
Big Data Exploration Requires Collaboration Between
Visualization and Data Infrastructures

Danyel Fisher
Microsoft Research

1 Microsoft Way
Redmond, WA 98052 USA

danyelf@microsoft.com

ABSTRACT

As datasets grow to tera- and petabyte sizes, exploratory data

visualization becomes very difficult: a screen is limited to a few

million pixels, and main memory to a few tens of millions of data

points. Yet these very large scale analyses are of tremendous

interest to industry and academia. This paper discusses some of the

major challenges involved in data analytics at scale, including

issues of computation, communication, and rendering. It identifies

techniques for handling large scale data, grouped into “look at less

of it,” and “look at it faster.” Using these techniques involves a

number of difficult design tradeoffs for both the ways that data can

be represented, and the ways that users can interact with the

visualizations.

CCS Concepts

• Human-centered-computing➝ Visualization theory, concepts

and paradigms. •Information Systems ➝ Database

management system engines

Keywords

Data visualization; big data; data analysis

1. INTRODUCTION
We live in an era of ever-growing datasets, when an analyst may be
called on to process and interact with terabytes, or even petabytes,
of data. Yet with these large datasets, the analyst faces not just more
data than pixels, but more data than fits in memory, or on a single
disk.

Free-form exploratory data visualization has long been a
backbone of data analysis: data analysts expect to be able to
visualize their data in many different configurations, asking a
variety of questions of it, in order to make decisions. Exploratory
data visualization requires the ability to manipulate data easily.
Products like Tableau and Spotfire, and libraries like GGPLOT and
MatPlotLib, have encouraged data analysts to explore their data
freely, interacting rapidly with multiple dimensions to try to clean
noise, pinpoint interesting dimensions, and explain phenomena.

This process, however, depends on easy-to-construct queries and
rapid responses.

Unfortunately, data at large scale is not characterized by either
of these. Manipulating large data is not yet a straightforward
process. In this paper, we identify several different bottlenecks
which make data interaction difficult: querying and communicating
the data is slow; memory limits constrain the amount of
manipulation that can happen; and we can only show on screen a
fraction of the data that we process.

The notion of “large data”—and the need for visualization
techniques to account for it—is changing over time. The change
comes from a growing mismatch between computation and
perception. Unlike the Moore’s law growth that drives computation
and storage, the human eye does not have an ability to take in
exponentially-increasing amounts of information. Carr et al [3]
express concern over both the rendering time and the overplotting
issues of 50,000 points: while the rendering question seems
laughable now, the overplotting issue is still real. Fekete and
Plaisant rendered an impressive million points [15]; now that, too,
seems small. Recent projects have processed and rendered a billion
points interactively [29].

New techniques are emerging that can inform big data
exploration. In the database community, research has looked at a
variety of strategies to handle storing, querying and analyzing large
datasets; in the scientific visualization community, research has
focused on rapid, high quality rendering, and on controlling
compute and network costs [1]. The information visualization
community is beginning to embrace a number of promising
techniques adapted from both areas.

Historically, the database and visualization communities
worked apart from each other: database researchers would choose
query loads to optimize; visualizers would try to build interactive
systems atop them. Sometimes, knowledge of how those
visualizations would be built would inform new query
specifications. Some database systems were built explicitly with
user interaction in mind; however, this is comparatively rare. This
might not have been as much an issue in an era of smaller datasets:
when a dataset largely fit in memory, and a query could be
completed interactively. However, with growing data sizes, the
problem becomes more challenging.

In this position paper, we outline a research agenda for
exploratory Big Data visualization and analytics. We find these
three major classes of challenges to interactivity—rendering,
communication, and querying—and outline solution spaces that
can address these issues. We argue that all three of these can be
addressed by building database systems that are intimately aware
of the visualizations they will inform; and visualizations that are
informed about the underlying architecture of their back-ends.

