ ≤ C

(
V log d

(λ1 − λ2)2
· 1
n
+

(
2β

n

)2 log d
)
,

3

with probability greater than3/4. HereC is an absolute numerical constant.

The error above should be interpreted as being the sum of aO
(
1
n

)
higher order term and another

O
(
(2β/n)2 log d

)
lower order term which is at mosto(1

nlog d) (oncen > 4β2). In particular, this result
shows that, up to an additive lower order term, one can match Theorem 1.1 with an asymptotic error of

O
(

V log d
(λ1−λ2)2n

)
with constant probability. The lower order term hasβ which is themax of three parts:

M log d
(λ1−λ2)

, V log2 d
(λ1−λ2)2

and λ2
1 log

2 d
(λ1−λ2)2

. The first part, depending onM, is exactly the same as what appears in
Theorem 1.1. The second one, depending onV has an additionallog d factor over the first order term and
is irrelevant once, sayn > 10β. Notably, the third part, depending onλ2

1, does not appear in Theorem 1.1;
it arises here entirely due to computational reasons: the setting allows only asingle linear-time passover
the matrices, while Theorem 1.1 makes no such assumption. For instance, consider the caseV = 0 which
meansA1 = Σ. Matrix Bernstein tells us that one sample is sufficient to computev1. However, it is not
evident how to compute it using a single pass overA1. Note however, that the rate at which the lower order
terms, i.e.o

(
1

nlog d

)
, decrease is much better thanO

(
1/n2

)
guaranteed by Theorem 1.1.

In fact, this result also improves the asymptotic error rateobtained by Theorem 1.1. In particular, the

following result shows that Oja’s algorithm gets an asymptotic rate ofO
(

V
(λ1−λ2)2n

)
which is better than

that of matrix Bernstein by a factor ofO (log d).2

Theorem 1.3. Let the assumptions of Definition 1 hold. Suppose the step size sequence for Algorithm 1 is
chosen to beηi = 6

(λ1−λ2)(β+i) , where

β
△
= 720max

(M
(λ1 − λ2)

,
V + λ2

1

(λ1 − λ2)2

)
.

Supposen > β1.2d0.1. Then the outputwn of Algorithm 1 is anǫ-approximation to the top eigenvectorv1

ofΣ satisfying

sin2(wn,v1) ≤ ǫ ≤ C

(V
(λ1 − λ2)2

· 1
n
+

1

n2

)
,

with probability greater than3/4. HereC is an absolute numerical constant.

Note that Theorems 1.2 and 1.3 guarantee success probability of 3/4. One way to boost the probability
to 1 − δ, for someδ > 0, is to runO (log 1/δ) copies of the algorithm, each with3/4 success probability
and then output the geometric median of the solutions, whichcan be done in nearly linear time [17]. The
detailes are omitted here.

Beyond the improved sample complexities we believe our analysis sheds light on the type of step sizes
for which Oja’s algorithm converges quickly and therefore illuminates how to efficiently perform streaming
PCA. We note that we have essentially assumed an oracle whichsets the step size sequence, and an important
question is how to set the step size in a robust and data data driven manner. Moreover, we believe that our
analysis is fairly general and hope that it may be extended tomake progress on analyzing the many variants
of PCA that occur in both theory and in practice.

2A similar asymptotic result was recently obtained by [14]. However, their result requires an initial vector that is constant close
to v1, which itself is a difficult problem.

4

Algorithm Error O (d) space?

Oja’s (this work, Theorem 4.1) O
(

V
(λ1−λ2)2

· 1n
)

Yes

Matrix Bernstein + Wedin’s
theorem (Theorem 1.1)

O
(

V log d
(λ1−λ2)2

· 1n
)

No

Alecton [9] O
(

Vd
(λ1−λ2)2

· lognn

)
Yes

Block Power Method [16] O
(

Vλ1 log d
(λ1−λ2)3

· lognn

)
Yes

Table 1: Asymptotic error guaranteed by various methods under assumptions of Definition 1 with at least
constant probability, and ignoring constant factors. Recall that the error is defined assin2(w,v1) = 1 −
(w⊤v1)

2. Our analysis provides the optimal1/n error decay rate as compared to Alecton and Block power
method which obtainlognn . Moreover, our bound isO(d) tighter than that of Alecton [9] andO(λ1

λ1−λ2
)

tighter bound than that of Block Power Method [16]. The assumptions made in [9] for Alecton are different
from our (more standard) assumption; we have optimized their bounds are optimized in our setting. See
Section 1.1 for a concrete example where our analysis provides these improvements over [9, 16].

1.1 Comparison with Existing Results

Here we compare our sample complexity bounds with existing analyses of various methods. Recall that the
error of the estimatew is sin2(w,v1) = 1− (w⊤v1)

2.
We consider three popular methods used for computingv1. The first one is the batch method which

computes largest eigenvector of empirical covariance and uses Wedin’s theorem with matrix Bernstein in-
equality (cf. Theorem 1.1). The second method is Alecton, which is very similar to Oja’s algorithm [9].
Finally, consider a block-power method (BPM) [16, 8] which divides samples into different blocks and
applies power iteration to the empirical estimate from eachblock. See Table 1 for the comparison.

We stress that some of the results we compare to make different assumptions than Definition 1. The
bounds stated for them are our best attempt to adapt their bounds in the setting of Definition 1 (which is
quite standard). The next paragraph provides a simple example, which demonstrates the improvement in
our result as compared to existing work.

