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ABSTRACT 

As datasets grow to tera- and petabyte sizes, exploratory data 

visualization becomes very difficult: a screen is limited to a few 

million pixels, and main memory to a few tens of millions of data 

points. Yet these very large scale analyses are of tremendous 

interest to industry and academia. This paper discusses some of the 

major challenges involved in data analytics at scale, including 

issues of computation, communication, and rendering. It identifies 

techniques for handling large scale data, grouped into “look at less 

of it,” and “look at it faster.” Using these techniques involves a 

number of difficult design tradeoffs for both the ways that data can 

be represented, and the ways that users can interact with the 

visualizations. 
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1. INTRODUCTION 
We live in an era of ever-growing datasets, when an analyst may be 
called on to process and interact with terabytes, or even petabytes, 
of data. Yet with these large datasets, the analyst faces not just more 
data than pixels, but more data than fits in memory, or on a single 
disk.  

Free-form exploratory data visualization has long been a 
backbone of data analysis: data analysts expect to be able to 
visualize their data in many different configurations, asking a 
variety of questions of it, in order to make decisions. Exploratory 
data visualization requires the ability to manipulate data easily. 
Products like Tableau and Spotfire, and libraries like GGPLOT and 
MatPlotLib, have encouraged data analysts to explore their data 
freely, interacting rapidly with multiple dimensions to try to clean 
noise, pinpoint interesting dimensions, and explain phenomena. 

This process, however, depends on easy-to-construct queries and 
rapid responses. 

Unfortunately, data at large scale is not characterized by either 
of these. Manipulating large data is not yet a straightforward 
process. In this paper, we identify several different bottlenecks 
which make data interaction difficult: querying and communicating 
the data is slow; memory limits constrain the amount of 
manipulation that can happen; and we can only show on screen a 
fraction of the data that we process. 

The notion of “large data”—and the need for visualization 
techniques to account for it—is changing over time. The change 
comes from a growing mismatch between computation and 
perception. Unlike the Moore’s law growth that drives computation 
and storage, the human eye does not have an ability to take in 
exponentially-increasing amounts of information. Carr et al [3] 
express concern over both the rendering time and the overplotting 
issues of 50,000 points: while the rendering question seems 
laughable now, the overplotting issue is still real. Fekete and 
Plaisant rendered an impressive million points [15]; now that, too, 
seems small. Recent projects have processed and rendered a billion 
points interactively [29]. 

New techniques are emerging that can inform big data 
exploration.  In the database community, research has looked at a 
variety of strategies to handle storing, querying and analyzing large 
datasets; in the scientific visualization community, research has 
focused on rapid, high quality rendering, and on controlling 
compute and network costs [1]. The information visualization 
community is beginning to embrace a number of promising 
techniques adapted from both areas.  

Historically, the database and visualization communities 
worked apart from each other: database researchers would choose 
query loads to optimize; visualizers would try to build interactive 
systems atop them. Sometimes, knowledge of how those 
visualizations would be built would inform new query 
specifications. Some database systems were built explicitly with 
user interaction in mind; however, this is comparatively rare. This 
might not have been as much an issue in an era of smaller datasets: 
when a dataset largely fit in memory, and a query could be 
completed interactively. However, with growing data sizes, the 
problem becomes more challenging. 

In this position paper, we outline a research agenda for 
exploratory Big Data visualization and analytics. We find these 
three major classes of challenges to interactivity—rendering, 
communication, and querying—and outline solution spaces that 
can address these issues. We argue that all three of these can be 
addressed by building database systems that are intimately aware 
of the visualizations they will inform; and visualizations that are 
informed about the underlying architecture of their back-ends.  

This paper presents as an outline of challenges and 
opportunities for exploration of big data. It does not attempt to 
present canonical answers nor original research. Rather, by 
identifying issues common across multiple systems and contexts, it 
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provides a design space to guide future system and visualization 
design that accounts for big data. 

2. BIG DATA EXPLORATION 
This paper is interested in interactive, exploratory [17][24][33] 
visualization of large-scale data. Handling large-scale data at 
interactive speeds has been proposed as a ‘grand challenge’ for 
visual analytics; clearly, interactive analysis is a growing and 
important area [36]. There are other forms of visualization that do 
not share all of these issues: in visualization for presentations, for 
example, the system may pre-cache the visualizations; in a 
dashboard, the refresh rate may be reduced instead. Both 
presentation and dashboard scenarios may have some aspects in 
common with these goals. 