This paper presents as an outline of challenges and
opportunities for exploration of big data. It does not attempt to
present canonical answers nor original research. Rather, by
identifying issues common across multiple systems and contexts, it

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.
HILDA'16, June 26 2016, San Francisco, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4207-0/16/06…$15.00

DOI: http://dx.doi.org/10.1145/2939502.2939518

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2939502.2939518

provides a design space to guide future system and visualization
design that accounts for big data.

2. BIG DATA EXPLORATION
This paper is interested in interactive, exploratory [17][24][33]
visualization of large-scale data. Handling large-scale data at
interactive speeds has been proposed as a ‘grand challenge’ for
visual analytics; clearly, interactive analysis is a growing and
important area [36]. There are other forms of visualization that do
not share all of these issues: in visualization for presentations, for
example, the system may pre-cache the visualizations; in a
dashboard, the refresh rate may be reduced instead. Both
presentation and dashboard scenarios may have some aspects in
common with these goals.

A system that accommodates exploratory analysis must fulfil
several different goals. First, it must create interpretable,
meaningful views that make sense within the context of the data.
Second, it must flexibly allow the analyst to ask many different
types of questions about a dataset, including ones that they did not
initially anticipate. Last, it must work at interactive speeds, so that
the analyst can iterate through different questions and pursue paths
through the data [31].

The requirement of flexibility is worth noting as a potential
concern. A user working in a command line interface, with data in
R or Python, expects have very extremely flexible access to data.
On the other hand, in many visualization systems, a database
administrator chooses a set of dimensions across which they expect
to ask questions. Indeed, to get the “overview” suggested by
Shneiderman’s mantra (“Overview; zoom and filter; details on
demand”) [30], some initial choices must be made to decide what
dimensions will be visible in the overview; other dimensions may
not even be available for analysis.

3. SOURCES OF COST
We sidestep the question of where “large” begins. Our working
definition for this paper is “more data than is convenient to work
with.” (If necessary, add a zero or two at the end to the scale of the
current state of the art.) At the least, that means more data than fits
in memory, in its raw form, and so a few terabytes is a reasonable
starting point. At that scale, it is expensive and difficult to look at
all the data. Dealing with this sort of big data makes life harder. It
has been common to discuss the issues of rendering speed as well
as overplotting and clutter [13].

We consider three different forms of cost as we discuss
different techniques for exploring and visualizing big data sets:

 The front end is limited: it runs into limitations on the
number of points it can render; or it cannot visualize all
the points without substantial overplotting.

 The query takes a long time to return
 The query returns a lot of data, which needs to be

communicated to the front-end

3.1 Rendering Challenges
The first round of challenges in visualization was encountered in

the question of rendering horsepower. There are a series of

interrelated challenges in rendering: the

Rendering speed: Even with the assistance of GPUs and optimized
data streams, rendering will be slow if the system is forced to render
each and every data point of a dataset. This has become more
visible in recent years, with the rise of web-based visualizations; as
D3.js [3] rendered to an SVG surface has become a de-facto
standard for creating and publishing visualizations, it has become
increasingly visible that many browsers cannot scale to more than
a few tens of thousands of shapes in an SVG.

Overplotting and clutter: Overplotting is the difficulty of having
so many datapoints that they are drawn atop each other. Clutter is

the related problem that it is very difficult to recognize the locations
of datapoints when overplotting begins [6]. Figure 2 (left)
illustrates the hazards of overplotting: there are enough data points
that it is extremely difficult to understand the behavior of the
underlying data. While it is clear that there are four branches, it is
far less clear how wide the branches are, and whether points at the
middle form a tighter inner ring. Nor can we solve this simply by
adding more pixels. Both screen sizes and perceptual constraints
limit the sheer number of individual data points that we can render:
screens remain at a few million pixels--even very large or very high
resolution displays [37] add merely an order of magnitude to size,
while reducing the ability of users to read it all. There will need to
be some form of data reduction to get a large dataset on screen
without overplotting and clutter.

A different approach to large data analysis is presented by
Keim et al [27]. Keim’s techniques for mining large data are
largely pixel-oriented, painting one pixel or glyph per data point.
These therefore require that the dataset has been reduced to under
a few million points. While that is certainly a stage that some
computations may reach, it seems overly restrictive in an era of
petabyte inputs.