Let Ai = xix
⊤
i , wherexi ∈ R

d andxi = e1 with probability 1/d andxi = σej, 1 ≤ j ≤ d with
probability 1/d whereej denotes thejth standard basis vector andσ < 1. Note thatΣ = E [Ai] =
(1−σ2)

d e1e
T
1 + 1

dσ
2I, ‖Ai‖2 ≤ 1 for all i, and‖E

[
AiA

⊤
i

]
‖2 ≤ 1

d . Even for constant accuracyǫ = Ω(1),

Theorem 1.2 tells us thatn = O
(

d log2 d
(1−σ2)2

)
is sufficient. On the other hand, Theorem1 of [9] requires

n = O
(
d2 log2 d
(1−σ2)2

)
, while Theorem2.4 of [16] requiresn = O

(
d log2 d
(1−σ2)3

)
. Asymptotically, asn becomes

larger, our error scales asO
(

d
(1−σ2)2

· 1n
)

while that of [9] scales asO
(

d2

(1−σ2)2
· lognn

)
and that of [16]

scales asO
(

d
(1−σ2)3

· lognn

)
. Combining matrix Bernstein and Wedin’s theorems gives an asymptotic error

of O
(

d log d
(1−σ2)2

· 1n
)

.

1.2 Additional Related Work

Existing results for computing largest eigenvector of a data covariance matrix using streaming samples can
be divided into three broad settings: a) stochastic data, b)arbitrary sequence of data, c) regret bounds for
arbitrary sequence of data.

5

Stochastic data: Here, the data is assumed to be sampled i.i.d. from a fixed distribution. The analysis of
Oja’s algorithm as well as those of block power method and Alecton mentioned earlier are in this setting. [8]
also obtained a result in the restricted spiked covariance model. [7] provides an analysis of a modification of
Oja’s algorithm but with an extraO(d5) multiplicative factor compared to ours. [14] provides an algorithm
based on shift and invert framework that obtains the same asymptotic error as ours. However, their algorithm
requires warm start with a vector that is already constant close to the top eigenvector, which itself is a hard
problem.

Arbitrary data : In this setting, each row of the data matrix is provided in anarbitrary order. Most of
the existing methods here first compute a sketch of the matrixand use that to compute an estimate of the
top eigenvector [18, 19, 20, 21, 22, 23]. However, a direct application of such techniques to the stochastic
setting leads to sample complexity bounds which are larger by a multiplicative factor ofO(d) (ignoring
other factors like variance etc). Finally, [24, 25, 14] alsoprovide methods for eigenvector computation, but
they require multiple passes over the data and hence do not apply to the streaming setting.

Regret bounds: Here, at each step the algorithm has to output an estimatew of v1 for which we get
reward ofwTAiw and the goal is to minimize the regret w.r.t.v1. The algorithms in this regime are
mostly based on online convex optimization and applying them in our setting would again result in a loss of
multiplicativeO(d). Moreover, typical algorithms in this setting are not memory efficient [26, 27].

1.3 Notation

Bold lowercase letters such asu,v,w are used to denote vectors and bold uppercase letters such asA,B,C
to denote matrices. For symmetric matricesA andB, A � B denotes the condition thatx⊤Ax ≤ x⊤Bx

for all x and defineB � A analogously. A symmetric matrixA is positive semidefinite ifA � 0. For

symmetric matricesA,B, define their inner product as〈A,B〉 △
= Tr

(
A⊤B

)
.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces basic mathematical facts used throughout
the paper and also provides a proof of the error bound of the standard batch method (Theorem 1.1). Section 3
provides an overview of our approach to analyzing Oja’s algorithm and provides the main technical result
of the paper. This technical result is used in Section 4 to prove the running time for Oja’s algorithm and to
justify the choice of step size. Section 5 presents the proofof the main technical result. Section 6 concludes
and mentions a few interesting future directions.

2 Preliminaries

The following basic inequalities regarding power series, the exponential, and PSD matrices are used through-
out. The facts are summarized here:

Lemma 2.1(Basic Inequalities). The following are true:

• 1 + x ≤ exp(x) for all x

• 1 + x ≥ exp
(
x− x2

)
for all x ≥ 0

• 1
1+x ≤

∑∞
i=1

1
(x+i)2

≤ 1
x

6

• 〈A,B〉 ≤ 〈A,C〉 for PSD matricesA,B,C withB � C

• Tr
(
A⊤B

)
≤ 1

2Tr
(
A⊤A+B⊤B

)
for all matricesA,B ∈ R

m×n.

Proof. The first inequality follows from the Taylor expansion ofexp(x). The second comes from1 + 0 =
exp(0− 02) and d

dx(1 + x) ≤ d
dx exp(x− x2) for x ≥ 0. The third follows by considering upper and lower

Riemann sums of
∫∞
y=1 1/(x + y). The fourth from the fact that sinceA is PSD there is a matrixD with

D⊤D = A and therefore

〈A,B〉 = Tr
(
A⊤B

)
= Tr

(
DBD⊤

)
≤ Tr

(
DCD⊤

)
= 〈A,C〉 .

The final follows from Cauchy Schwarz and Young’s inequality, i.e.x · y ≤ 1
2(x

2 + y2) as

Tr
(
B⊤A

)
=
∑

i∈[n]
1iB

⊤A1i ≤
∑

i∈[n]
‖A1i‖2 · ‖B1i‖2 ≤

1

2

∑

i∈[n]

(
‖A1i‖22 + ‖B1i‖22

)

The following is a matrix Bernstein based proof of the error bound of the batch method.

