Flexible, Rapid Authoring of Goal-Orientated, Multi-Turn Dialogues Using the
Task Completion Platform

Alex Marin, Paul Crook, Omar Zia Khan, Vasiliy Radostev,
Khushboo Aggarwal, Ruhi Sarikaya

Microsoft Corp., Redmond, Washington, U.S.A.

alemari,pacrook, omkhan,vasiliyr, khushboa, rusarika@microsoft.com

Abstract

The Task Completion Platform (TCP) is a multi-domain, multi-
modal dialogue system that can host and execute large numbers
of goal-orientated dialogue tasks. TCP is comprised of a task
configuration language, TaskForm, and a task-independent di-
alogue runtime, allowing task definitions to be decoupled from
the global dialogue policy used by the platform to execute the
tasks. This separation enables scenario developers to rapidly
develop new dialogue systems, by eliminating the need to re-
implement the policy from scratch for each new task. In this
paper, we introduce support for authoring tasks in a variety of
dialogue styles, ranging from entirely flexible to fully system-
initiative. This flexibility is enabled by a set of task-level pol-
icy override constructs, which augment or constrain the default
platform-level policy to achieve the desired system behavior.
We demonstrate the use of the TaskForm language to define
complex, multi-turn tasks in a variety of domains and add differ-
ent task-specific policy constructs to demonstrate the flexibility
of the task authoring process.

Index Terms: dialog systems, dialog policy

1. Introduction

Dialogue systems are becoming increasingly common in daily
use in a variety of settings, such as customer service interac-
tive veieaaresponse (IVR) systems, personal digital assistants
(PDA! more recently bots running inside messaging plat-
forms. Such variety of applications necessarily requires a range
of authoring styles, from the entirely “on-rails” dialogues used
in IVRs, to user-initiative, unconstrained dialogues as is more
natural in a PDA or bot setting. At the same time, developing
a complete dialogue policy from scratch for each new task or
dialogue is resource- and expertise-intensive. The Task Com-
pletion Platform (TCP) reduces the effort to author new goal-
orientated tasks by providing a task configuration language,
TaskForm, together with a shared dialogue runtime that applies
a system-wide policy to all tasks executed by the system [1].
To enable different authoring styles, we introduce in this paper
task-specific policy overrides, allowing task authors to constrain
or guide the task execution as necessary while still leveraging
the system-wide policy. The remainder of this paper briefly dis-
cusses the platform architecture, describes the authoring pro-
cess, with emphasis on policy overrides, and demonstrates the
system capability with a discussion of different tasks.

2. Task Definitions Using System Policy

The TCP runtime has a modular architecture, with the dialogue
management process loosely separated into: initial processing

of input and natural language understanding (NLU), dialogue
state updates, and policy execution. The input to the system
may be speech recognition output or typed text. Alternative
NLU and dialogue interpretations are preserved in parallel for
each step of the processing. Multiple tasks may be executed in
parallel, and a final ranking step selects the most likely dialog
state and executes the corresponding dialog act. The system is
described in more detail in [1].

TCP tasks are defined using the TaskForm language. A
TaskForm-specified task that relies entirely on the built-in di-
alogue policy is encoded as a set of triggers defining under
what conditions task execution should begin, a set of param-
eters defining what information should be collected during the
dialogue, and a set of dialog acts defining what is presented to
the user. A sample task snippet is shown in figure 1.

A task trigger defines the conditions required for the exe-
cution of a task to begin. These conditions are represented in
terms of NLU results: combinations of domains, intents, and
slots (presence or absence), optionally supplemented by must-
trigger phrases.

Each rask parameter defines a container for information re-
quired for task execution. The information may be collected
directly from the user, inferred during the execution from the
values of pre-computed parameters, or mixed. Each parameter
definition specifies how the parameter value should be produced
and what dialog acts are used to solicit relevant information.
The value of a parameter is provided by an associated piece of
code, a resolver, which is implemented outside the TaskForm.

A dialog act captures the information that should be pre-
sented to the user when the system selects it. This informa-
tion includes, at a minimum, a prompt to be read out and a list
of strings to be shown on the screen. Allowed parameter dia-
log acts include: MissingValue (ask the user for input required
to populate the parameter), NoResultsFollowUp (prompt to
change information as no results were found), Disambiguation
(ask the user to select the parameter value from a list), Confir-
mation, and ConfirmationFailure.

The default system-level task processing uses the new NLU
slots tagged in the user utterance to update all corresponding
parameters, according to a topological sort over the inherent
parameter dependency graph. Once all the possible updates to
parameters have been applied, the system selects a dialog act
to present to the user. Preferend riven first to task-level dia-
log acts (such as Cancellation, Co=irmation, or Completion),
then to dialog acts of parameters for which some user input has
already been collected (e.g. Disambiguation or NoResultsFol-
lowUp). If no suitable dialog acts can be produced, the system
will select the MissingValue dialog act of the next parameter
for which no user input has been provided.

rusarika
Sticky Note
you need to add a reference here.

rusarika
Sticky Note
what do you mean by preference is given here? What is the logic in ordering the dialog acts for a task?