3.2 Computation and Communication Time
In a big data environment, a second set of challenges comes in
communication time for datasets. Data processing and
communication also take more time, detracting from interactivity.
Indeed, disk reading time and database processing time dominate
rendering as the major form of delay. The most naïve visualization
technique extracts data from a database and forwards it directly to
the rendering system, which is responsible for choosing precisely
how to render this information. In a contemporary client/server
system, this would mean passing terabytes over a standard
computer network to be processed by JavaScript—an intractable
choice, for the disk, network and client.

Equally problematic is the cost of computation and disk speed.
While some algorithms can be carried out rapidly, many clustering
and data cleaning techniques can be extremely costly. Of course, as
Ellsis and Dix note [13] algorithms that execute in O(n2) and even
O(nlog(n)) time counts as “extremely costly” in the context of a
very big dataset. Even something as simple as taking a second
linear pass through a terabyte dataset might turn out to be too
expensive, for sufficiently-large datasets.

4. ADDRESSING THE CHALLENGES
A series of approaches are building in common across these
challenges: first, taking on the problem of rendering visualization
as an aggregate challenge. Aggregate visualizations reduce both
the number of pixels to be visualized and the amount of data to be
transferred. Second, a series of techniques in reducing the

computation to be done—by pre-computing, by running queries in
parallel, or by running progressive queries—can help accelerate the
time to get a response. These techniques, however, come with

Figure 1: 10,000 points plotted as a scatterplot (left, showing

overplotting) and a heatmap (right)

tradeoffs to the user experience, which need to be carefully
considered.

It is worth examining how and when data gets processed as it
moves from database, to server, to rendering client; and that we
consider visual representations that will allow rapid computation,
efficient transfer, and interactive rendering without occlusion. As
Elmqvist and Fekete point out [14], aggregate visualizations can
resolve both rendering and occlusion problems by limiting the
number of items that must be shown on screen.

4.1 Bucketed Aggregate Visualizations
These challenges suggest that we will need to think carefully about
how to process large data sets.

Wickham’s Bin-Summarise-Smooth framework [35] follows
this idea of bucketed aggregations. Wickham provides an elegant
way to conceptualize these challenges: the visualization designer
chooses a binning function that makes sense for the granularity of
changes in the dataset’s independent variables; a summarization
function that highlights the data relative to the task; and possibly a
smoothing function to help see pattern and shape.

The ‘summarize’ function has many options, depending on user
task: while “average value” or “number of values” are common
choices, “maximum value” or “does it have more than one item” or
even “how many modes are there” are also valid choices to bring
out.

Carr et al [6] note that for large amounts of data, a bucketed
heatmap can reduce both rendering time and overplotting,
compared to a scatterplot. In Figure 2, we compare two different
representations of 10,000 points. The left side scatterplot exhibits
overplotting; while it quite clear that some areas are much more
crowded than others, a number of questions are left unanswered.
Figure 2, right, shows a heatmap of the same data; it makes the
shape quite clear. While Carr refers mainly of pairs of quantitative
dimensions, we should note that categorical dimensions can be
placed into the same sorts of axes. The same work also suggests
using hexagonal bins, which—at the cost of some programming
and computational complexity—may present a more realistic
approximation of density information.

A classic line chart can be transformed into an aggregate form
by choosing an aggregation function over each time period. In
Figure 3, we see a monthly line chart, heavily reduced from single-
day data. The aggregation function keeps both the minimum and
maximum values at each bucket. This allows the reader to track
how much variation occurred within each month. The figure
(above) also shows a version of the chart generated by Microsoft
Excel. Excel has its own reduction for times when there are more
data points than pixels: in this case, we have 7000 data points, but
only 600 pixels. Excel chooses a single value. The Excel version
above fails to capture the range within some of the more dramatic
spikes (although it does choose a slightly higher resolution).