Proof of Theorem 1.1.Using Theorem 1.4 of [11], we have (w.p.≥ 1− δ):
∥∥∥∥∥
1

n

n∑

i=1

Ai −Σ

∥∥∥∥∥
2

≤ 2 ·max

{√
V
n
log

d

δ
,
M
n

log
d

δ

}
. (1)

Let v̂ be the top eigenvector of̂Σ = 1
n

∑n
i=1 Ai. Using Wedin’s theorem [13], implies:

sin2〈v1, v̂〉 ≤
∥∥ 1
n

∑n
i=1Ai −Σ

∥∥2
2

|λ1 − λ2|2
. (2)

Theorem now follows by combining (1) and (2).

3 Approach

Let us now describe the approach to analyze Oja’s algorithm.We provide our main theorem regarding the
convergence rate of Oja’s algorithm and discuss how it is proved. The details of the proof are deferred to
Section 5 and the use of the theorem to choose step sizes is in Section 4.

One of the primary difficulties in analyzing Oja’s algorithm, or more broadly any algorithm for streaming
PCA, is choosing a subtle potential function to analyze the method. If we try to analyze the progress of
Oja’s algorithm in every iterationi, by measuring the quality ofwi, we run the risk that during the first few
iterations of Oja’s algorithm a step may actually yield awi+1 that is orthogonal tovi. If this happens, even
in the typical best case, where all future samples areΣ itself, we would still fail to converge. In short, if we
do not account for the randomness ofw0 in our potential function then it is difficult to show that a rapidly
convergent algorithm does not catastrophically fail.

Rather than analyzing the convergence ofwi directly we instead analyze the convergence of Oja’s algo-
rithm as an operator onw0. Oja’s algorithm simply considers the matrix

Bn
△
= (I+ ηnAn)(I + ηn−1An−1) · · · (I+ η1A1) (3)

7

and outputs the normalized result of applying this matrix,Bn, to the random initial vector, i.e.

wn =
Bnw0

‖Bnw0‖2
. (4)

Rather than analyze the improvement ofwn+1 overwn we analyzeBn+1’s improvement overBn.
Another interpretation of (3) and (4) is that Oja’s algorithm simply approximatesvn by performing

1 step of the power method on the matrixBn. Fortunately, analyzing when 1 step of the power method
succeeds is fairly straightforward as we show below:

Lemma 3.1(One Step Power Method). LetB ∈ R
d×d, let ṽ ∈ R

d be a unit vector, and let̃V⊥ be a matrix
whose columns form an orthonormal basis of the subspace orthogonal toṽ. If w ∈ R

d is chosen uniformly
at random from the surface of the unit sphere then with probability at least1− δ

sin2
(
ṽ,

Bw

‖Bw‖2

)
= 1−

(
ṽ⊤Bw

‖Bw‖2

)2

≤ C log (1/δ)

δ

Tr
(
Ṽ⊤

⊥BB⊤Ṽ⊥
)

ṽ⊤BB⊤ṽ

whereC is an absolute constant.

Proof. As w is distributed uniformly over the sphere, we have:w = g/‖g‖2 whereg ∼ N(0, I). Conse-
quently, with probability at least1− δ

1−
(
ṽ⊤Bw

‖Bw‖2

)2

=
g⊤B⊤(I− ṽṽ⊤)Bg

g⊤B⊤Bg

ζ1
≤ C1

δ

g⊤B⊤(I− ṽṽ⊤)Bg

ṽ⊤BB⊤ṽ

ζ2
≤ C log(1/δ)

δ

Tr
(
B⊤(I− ṽṽ⊤)B

)

ṽ⊤BB⊤ṽ
,

whereC1 andC are absolute constants.ζ1 follows asg⊤B⊤Bg ≥ (ṽ⊤Bg)2 ≥ 1
C1

ṽ⊤BB⊤ṽ where the sec-

ond inequality follows from the fact that̃v⊤Bg is a Gaussian random variable with variance
∥∥B⊤ṽ

∥∥2
2
. Sim-

ilarly, ζ2 follows from the fact thatg⊤B⊤(I− ṽṽ⊤)Bg is aχ2 random variable withTr
(
B⊤(I− ṽṽ⊤)B

)
-

degrees of freedom.

This lemma makes our goal clear. To show that Oja’s algorithmsucceeds we simply need to show
that with constant probabilityv⊤

1 BnB
⊤
nv1 is relatively large andTr

(
V⊥BnB

⊤
nV⊥

)
is relatively small,

whereV⊥ is a matrix whose columns form an orthonormal basis of the subspace orthogonal tov1. This
immediately alleviates the issues of catastrophic failurethat plagued analyzingwn. So long as we pickηi
sufficiently small, i.e.ηi = O(1/max{M, λ1}) thenI+ ηiAi is invertible. In this caseBnB

⊤
n is invertible

andv⊤
1 BnB

⊤
nv1 > 0. In short, so long as we pickηi sufficiently small the quantity we wish to bound

Tr
(
V⊥BnB

⊤
nV⊥

)
/v⊤

1 BnB
⊤
nv1 is always finite.

To actually boundv⊤
1 BnB

⊤
nv1 andTr

(
V⊤

⊥BnB
⊤
nV⊥

)
we split the analysis into several parts in Sec-

tion 5. First, we show thatE
[
Tr
(
V⊤

⊥BnB
⊤
nV⊥

)]
is small, which implies by Markov’s inequality that

Tr
(
V⊤

⊥BnB
⊤
nV⊥

)
is small with constant probability. Then, we show thatEv⊤

1 BnB
⊤
n v1 is large and that

Var
[
v⊤
1 BnB

⊤
nv1

]
is small. By Chebyshev’s inequality this implies thatv⊤

1 BnB
⊤
nv1 is large with con-

stant probability. Putting these together we achieve the main technical result regarding the analysis of Oja’s
method. Once we devise this roadmap, the proof is fairly straightforward.