A system that accommodates exploratory analysis must fulfil 
several different goals. First, it must create interpretable, 
meaningful views that make sense within the context of the data. 
Second, it must flexibly allow the analyst to ask many different 
types of questions about a dataset, including ones that they did not 
initially anticipate.  Last, it must work at interactive speeds, so that 
the analyst can iterate through different questions and pursue paths 
through the data [31].  

The requirement of flexibility is worth noting as a potential 
concern. A user working in a command line interface, with data in 
R or Python, expects have very extremely flexible access to data. 
On the other hand, in many visualization systems, a database 
administrator chooses a set of dimensions across which they expect 
to ask questions. Indeed, to get the “overview” suggested by 
Shneiderman’s mantra (“Overview; zoom and filter; details on 
demand”) [30], some initial choices must be made to decide what 
dimensions will be visible in the overview; other dimensions may 
not even be available for analysis. 

3. SOURCES OF COST 
We sidestep the question of where “large” begins. Our working 
definition for this paper is “more data than is convenient to work 
with.” (If necessary, add a zero or two at the end to the scale of the 
current state of the art.) At the least, that means more data than fits 
in memory, in its raw form, and so a few terabytes is a reasonable 
starting point. At that scale, it is expensive and difficult to look at 
all the data.  Dealing with this sort of big data makes life harder. It 
has been common to discuss the issues of rendering speed as well 
as overplotting and clutter [13]. 

We consider three different forms of cost as we discuss 
different techniques for exploring and visualizing big data sets: 

 The front end is limited: it runs into limitations on the 
number of points it can render; or it cannot visualize all 
the points without substantial overplotting. 

 The query takes a long time to return 
 The query returns a lot of data, which needs to be 

communicated to the front-end 

3.1 Rendering Challenges 
The first round of challenges in visualization was encountered in 

the question of rendering horsepower. There are a series of 

interrelated challenges in rendering: the  

Rendering speed: Even with the assistance of GPUs and optimized 
data streams, rendering will be slow if the system is forced to render 
each and every data point of a dataset. This has become more 
visible in recent years, with the rise of web-based visualizations; as 
D3.js [3] rendered to an SVG surface has become a de-facto 
standard for creating and publishing visualizations, it has become 
increasingly visible that many browsers cannot scale to more than 
a few tens of thousands of shapes in an SVG. 

Overplotting and clutter: Overplotting is the difficulty of having 
so many datapoints that they are drawn atop each other. Clutter is 

the related problem that it is very difficult to recognize the locations 
of datapoints when overplotting begins [6]. Figure 2 (left) 
illustrates the hazards of overplotting: there are enough data points 
that it is extremely difficult to understand the behavior of the 
underlying data. While it is clear that there are four branches, it is 
far less clear how wide the branches are, and whether points at the 
middle form a tighter inner ring. Nor can we solve this simply by 
adding more pixels. Both screen sizes and perceptual constraints 
limit the sheer number of individual data points that we can render: 
screens remain at a few million pixels--even very large or very high 
resolution displays [37]  add merely an order of magnitude to size, 
while reducing the ability of users to read it all. There will need to 
be some form of data reduction to get a large dataset on screen 
without overplotting and clutter.  

A different approach to large data analysis is presented by 
Keim et al [27]. Keim’s techniques for mining large data are 
largely pixel-oriented, painting one pixel or glyph per data point. 
These therefore require that the dataset has been reduced to under 
a few million points. While that is certainly a stage that some 
computations may reach, it seems overly restrictive in an era of 
petabyte inputs. 

3.2 Computation and Communication Time  
In a big data environment, a second set of challenges comes in 
communication time for datasets. Data processing and 
communication also take more time, detracting from interactivity. 
Indeed, disk reading time and database processing time dominate 
rendering as the major form of delay. The most naïve visualization 
technique extracts data from a database and forwards it directly to 
the rendering system, which is responsible for choosing precisely 
how to render this information. In a contemporary client/server 
system, this would mean passing terabytes over a standard 
computer network to be processed by JavaScript—an intractable 
choice, for the disk, network and client.  