Jugel et al [22] take advantage of this concept to speed query
time while maintaining the same quality of line chart that would be
created by visualizing high resolution data on a low-resolution
screen. M4 creates specialized queries in standard SQL that bucket
the data at pixel levels; by returning aggregated values, M4 is able
to massively reduce the data used for a visualization. The authors
then extend this work to other visualization types with VDDA [23].
One can imagine further expanding on this work by enhancing the
visualization with additional information about the range and
diversity of the data within the aggregation bin.

Many visualization types work well with bucketed aggregates.
A ThemeRiver [19] or StreamGraph [5] counts the number of items
that occurred per category per time period; it would be entirely
reasonable to bucket along the time dimension and category. While
traditional network diagrams are poor choices for aggregates,
where each node usually represented by a single glyph,
Wattenberg’s PivotGraph [34] is already a bucketed aggregate. (In
fact, there are two sets of buckets: the counts associated with each
aggregate node; and the counts associated with each aggregate
relation).

4.1.1 Bucketed Aggregate Visualizations
This scheme has limitations, though. The greatest is a constraint on
interaction. In classic brushing and linking, the system tracks which
elements have been selected, and then renders them across multiple
visualizations. This requires, however, access to all of the items in
the dataset. There are two possible implementations, as noted by
Liu et al [29]. First, the buckets can store as many dimensions as
needed for every visualization on screen simultaneously. Each
visualization then merges buckets as needed to find the elements
that go other. The cost to this is an exponential explosion in the
number of buckets that must be collected, stored, and
communicated. At one extreme, the choice to collect all of these
dimensions in their partial summarization reduces back into storing
an OLAP cube.

Alternately, brushing and linking can be transformed into a call
back into the data source; the bounds of the bucket becomes a query
against the data source. The new aggregates that are returned from
this query are used for the linked records. Of course, this does us
little good if queries are slow and expensive.

5. Look at Less Data; or Look at Data Faster
The bucketed aggregate and data flow allow us to articulate
strategies for handling large-scale data visualization. Solutions in
this space will happen at all different stages of the aggregate
pipeline; solutions that come earlier in the pipeline will have better
flexibility for exploration.

In part, here, we are limited by physics. A single processor,
looking at one (or several) hard disks, can only access data so fast.
A few SSDs filled with data can more than saturate the processor,
and it will take a matter of minutes—or hours—to look at more than
a few gigabytes. To get interactive speeds, there are several
possible strategies, which can be selected in various combinations.

We group these strategies into two general goals: “look at less
data,” which emphasizes techniques for minimizing the amount of
data processed, and “look at data faster,” which emphasizes
techniques for maximizing the amount of data that can be seen.
(Table 1, below, lists the techniques).

The “Look at Less Data” techniques involve either
aggressively filtering data—so that we can examine fewer rows, or
columns; or pre-aggregating data—so that queries can look at
fewer, already-aggregated rows. Recently, this strategy has been
updated for visualization-specific applications. ImMens [29]
observes that visualizations tend to use only three or four
dimensions of any dataset; rather than creating large cubes of all
possible dimensions, ImMens instead creates multiple cubes
representing just a few dimensions. These smaller cubes can be

Figure 2: Bucketing over time. Chart (above) compressed by the

charting program from 7000 values to 600 pixels; (below)

keeping minimum and maximum values within each of 225

buckets.

transferred to the client in a compressed binary format, and so
allows users to rapidly interact with the data dimensions.
Nanocubes [28] uses a similar strategy; it heavily compresses the
results of OLAP operations to create an aggregate data structure
that can very efficiently store large numbers of datapoints in
memory for fast recall.

One interesting technique is incremental, random sampling. In
exploratory scenarios, analyst may ask questions that aren’t well-
represented in the sample—or may have chosen a sample that
matches the needs of the data poorly. One possible response to this
is to grow samples incrementally [17][18][20][21]. The user can
choose how to trade off time for accuracy, watching as the sample
refines further, and cut off computation when they have enough
detail to proceed. AQP (Approximate Query Processing) [7] and
BlinkDB [2] extend this process: they prepare a series of weighted
samples in advance and so natively produce probabilistic
responses. BlinkDB is built over a distributed network; rather than
selecting the precise number of rows, users may select either the
amount of computation time or the desired precision as part of the
query. More recent systems are beginning to explore samples with
appropriate stratification to bound errors and give users faster, less-
expensive responses: STORM [9] provides interactive computation
across spatio-temporal data; Ding et al present an AQP system with
bounded error guarantees [12]. Quickr [25] creates distributed
samples to reduce computation costs across parallelized queries;
while it does not reach interactive response rates, its techniques
amortize query cost impressively.