8

Theorem 3.1(Oja’s Algorithm Convergence Rate). Let δ > 0 and step sizesηi ≤ 1
4·max{M,λ1} . The output

wn of Algorithm 1 is anǫ-approximation tov1 with probability at least1− δ where

ǫ ≤ 1

Q
exp


5V

∑

i∈[n]
η2i




d · exp


−2(λ1 − λ2)

∑

i∈[n]
ηi


+ V

n∑

i=1

η2i exp


−

n∑

j=i+1

2ηj(λ1 − λ2)






whereQ
△
= δ2

C log(1/δ)

(
1− 1√

δ

√
exp

(
18V∑n

i=1 η
2
i

)
− 1

)
, V △

= V + λ2
1, andC is an absolute constant.

Theorem 3.1 is proved in Section 5. Theorem 3.1 serves as the basis for our results regarding Oja’s
algorithm. In the next section we show how to use this theoremto choose step sizes and achieve the main
results of this paper.

4 Main Results

Theorem 3.1, from the previous section, leads to our main results, provided here. The theorem and proof are
below and essentially consist of choosing appropriate parameters to efficiently apply Theorem 3.1. Once we
have this theorem, Theorems 1.2 and 1.3 follow by choosingα = log d andα = 6 respectively.

Theorem 4.1. Fix anyδ > 0 and suppose the step sizes are set toηt =
α

(λ1−λ2)(β+t) for α > 1
2 and

β
△
= 20max


 Mα

(λ1 − λ2)
,

(
V + (λ1)

2
)
α2

(λ1 − λ2)2 log
(
1 + δ

100

)


 .

Suppose the number of samplesn > β. Then the outputwn of Algorithm 1 satisfies:

1− (wn
⊤v1)

2 ≤ C log(1/δ)

δ2

(
d

(
β

n

)2α

+
α2V

(2α− 1)(λ1 − λ2)2
· 1
n

)
,

with probability at least1− δ. HereC is an absolute numerical constant.

Proof. Recall that Theorem 3.1 gives a bound of

1

Q
exp


5V

∑

i∈[n]
η2i




d · exp


−2(λ1 − λ2)

∑

i∈[n]
ηi


+ V

n∑

i=1

η2i exp


−

n∑

j=i+1

2ηj(λ1 − λ2)




 (5)

whereQ
△
= δ2

C log(1/δ)

(
1− 1√

δ

√
exp

(
18V∑n

i=1 η
2
i

)
− 1

)
. Sinceηi = α

(λ1−λ2)(β+i) , we have
∑

i∈[n] η
2
i ≤

α2

(λ1−λ2)2β
and by our assumption that Vα2

(λ1−λ2)2β
≤ 1

18 log
(
1 + δ

100

)
, we have:

exp


18V

∑

i∈[n]
η2i


 ≤

√
2 ⇒ Q ≥ δ2

C log(1/δ)
. (6)

9

Moreover, since
∑

i∈[n] ηi ≥ α
λ1−λ2

log (1 + n/β), we have

exp


−2(λ1 − λ2)

∑

i∈[n]
ηi


 ≤

(
β

β + n

)2α

. (7)

Note that
∑n

j=i+1 ηj ≤ α
λ1−λ2

log n+β+1
i+β+1 . Moreover, asα > 1/2, we have:

n∑

i=1

η2i exp


−2(λ1 − λ2)

n∑

j=i+1

ηj




≤ α2

(λ1 − λ2)2

n∑

i=1

1

(β + i)2
exp

(
2α log

i+ β + 1

n+ β + 1

)
,

≤ (β + 1)2

β2
· α2

(λ1 − λ2)2(n+ β + 1)2α
·

n∑

i=1

(i+ β + 1)2α−2,

≤ 2α2

(2α − 1)(λ1 − λ2)2(n+ β + 1)
(sinceα > 1/2 and

n∑

i=1

iγ ≤ nγ+1/(γ + 1) ∀ γ > −1). (8)

Substituting (6), (7) and (8) into (5) proves the theorem.

5 Bounding the Convergence of Oja’s Algorithm

In this section, we present a detailed proof of Theorem 3.1. The proof follows the approach outlined in
Section 3 and uses the notation of that section, i.e.

• We letBn
△
= (I+ ηnAn) · · · (I+ η1A1) with B0

△
= I

• We letV △
= V + λ2

1

• We letV⊥ ∈ R
d×d−1 denote a matrix whose columns form an orthonormal basis for the subspace

orthogonal tov1 .

We first provide several technical lemmas bounding the expected behavior ofBn and ultimately use these
lemmas to prove Theorem 3.1. We begin with a straightforwardlemma bounding the rate of increase of
E
[
BtB

⊤
t

]
in spectral norm.

Lemma 5.1. For all t ≥ 0 andηi ≥ 0 we have

∥∥∥E
[
BtB

⊤
t

]∥∥∥
2
≤ exp


∑

i∈[t]
2ηiλ1 + η2i V


 .