Equally problematic is the cost of computation and disk speed. 
While some algorithms can be carried out rapidly, many clustering 
and data cleaning techniques can be extremely costly. Of course, as 
Ellsis and Dix note [13] algorithms that execute in O(n2) and even 
O(nlog(n)) time counts as “extremely costly” in the context of a 
very big dataset.  Even something as simple as taking a second 
linear pass through a terabyte dataset might turn out to be too 
expensive, for sufficiently-large datasets.  

4. ADDRESSING THE CHALLENGES 
A series of approaches are building in common across these 
challenges: first, taking on the problem of rendering visualization 
as an aggregate challenge. Aggregate visualizations reduce both 
the number of pixels to be visualized and the amount of data to be 
transferred. Second, a series of techniques in reducing the 

computation to be done—by pre-computing, by running queries in 
parallel, or by running progressive queries—can help accelerate the 
time to get a response. These techniques, however, come with 

Figure 1: 10,000 points plotted as a scatterplot (left, showing 

overplotting) and a heatmap (right) 



tradeoffs to the user experience, which need to be carefully 
considered.  

It is worth examining how and when data gets processed as it 
moves from database, to server, to rendering client; and that we 
consider visual representations that will allow rapid computation, 
efficient transfer, and interactive rendering without occlusion. As 
Elmqvist and Fekete point out [14], aggregate visualizations can 
resolve both rendering and occlusion problems by limiting the 
number of items that must be shown on screen. 

4.1 Bucketed Aggregate Visualizations 
These challenges suggest that we will need to think carefully about 
how to process large data sets.  

Wickham’s Bin-Summarise-Smooth framework [35] follows 
this idea of bucketed aggregations. Wickham provides an elegant 
way to conceptualize these challenges: the visualization designer 
chooses a binning function that makes sense for the granularity of 
changes in the dataset’s independent variables; a summarization 
function that highlights the data relative to the task; and possibly a 
smoothing function to help see pattern and shape. 

The ‘summarize’ function has many options, depending on user 
task: while “average value” or “number of values” are common 
choices, “maximum value” or “does it have more than one item” or 
even “how many modes are there” are also valid choices to bring 
out. 

Carr et al [6] note that for large amounts of data, a bucketed 
heatmap can reduce both rendering time and overplotting, 
compared to a scatterplot. In Figure 2, we compare two different 
representations of 10,000 points. The left side scatterplot exhibits 
overplotting; while it quite clear that some areas are much more 
crowded than others, a number of questions are left unanswered. 
Figure 2, right, shows a heatmap of the same data; it makes the 
shape quite clear. While Carr refers mainly of pairs of quantitative 
dimensions, we should note that categorical dimensions can be 
placed into the same sorts of axes. The same work also suggests 
using hexagonal bins, which—at the cost of some programming 
and computational complexity—may present a more realistic 
approximation of density information. 

A classic line chart can be transformed into an aggregate form 
by choosing an aggregation function over each time period. In 
Figure 3, we see a monthly line chart, heavily reduced from single-
day data. The aggregation function keeps both the minimum and 
maximum values at each bucket. This allows the reader to track 
how much variation occurred within each month. The figure 
(above) also shows a version of the chart generated by Microsoft 
Excel. Excel has its own reduction for times when there are more 
data points than pixels: in this case, we have 7000 data points, but 
only 600 pixels. Excel chooses a single value. The Excel version 
above fails to capture the range within some of the more dramatic 
spikes (although it does choose a slightly higher resolution).  

Jugel et al [22] take advantage of this concept to speed query 
time while maintaining the same quality of line chart that would be 
created by visualizing high resolution data on a low-resolution 
screen. M4 creates specialized queries in standard SQL that bucket 
the data at pixel levels; by returning aggregated values, M4 is able 
to massively reduce the data used for a visualization. The authors 
then extend this work to other visualization types with VDDA [23]. 
One can imagine further expanding on this work by enhancing the 
visualization with additional information about the range and 
diversity of the data within the aggregation bin.  