Of course, these techniques now require their own subtleties for
visualization: how does one deal with a visualization where the x
axis might be continually changing? How does one compute a
histogram when the bounds might shift? These questions call for
new visualization techniques.

The “Look at Data Faster” techniques, in contrast, focus on
reducing the number of passes through the data. Database sketches
are powerful techniques for estimating the number of values or
approximate estimates in a large dataset; the visualization field has
not yet caught up in presenting visual techniques that are good to
show these sorts of approximations.

One way to overcome limitations on computation and
bandwidth is to distribute a job across multiple machines; this is a
particularly popular solution with the recent rise of MapReduce
[10], as well as the continuing popularity of parallel processors,
ranging from networked machines to GPUs.

A major advantage of breaking data into smaller, tractable parts
is that a second pass across data becomes tractable and affordable:
as we noted above, quantitative histograms may require two passes

across a dataset. As Chauduri et al note, a parallel computer can
afford that second pass to collect bounds; a central reduce operation
coalesces the bounds together and chooses buckets; and then
individual machines bucket the data [8].

For these sorts of ‘embarrassingly parallel’ operations—ones
where jobs can be easily segmented into individual units, and those
parts can straightforwardly put back together—structures like
MapReduce are very effective. VisReduce [21] extends
MapReduce to rapidly bin and bucket data that will be seen only in
aggregate. Because the bucketed representation of the data is so
much smaller than the original source, it can place reduced pieces
back together very late in the process. Budiu [4] et al extend this
concept by (like M4) taking advantage of screen resolution to
choose how much data to send.

5.1 New Challenges in Visualization
A number of the topics we have discussed in this paper raise new
issues for visualization researchers. We have already noted the
phenomenon of categorical data that gains too many categories, a
scenario, which can happen in streaming data or incremental
samples; and the challenges of adding brushing and linking to
otherwise-simple visualizations.

Kandel et al [25] note that there is value to a color scale that
visibly separates “no data” from “at least one item.” In almost any
continuous color scale, one item will fall close to empty; however,
in a big data context, there is a substantial difference between the
two: with millions of data items, a place where nothing has ever
landed is probably out of the domain of useful points; a place where
anything has landed is a clear indicator of an area of at least
potential interest. InMems recommends placing the “one or more”
items at the 15% level on the color scale. A different way to reach
the same point is to use the histogram-dependent color scales of
Thompson et al [32].

One theme that has come up several different times is
probabilistic data. If a system has computation based on samples,
if it utilizes database sketches or adaptive histograms, the results
will be probabilistic rather than definitive. There is an opportunity
here to look carefully at techniques for representing uncertain data
across visualization to convey these sorts of uncertainty: times
when the dataset has an answer embedded in it, but it is impractical
to find. Merely showing confidence intervals is insufficient; it is
remarkably hard for users to interpret intervals for many critical
tasks [10]. Task-oriented overlays might help alleviate some of
these difficulties [16], but there are many opportunities for
improving these techniques.