Proof. Let αt
△
= ‖E

[
BtB

⊤
t

]
‖2, i.e.,E

[
BtB

⊤
t

]
� αtI. For all t > 0,

E

[
BtB

⊤
t

]
= E

[
(I + ηtAt)Bt−1B

⊤
t−1(I+ ηtAt)

⊤
]
� αt−1E

[
(I + ηtAt)(I+ ηtA

⊤
t)
]
,

= αt−1E

[
I+ ηtAt + ηtA

⊤
t + η2tAtA

⊤
t

]
� αt−1

[
I+ 2ηtΣ+ η2t (Σ

2 + V I)
]
, (9)

10

where the last inequality follows fromE [At] = Σ and,

E

[
AtA

⊤
t

]
= Σ2 + E

[
(At −Σ)(At −Σ)⊤

]
� Σ2 + V I .

Using (9) along with‖E
[
BtB

⊤
t

]
‖2 = αt, Σ � λ1I, andΣ2 � λ2

1I, we have for∀t > 0:

αt ≤ (1 + 2ηtλ1 + η2t (λ
2
1 + V))αt−1.

The result follows by using induction along withα0 = 1 and1 + x ≤ ex.

Using Lemma 5.1 we next bound the expected value ofTr
(
V⊤

⊥BnB
⊤
nV⊥

)
. Ultimately this will allow

us to bound the valueTr
(
V⊤

⊥BnB
⊤
nV⊥

)
with by Markov’s inequality.

Lemma 5.2. For all t ≥ 0 andηi ≤ 1
λ1

the following holds

E

[
Tr
(
V⊤

⊥BtB
⊤
t V⊥

)]
≤ exp


∑

j∈[t]
2ηjλ2 + η2jV


 ·


d+ V

t∑

i=1

η2i exp


∑

j∈[i]
2ηj(λ1 − λ2)




 .

Proof. Let αt
△
= E

[
Tr
(
V⊤

⊥BtB
⊤
t V⊥

)]
. We first simplifyαt as follows:

αt =
〈
E

[
BtB

⊤
t

]
,V⊥V

⊤
⊥
〉
=
〈
E

[
Bt−1B

⊤
t−1

]
,E
[
(I+ ηtAt)V⊥V

⊤
⊥
(
I+ ηtA

⊤
t

)]〉
. (10)

Recall thatE [At] = Σ. Now, the second term on the right hand side can be bounded as follows:

E

[
(I+ ηtAt)V⊥V

⊤
⊥
(
I+ ηtA

⊤
t

)]
,

= V⊥V
⊤
⊥ + ηtΣV⊥V

⊤
⊥ + ηtV⊥V

⊤
⊥Σ+ η2tE

[
AtV⊥V

⊤
⊥A

⊤
t

]
,

= V⊥V
⊤
⊥ + ηtΣV⊥V

⊤
⊥ + ηtV⊥V

⊤
⊥Σ+ η2tΣV⊥V

⊤
⊥Σ+ η2tE

[
(At −Σ)V⊥V

⊤
⊥(At −Σ)⊤

]
,

ζ1
� V⊥V

⊤
⊥ + 2ηtλ2V⊥V

⊤
⊥ + η2t λ

2
2V⊥V

⊤
⊥ + η2tE

[
(At −Σ) (At −Σ)⊤

]
,

ζ2
�
(
1 + 2ηtλ2 + η2t λ

2
2

)
V⊥V

⊤
⊥ + η2tVI =

(
1 + 2ηtλ2 + η2t λ

2
2 + η2t V

)
V⊥V

⊤
⊥ + η2t V · v1v

⊤
1 ,

whereζ1 follows from the fact thatV⊥ is orthogonal tov1 andζ2 follows from defintion ofV.
Plugging the above into (10), we get for allt ≥ 1,

αt ≤
(
1 + 2ηtλ2 + η2t (λ

2
2 + V)

) 〈
E

[
Bt−1B

⊤
t−1

]
,V⊥V

⊤
⊥
〉
+ η2tV

〈
E

[
Bt−1B

⊤
t−1

]
,v1v

⊤
1

〉
,

≤
(
1 + 2ηtλ2 + η2t V

)
αt−1 + η2t V

∥∥∥E
[
Bt−1B

⊤
t−1

]∥∥∥
2
,

≤ exp
(
2ηtλ2 + η2tV

)
αt−1 + η2t V exp


 ∑

i∈[t−1]

ηiλ1 + η2i V


 ,

where the last inequality follows from1 + x ≤ ex and using Lemma 5.1.

11

Recursing the above inequality, we obtain

αt ≤
∑

i∈[t]
η2i V exp




t∑

j=i+1

2ηjλ2 + η2jV


 exp


∑

j∈[i]
2ηjλ1 + η2jV


+ exp


∑

j∈[t]
2ηjλ2 + η2jV


α0,

≤ exp


∑

j∈[t]
2ηjλ2 + η2jV




α0 + V

t∑

i=1

η2i exp


∑

j∈[i]
2ηj(λ1 − λ2) + η2jV






SinceB0 = I we see thatα0 = d− 1 ≤ d. Using thatηi ≤ 1
λ1
≤ 1

λ2
completes the proof.

Next we provide the lemmas that will allow us to lower boundv⊤
1 BtB

⊤
t v1. In Lemma 5.3 we lower

boundE
[
v⊤
1 BtB

⊤
t v1

]
and in Lemma 5.4 we upper boundVar

[
v⊤
1 BtB

⊤
t v1

]
. Ultimately, the lower bound

follows using Chebyshev’s inequality.