9

"TaskFormDefinition": { "TriggerDefinitions™: [

"OrderPizzalntent” "T
1. "1
Parameters™: [|
"SpecialtyPizza™,
"Pizzabize”,
"Deliveryhddress",]
"Contact"”, 1
“FricedOrder” 1.

ggerfueries™: [

':iwalﬂthuw": “FinalAction”, ~~

“TaskDia cts™:
"Welcome "WelcomeDialoghct™,
"Cancellation™: “"CancellationDialoghct”,
"GlobalError™: "GlobalErrorDPialoghct”

}-J

erfame™: "OrderPizzalntent™,
1 "order_pizza®,

"i wanna order a pizza®,
"i want to order a pizza",

"ParameterDefinitions": [

"Parametarflama":
"ResolverInvocat s
]| » "PizzaTypeResolver”,

"ResolverSlotTags™: ["cuisine”, “product™],

"PizzaType”,

s
Value™: "PizzaTypeMissingWalue®™,
"Disambiguation”: "PizzaTypeDisambiguation®

Figure 1: A sample snippet of a task definition.

{
"ValidationConditionName”: "TimerShouldNotBeRunning”,
"YalidationExpression™: "TimerRunning == false",
"DialoghActs™: {
"WalidationFailure™: "DoYouWantToResetTimerOrSetANewOne™,

¥

"DialoghActName": "DoYoullantToResetTimerOrSetANewOne",
"Prompt”: "Shall I reset your existing timer2-,
"StateUpdates™: {

"Task5tate™: "Prompted:Confirmation”®,
¥
"LUConstraints™: {

“Intents": ["Confirm", "Reject®, "Cancel™]

¥
s
Figure 2: Example of a validation condition.
{
"ParameterName”: “DelivervAddress",
"RequiredIf": "DeliveryOption == 'Delivery' ",
}J

Figure 3: Example of a conditionally-optional parameter.

3. Authoring Policy Overrides

Three TaskForm language constructs are used to define the per-
task policy that augment the default system policy.

Validation conditions describe binary (true/false) condi-
tions which the task must fulfill in order for its execution to
be finished. Each validation condition operates over the entire
task state and has access to each parameter’s value(s) and the
state in which the system expects the respective parameter to
be (e.g. Filled, Empty, Resolved, or Prompted). If the vali-
dation condition evaluates to false, a ValidationFailure dialog
act is displayed. Validation conditions can be used to implement
complex conditions involving multiple parameters (e.g. setting
up a MutuallyExclusive list of parameters), or for implement-
ing more complex conditions that direct task execution given
combinations of specific parameter values. Figure 2 shows a
validation condition for a timer setting task. If a previous timer
is already running, the user is asked whether to reset the existing
timer or set a new one.

RequiredIf parameter attributes are constraints indicating
that a parameter may be optional, depending on the values of
one or more other parameters. In the example of figure 3, the
Lo n parameter is required only if the value of the Deliv-
er e parameter is set to Delivery. If the DeliveryType pa-
rameter instead has a value of CarryOut, the user’s location is
not needed and thus the parameter remains optional. The user
may still provide a location but will not be prompted for it.

Enhanced dialog acts allow task authors to define fine-
grained state update and NLU hints as part of each dialog act.

State update hints suggest to the dialog system that the task or
its parameters are expected to be in specific states. Task authors
can thus override system behavior, e.g. to clear out a parameter
or force the task to be re-confirmed on a future turn. NLU prim-
ing allows various levels of flexibility, from hints to enforcing
the tagging of only specific subsets of intents or slots during the
next turn. Figure 2 shows an enhanced dialog act. As a result
of this dialog act, the task would be marked as Prompted for
final user confirmation; the expected NLU intents guide NLU
tagging for the following turn.

Task-level policy constructs allow for different authoring
styles that are similar to those supported by other dialogue man-
agement systems. By encoding complex dependency relation-
ships between parameters in RequiredIf blocks, the TaskForms
language and TCP allow for an execution model similar to that
of RavenClaw [2], in which a hierarchical flow is composed
from distinct agents. Validation conditions, NLU constraints,
and state update hints can be used to author dialogues akin to
those defined in VoiceXML [3], a standard industry tool used
to build system-initiative IVRs, in which the understanding of
user input is constrained at each turn, with no opportunity for
user initiative.

4. Demo Outline

As a starting point we will use three tasks of broad applica-
bility in the personal assistant space: food ordering (scoped to
ordering pizza for simplicity), restaurant reservation, and timer
setting. A section of the food ordering TaskForm is shown in
figure 1. We will demonstrate the execution of the tasks with
and without task-specific policy definitions, highlighting how
task authors can fine-tune user interactions in specific cases
while relying on the platform policy for most of the task ex-
ecution. In particular, we will show the pizza ordering task
with and without conditioning the Location parameter on the
value of the DeliveryType parameter, and the timer task with
and without the added validation condition or enhanced dia-
log acts. Some pre-recorded demo videos can be found at
http://research.microsoft.com/en-us/people/pacrook .

5. References
[1] P. A. Crook et al., “Task Completion Platform: A self-serve multi-
domain goal-oriented dialogue platform,” in Proc. NAACL, 2016.

[2] D. Bohus and A. Rudnicky, “The RavenClaw dialog management
framework: Architecture and systems,” Computer Speech and Lan-
guage, 2009.

[3] VoiceXML. (2000) VoiceXML version 1.0.
https://www.w3.org/TR/voicexml/.

rusarika
Sticky Note
you mean the "DeliveryAddress" ?

rusarika
Sticky Note
It could have been better if you would include an architecture figure.