 Technique Probabalistic? Advantages Costs

L
o
o

k
 a

t
le

ss
 d

a
ta

Sample
Incrementally

Y Maintains flexibility Doesn’t see whole dataset. Requires randomized data

Sample Stratified Y Good flexibility, fast and bounded cost Requires stratified pre-sample and sample queries

Reduce Dimensions N Reduces complexity of buckets Reduces flexibility

Filter rows N Reduces rows to be bucketed

Index data N Increases query speed Comparatively small effect; must be precomputed

Pre-aggregate N Very fast queries Reduces flexibility greatly

L
o
o

k

a
t

d
a

ta

fa
st

e
r

Column-oriented

database

N Increase query speed Must be pre-computed

One-pass techniques N Reduce memory impact Some queries cannot be formulated

Database sketches Y Reduce memory impact Imprecise results

Distributed

computation

N Parallelize computation Requires amenable problems

Table 1: Summary of performance techniques

6. REFERENCES
[1] L. Battle, M. Stonebraker, R. Chang. Dynamic reduction of

query result sets for interactive visualization, 2013 IEEE
International Conference on Big Data , vol., no., pp.1,8, 6-9
Oct. 2013

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings of EuroSys.
ACM, 2013.

[3] M. Bostock, V. Ogievetsky, J. Heer. D3: Data-Driven
Documents. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2011

[4] M. Budiu, R. Isaacs, D. Murray, G. Plotkin, P. Barham, S. Al-
Kiswany, Y. Boshmaf, Q. Luo, A. Andoni. Interacting with
Large Distributed Datasets Using Sketch. University of
Wisconsin CS Technical Report TR1817.
http://digital.library.wisc.edu/1793/70467

[5] L. Byron and M. Wattenberg. Stacked Graphs – Geometry &
Aesthetics. IEEE Trans. on Visualization and Comp. Graphics
14, 6 (Nov 2008), 1245-1252. DOI=10.1109/TVCG.2008.166

[6] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S.
Littlefield. Scatterplot matrix techniques for large n. Journal
of the American Statistical Association, 82(398), 1987.

[7] A. Chaudhuri, T. Lee, B. Zhou, C. Wang, T. Xu, H. W. Shen,
and Y. J. Chiang. Scalable computation of distributions from
large scale data sets. In 2012 IEEE Symposium on Large Data
Analysis and Visualization (LDAV), (pp. 113-120). IEEE.

[8] S. Chaudhuri, G. Das, and V. Narasayya. A Robust,
Optimization-Based Approach for Approximate Answering of
Aggregate Queries. ACM SIGMOD 2001

[9] R. Christensen, L. Wang, F. Li, K. Yi, J. Tang, N. Villa.
STORM: Spatio-Temporal Online Reasoning and
Management of Large Spatio-Temporal Data. SIGMOD 2015.
pages 1111-1116

[10] G. Cumming. Understanding the new statistics: Effect sizes,
confidence intervals, and meta-analysis. New York,
Routledge, 2012.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proc. of the 6th OSDI (Dec.
2004), pp. 137-150.

[12] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C.
Wang. Sample + Seek: Approximating Aggregates with
Distribution Precision Guarantee. SIGMOD 2016

[13] G. Ellis and A. Dix. A Taxonomy of Clutter Reduction for
Information Visualisation. IEEE Trans. on Visualization and
Comp. Graphics 13, 6 (November 2007), 1216-1223.
DOI=10.1109/TVCG.2007.70535

[14] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for
information visualization: Overview, techniques, and design
guidelines. IEEE Trans. on Visualization and Comp.
Graphics, 16(3):439–454, May 2010.

[15] J.-D. Fekete and C. Plaisant. Interactive information
visualization of a million items. In Proc. of the IEEE Symp.
on Information Visualization (InfoVis’02), Washington, DC,
USA, 2002. IEEE.

[16] N. Ferreira, D. Fisher, and A. C. König. Sample-Oriented
Task-Driven Visualizations: Allowing Users to Make Better,
More Confident Decisions. In CHI 2014.

[17] D. Fisher. Incremental, Approximate Queries and Uncertainty
for Exploratory Visualization. In IEEE Symposium on Large
Data Analysis and Visualization (LDAV) 2011.

[18] D. Fisher, I. Popov, S. Drucker, and m. schraefel. Trust me,
I’m partially right: incremental visualization lets analysts
explore large datasets faster. In Proc. of CHI ’12, pages 1673–
1682, New York, NY, USA, 2012. ACM.