Lemma 5.3. For all t ≥ 0 andηi ≥ 0 we have

E

[
v⊤
1 BtB

⊤
t v1

]
≥ exp


∑

i∈[t]
2ηiλ1 − 4η2i λ

2
1




If we further assume thatηi ≤ 1
4·max{λ1,M} thenE

[
v⊤
1 BtB

⊤
t v1

]
≥ exp(λ1

∑
i∈[t] ηi).

Proof. Let βt
△
= E

[
v⊤
1 BtB

⊤
t v1

]
. SinceBt = (I+ ηtAt)Bt−1, we can boundβt as

βt =
〈
E

[
Bt−1B

⊤
t−1

]
,E
[
(I+ ηtAt)v1v

⊤
1

(
I+ ηtA

⊤
t

)]〉

=
〈
E

[
Bt−1B

⊤
t−1

]
,v1v

⊤
1 + ηtΣv1v

⊤
1 + ηtv1v

⊤
1 Σ+ η2tE

[
Atv1v

⊤
1 u

∗⊤A⊤
t

]〉

≥
〈
E

[
Bt−1B

⊤
t−1

]
,v1v

⊤
1 + λ1ηtv1v

⊤
1 + λ1ηtv1v

⊤
1

〉
.

Consequentlyβt ≥ (1 + 2ηtλ1)βt−1. Furthermore,B0 = I and henceβ0 = ‖v1‖22 = 1. Proceeding by
induction and using that1 + x ≥ exp(x− x2) for all x ≥ 0 finishes the proof.

Lemma 5.4. For t ≥ 0 suppose thatηi ≤ 1
4·max{λ1,M} for all i ∈ [t] then.

E

[(
v⊤
1 BtB

⊤
t v1

)2]
≤ exp



∑

i∈[t]
4ηiλ1 + 10η2i V




Proof. Let Wt,s
△
= (I+ ηtAt) · · · (I+ ηt−s+1At−s+1) and γs

△
= E

[(
v⊤
1 Wt,sW

⊤
t,sv1

)2]
. Note that

Wt,t = Bt andγt = E
[
v⊤
1 BtB

⊤
t v1

]
. Now,

γt = Tr
(
E

[
W⊤

t,tv1v
⊤
1 Wt,tW

⊤
t,tv1v

⊤
1 Wt,t

])

= Tr
(
E

[
(I + η1A

⊤
1)W

⊤
t,t−1v1v

⊤
1 Wt,t−1(I+ η1A1)(I+ η1A

⊤
1)W

⊤
t,t−1v1v

⊤
1 Wt,t−1(I+ η1A1)

])

= Tr
(
E

[
(I + η1A

⊤
1)Gt−1(I+ η1A1)(I+ η1A

⊤
1)Gt−1(I+ η1A1)

])
, (11)

12

whereGt−1
△
= W⊤

t,t−1v1v
⊤
1 Wt,t−1. In order to bound the above quantity, we first bound the aboveex-

pression for an arbitraryGt−1 ≡ G. We then take an expectation over onlyA1 and then finally take an
expectation overGt−1. That is, for an arbitrary fixed symmetric matrixG, we have:

Tr
(
E

[(
I+ η1A

⊤
1

)
G (I+ η1A1)

(
I+ η1A

⊤
1

)
G (I+ η1A1)

])

= Tr

(
E

[(
G+ η1A

⊤
1 G+ η1GA1 + η21A

⊤
1 GA1

)2])

= Tr
(
G2 + η1E

[
A⊤

1

]
G2 + η1G

2
E [A1] + η1G

(
E [A1] + E

[
A⊤

1

])
G

+ η21E
[
A⊤

1 GA1G
]
+ η21E

[
A⊤

1 GA⊤
1 G
]
+ η21E [GA1GA1] + η21E

[
GA⊤

1 GA1

]

+ η21GE

[
A1A

⊤
1

]
G+ η21E

[
A⊤

1 G
2A1

]
+ η31E

[
A⊤

1 G
(
A1 +A⊤

1

)
GA1

]

+η31E
[
A⊤

1 GA1A
⊤
1 G
]
+ η31E

[
GA1A

⊤
1 GA1

]
+ η41E

[
A⊤

1 GA1A
⊤
1 GA1

])

= Tr
(
G2
)
+ 4η1Tr

(
ΣG2

)
+ 2η21Tr

(
E

[
A1A

⊤
1

]
G2
)
+ η21Tr

(
E

[
A⊤

1 GA1G
])

+ η21Tr
(
E

[
A⊤

1 GA⊤
1 G
])

+ η21Tr (E [GA1GA1]) + η21Tr
(
E

[
GA⊤

1 GA1

])

+ 2η31Tr
(
E

[
A⊤

1 G
(
A1 +A⊤

1

)
GA1

])
+ η41Tr

(
E

[
A⊤

1 GA1A
⊤
1 GA1

])
(12)

We now bound the various terms above as follows. Each of the second order terms can be bounded using
Lemma 2.1 as follows:

E

[
Tr
(
A⊤

1 GA1G
)]
≤ 1

2
E

[∥∥∥A⊤
1 G

∥∥∥
2

F
+ ‖A1G‖2F

]

=
1

2

(
Tr
(
GE

[
A1A

⊤
1

]
G+GE

[
A⊤

1 A1

]
G
))
≤ (V + λ2

1)Tr
(
G2
)
. (13)