[19] S. Havre, B. Hetzler, and L. Nowell. ThemeRiver: Visualizing
Theme Changes over Time. In Proc. of the IEEE Symp. on
Information Visualization 2000 (INFOVIS '00). IEEE,
Washington, DC, USA.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. SIGMOD Rec., 26(2):171–182, June 1997.

[21] J.-F. Im, F. Giguère Villegas, and M. McGuffin. VisReduce:
Fast and responsive incremental information visualization of
large datasets. 2013 IEEE International Conference on Big
Data

[22] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: a
visualization-oriented time series data aggregation. Proc.
VLDB Endow. 7, 10 (June 2014), 797-808.
DOI=http://dx.doi.org/10.14778/2732951.2732953

[23] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. VDDA:
automatic visualization-driven data aggregation in relational
databases. The VLDB Journal 25, 1 (February 2016), 53-77.
DOI=http://dx.doi.org/10.1007/s00778-015-0396-z

[24] S. Kandel, A. Paaepke, J. Hellerstein and J. Heer. Enterprise
data analysis and visualization: an interview study. IEEE
Trans. on Visualization and Comp. Graphics 18, 12 (2012).
2917-2926.

[25] S. Kandel, R. Parikh, A. Paepcke, J. Hellerstein, and J. Heer.
Profiler: Integrated statistical analysis and visualization for
data quality assessment. In Advanced Visual Interfaces, 2012.

[26] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl,
S. Chaudhuri, and B. Ding. Quickr: Lazily Approximating
Complex Ad-Hoc Queries in Big Data Clusters. SIGMOD
2016.

[27] D. Keim, H.-P. Kriegel. Visualization Techniques for Mining
Large Databases: A Comparison. IEEE Trans. on Knowledge
and Data Engineering, Vol. 8, No. 6, Dec. 1996.

[28] L. Lins, J. Klosowski, and C. Scheidegger. Nanocubes for
Real-Time Exploration of Spatiotemporal Datasets.
Visualization and Computer Graphics, IEEE Transactions on
19, no. 12 (2013): 2456-2465.

[29] Z. Liu, B. Jiang, and J. Heer. (2013). imMens: Real‐time
Visual Querying of Big Data. Computer Graphics Forum,
32(3pt4), 421–430.

[30] B. Shneiderman. The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations. In Proc. of the
1996 IEEE Symp. on Visual Languages (VL '96). IEEE,
Washington, DC, USA, 336-.

[31] B. Shneiderman. Dynamic Queries for Visual Information
Seeking. IEEE Software. 11, 6 (November 1994), 70-77.

[32] D. Thompson, J. Bennett, C. Seshadhri, and A. Pinar. A
provably-robust sampling method for generating colormaps of
large data, IEEE Symp. on Large-Scale Data Analysis and
Visualization (LDAV), pp.77,84, 13-14 Oct. 2013

[33] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley:
1977

[34] M. Wattenberg. Visual Exploration of Multivariate Graphs,
Proc. ACM Conf. Human Factors in Computing Systems (CHI
’06) pp 811-819. 2006.

[35] H. Wickham. Bin-summarise-smooth: a framework for
visualising large data. had.co.nz Technical Report.
http://vita.had.co.nz/papers/bigvis.html

[36] P. Wong, H. Shen, C. Johnson, C. Chen, R. Ross. The Top 10
challenges in extreme-scale visual analytics. IEEE Computer
Graphics & Applications. 32(4):63-67. 2012

[37] B. Yost, C. North: The Perceptual Scalability of
Visualization. IEEE Trans. Vis. Comput. Graph. 12(5): 837-
844 (2006)

http://digital.library.wisc.edu/1793/70467
http://vita.had.co.nz/papers/bigvis.html

	1. INTRODUCTION
	2. BIG DATA EXPLORATION
	3. SOURCES OF COST
	3.1 Rendering Challenges
	3.2 Computation and Communication Time

	4. ADDRESSING THE CHALLENGES
	4.1 Bucketed Aggregate Visualizations
	4.1.1 Bucketed Aggregate Visualizations

	5. Look at Less Data; or Look at Data Faster
	5.1 New Challenges in Visualization

	6. REFERENCES