The third order terms can be bounded as follows:

E

[
Tr
(
A⊤

1 GA1GA1

)]
≤ E

[
‖A1‖2Tr

(
A⊤

1 GGA1

)]

≤ (M+ λ1)Tr
(
GE

[
A1A

⊤
1

]
G
)
≤ (M+ λ1)V · Tr

(
G2
)
. (14)

where we used the assumption that‖A1‖2 ≤ ‖A1 −Σ‖2 + ‖Σ‖2 ≤ M + λ1 with probability 1. Finally
the fourth order term can be bounded as

Tr
(
E

[
A⊤

1 GA1A
⊤
1 GA1

])
≤ (M+ λ1)

2Tr
(
G2

E

[
A1A

⊤
1

])
≤ (M+ λ1)

2 V · Tr
(
G2
)
. (15)

Plugging (13), (14) and (15) into (12) tells us that

Tr
(
E

[(
I+ η1A

⊤
1

)
G (I+ η1A1)

(
I+ η1A

⊤
1

)
G (I+ ηtA1)

])

≤ Tr
(
G2
)
+ 4η1λ1Tr

(
G2
)
+ 5η21V · Tr

(
G2
)

+ 4η31 (M+ λ1)V · Tr
(
G2
)
+ η41 (M+ λ1)

2 V · Tr
(
G2
)

=
(
1 + 4η1λ1 + 5η21V + 4η31 (M+ λ1)V + η41 (M+ λ1)

2 V
)
Tr
(
G2
)

≤ exp
(
4η1λ1 + 10η21V

)
Tr
(
G2
)

13

where in the last line we used thatηi ≤ 1
4max{M,λ1} and that1 + x ≤ exp(x)

Using the valueG = Gt−1 = W⊤
t,t−1v1v

⊤
1 Wt,t−1 and plugging the above into (11), we have

γt = Tr
(
E

[(
I+ η1A

⊤
1

)
Gt−1 (I+ η1A1)

(
I+ η1A

⊤
1

)
Gt−1 (I+ η1A1)

])

≤ exp
(
4η1λ1 + 10η21V

)
E
[
Tr
(
Gt−1

2
)]

= exp
(
4η1λ1 + 10η21V

)
γt−1,

where we used the fact thatγt−1 = E
[
Tr
(
Gt−1

2
)]

. Sinceγ0 = 1, induction proves the lemma.

We now have everything to prove Theorem 3.1.

Proof of Theorem 3.1.As discussed in Section 3 the main idea of this proof to use that Algorithm 1 is
essentially one step of power method for the matrixBn and use Lemma 3.1 to bound the error. To this end,
we lower and upper boundv⊤

1 BnB
⊤
nv1 andTr

(
V⊤

⊥BnB
⊤
nV⊥

)
, respectively.

First, using Chebyshev’s inequality, we have:

P

[∣∣∣v⊤
1 BnB

⊤
nv1 − E

[
v⊤
1 BnB

⊤
nv1

]∣∣∣ > 1√
δ

√
Var

[
v⊤
1 BnB⊤

n v1

]]
< δ.

So with probability greater than1− δ, the following holds:

v⊤
1 BnB

⊤
nv1 > E

[
v⊤
1 BnB

⊤
n v1

]
− 1√

δ

√
Var

[
v⊤
1 BnB⊤

nv1

]

= E

[
v⊤
1 BnB

⊤
n v1

]
− 1√

δ

√
E

[(
v⊤
1 BnB

⊤
n v1

)2]− E
[
v⊤
1 BnB

⊤
n v1

]2

ζ1
≥ exp

(
2λ1

n∑

i=1

ηi − 4λ2
1

n∑

i=1

η2i

)
×


1− 1√

δ

√√√√exp

(
18

n∑

i=1

η2i V
)
− 1




(16)

whereζ1 follows from Lemma 5.3 and 5.4.
Furthermore, using Lemma 5.2 and Markov’s inequality, we have with probability at least1− δ,

Tr
(
V⊤

⊥BtB
⊤
t V⊥

)
≤

exp
(∑

i∈[n] 2ηiλ2 + η2i V
)

δ
·


d+ V

n∑

i=1

η2i exp


∑

j∈[i]
2ηj(λ1 − λ2)




 . (17)

Consequently with probability at least1 − 2δ both (16) and (17) hold and therefore the result follows by
Lemma 3.1 and choosing aδ that is smaller by a constant.

6 Conclusion and Future Work

This work presented a finite sample complexity and asymptotic convergence rates for the classic Oja’s
algorithm for top-1 component streaming PCA that match well known matrix concentration and perturbation
results for computing the top eigenvector. In fact, asymptotically our bound improves upon standard matrix
Bernstein bounds by a factor ofO (log d). Our results are tighter than existing streaming PCA results by a
factor of eitherO (d) orO (1/gap).

14

Our analysis relied on a novel view of the algorithm and is technically fairly simple. We hope that our
analysis opens a way to make progress on the many variants of PCA that occur in both theory and practice.
In particular, we believe the following directions should be of wide interest:

• Multiple components: Currently, our result holds only for estimating the top eigenvector ofΣ. Ex-
tension of our technique to compute top-k eigenvectors is an important future direction.

• Rayleigh quotient: Another standard metric to measure optimality ofwn is Rayleigh quotient:
wn

⊤Σwn. Converting our bounds onsin2(wn,v1) to Rayleigh quotient loses a multiplicative factor
of O (1/gap) compared to the optimal rate. A direct analysis that does notlose this factor is an in-
teresting open problem. Results on Rayleigh quotient may also help in obtaining sample complexity
guarantees that are independent of eigenvalue gap.

• High Probability : This work focused on obtaining tight bounds on the error. However, the depen-
dence of our results on success probability is quite suboptimal. One way to fix this is to run many
copies of the algorithm, each with say3/4 success probability and then output the geometric median
of the solutions, which can be done in nearly linear time [17]. However, we conjecture that a tighter
analysis using our techniques might directly lead to improved dependency on success probability and
possibly help solve some of the other problems mentioned above.

7 Acknowledgements

Sham Kakade acknowledges funding from the Washington Research Foundation for innovation in Data-
intensive Discovery.

15

References

[1] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[2] P. M. Hall, A. D. Marshall, and R. R. Martin, “Incrementaleigenanalysis for classification.” inBMVC,
vol. 98. Citeseer, 1998, pp. 286–295.

[3] J. Weng, Y. Zhang, and W.-S. Hwang, “Candid covariance-free incremental principal component anal-
ysis,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 8, pp. 1034–1040,
2003.

[4] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust visual tracking,”
International Journal of Computer Vision, vol. 77, no. 1-3, pp. 125–141, 2008.

[5] T. Krasulina, “Method of stochastic approximation in the determination of the largest eigenvalue of the
mathematical expectation of random matrices,”Automatation and Remote Control, pp. 50–56, 1970.

[6] E. Oja, “Simplified neuron model as a principal componentanalyzer,”Journal of mathematical biology,
vol. 15, no. 3, pp. 267–273, 1982.

[7] A. Balsubramani, S. Dasgupta, and Y. Freund, “The fast convergence of incremental pca,” inAdvances
in Neural Information Processing Systems, 2013, pp. 3174–3182.

[8] I. Mitliagkas, C. Caramanis, and P. Jain, “Memory limited, streaming pca,” inAdvances in Neural
Information Processing Systems, 2013, pp. 2886–2894.

[9] C. D. Sa, C. Re, and K. Olukotun, “Global convergence of stochastic gradient descent for some non-
convex matrix problems,” inProceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, 2015, pp. 2332–2341.

[10] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,”arXiv preprint
arXiv:1011.3027, 2010.

[11] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”Foundations of Computational
Mathematics, vol. 12, no. 4, pp. 389–434, 2012.

[12] I. M. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,”An-
nals of statistics, pp. 295–327, 2001.

[13] P.-Å. Wedin, “Perturbation bounds in connection with singularvalue decomposition,”BIT Numerical
Mathematics, vol. 12, no. 1, pp. 99–111, 1972.

[14] C. Jin, S. M. Kakade, C. Musco, P. Netrapalli, and A. Sidford, “Robust shift-and-invert precondi-
tioning: Faster and more sample efficient algorithms for eigenvector computation,”arXiv preprint
arXiv:1510.08896, 2015.

[15] G. H. Golub and C. F. Van Loan,Matrix computations. JHU Press, 2012, vol. 3.

[16] M. Hardt and E. Price, “The noisy power method: A meta algorithm with applications,” inAdvances
in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, 2014, pp. 2861–2869.

16

[17] M. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford, “Geometric median in nearly linear time,”
To Appear in 48th Annual Symposium on the Theory of Computing(STOC) 2016, 2010.

[18] K. L. Clarkson and D. P. Woodruff, “Numerical linear algebra in the streaming model,” inProceedings
of the forty-first annual ACM symposium on Theory of computing. ACM, 2009, pp. 205–214.

[19] E. Liberty, “Simple and deterministic matrix sketching,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2013, pp. 581–588.

[20] J. Nelson and H. L. Nguyên, “Osnap: Faster numerical linear algebra algorithms via sparser subspace
embeddings,” inFoundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on.
IEEE, 2013, pp. 117–126.

[21] M. B. Cohen, J. Nelson, and D. P. Woodruff, “Optimal approximate matrix product in terms of stable
rank,” arXiv preprint arXiv:1507.02268, 2015.

[22] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff, “Frequent directions: Simple and deter-
ministic matrix sketching,”arXiv preprint arXiv:1501.01711, 2015.

[23] C. Boutsidis, D. Garber, Z. Karnin, and E. Liberty, “Online principal components analysis,” inPro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2015,
pp. 887–901.

[24] O. Shamir, “A stochastic PCA and SVD algorithm with an exponential convergence rate,” inProceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, 2015, pp. 144–152.

[25] D. Garber and E. Hazan, “Fast and simple pca via convex optimization,” arXiv preprint
arXiv:1509.05647, 2015.

[26] M. K. Warmuth and D. Kuzmin, “Randomized PCA algorithmswith regret bounds that are loga-
rithmic in the dimension,” inAdvances in Neural Information Processing Systems 19, Proceedings
of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006, 2006, pp. 1481–1488.

[27] D. Garber, E. Hazan, and T. Ma, “Online learning of eigenvectors,” inProceedings of the 32nd In-
ternational Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, 2015, pp.
560–568.

17

	1 Introduction
	1.1 Comparison with Existing Results
	1.2 Additional Related Work
	1.3 Notation
	1.4 Paper Organization

	2 Preliminaries
	3 Approach
	4 Main Results
	5 Bounding the Convergence of Oja's Algorithm
	6 Conclusion and Future Work
	7 Acknowledgements