Many visualization types work well with bucketed aggregates. 
A ThemeRiver [19] or StreamGraph [5] counts the number of items 
that occurred per category per time period; it would be entirely 
reasonable to bucket along the time dimension and category. While 
traditional network diagrams are poor choices for aggregates, 
where each node usually represented by a single glyph, 
Wattenberg’s PivotGraph [34] is already a bucketed aggregate. (In 
fact, there are two sets of buckets: the counts associated with each 
aggregate node; and the counts associated with each aggregate 
relation).  

4.1.1 Bucketed Aggregate Visualizations 
This scheme has limitations, though. The greatest is a constraint on 
interaction. In classic brushing and linking, the system tracks which 
elements have been selected, and then renders them across multiple 
visualizations. This requires, however, access to all of the items in 
the dataset. There are two possible implementations, as noted by 
Liu et al [29]. First, the buckets can store as many dimensions as 
needed for every visualization on screen simultaneously. Each 
visualization then merges buckets as needed to find the elements 
that go other. The cost to this is an exponential explosion in the 
number of buckets that must be collected, stored, and 
communicated. At one extreme, the choice to collect all of these 
dimensions in their partial summarization reduces back into storing 
an OLAP cube. 

Alternately, brushing and linking can be transformed into a call 
back into the data source; the bounds of the bucket becomes a query 
against the data source. The new aggregates that are returned from 
this query are used for the linked records. Of course, this does us 
little good if queries are slow and expensive. 

5. Look at Less Data; or Look at Data Faster 
The bucketed aggregate and data flow allow us to articulate 
strategies for handling large-scale data visualization. Solutions in 
this space will happen at all different stages of the aggregate 
pipeline; solutions that come earlier in the pipeline will have better 
flexibility for exploration. 

In part, here, we are limited by physics. A single processor, 
looking at one (or several) hard disks, can only access data so fast. 
A few SSDs filled with data can more than saturate the processor, 
and it will take a matter of minutes—or hours—to look at more than 
a few gigabytes. To get interactive speeds, there are several 
possible strategies, which can be selected in various combinations.   

We group these strategies into two general goals: “look at less 
data,” which emphasizes techniques for minimizing the amount of 
data processed, and “look at data faster,” which emphasizes 
techniques for maximizing the amount of data that can be seen. 
(Table 1, below, lists the techniques). 

The “Look at Less Data” techniques involve either 
aggressively filtering data—so that we can examine fewer rows, or 
columns; or pre-aggregating data—so that queries can look at 
fewer, already-aggregated rows. Recently, this strategy has been 
updated for visualization-specific applications. ImMens [29] 
observes that visualizations tend to use only three or four 
dimensions of any dataset; rather than creating large cubes of all 
possible dimensions, ImMens instead creates multiple cubes 
representing just a few dimensions. These smaller cubes can be 

Figure 2: Bucketing over time. Chart (above) compressed by the 

charting program from 7000 values to 600 pixels; (below) 

keeping minimum and maximum values within each of 225 

buckets. 



transferred to the client in a compressed binary format, and so 
allows users to rapidly interact with the data dimensions. 
Nanocubes [28] uses a similar strategy; it heavily compresses the 
results of OLAP operations to create an aggregate data structure 
that can very efficiently store large numbers of datapoints in 
memory for fast recall.  

One interesting technique is incremental, random sampling. In 
exploratory scenarios, analyst may ask questions that aren’t well-
represented in the sample—or may have chosen a sample that 
matches the needs of the data poorly. One possible response to this 
is to grow samples incrementally [17][18][20][21]. The user can 
choose how to trade off time for accuracy, watching as the sample 
refines further, and cut off computation when they have enough 
detail to proceed. AQP (Approximate Query Processing) [7] and 
BlinkDB [2] extend this process: they prepare a series of weighted 
samples in advance and so natively produce probabilistic 
responses. BlinkDB is built over a distributed network; rather than 
selecting the precise number of rows, users may select either the 
amount of computation time or the desired precision as part of the 
query. More recent systems are beginning to explore samples with 
appropriate stratification to bound errors and give users faster, less-
expensive responses: STORM [9] provides interactive computation 
across spatio-temporal data; Ding et al present an AQP system with 
bounded error guarantees [12]. Quickr [25] creates distributed 
samples to reduce computation costs across parallelized queries; 
while it does not reach interactive response rates, its techniques 
amortize query cost impressively. 

Of course, these techniques now require their own subtleties for 
visualization: how does one deal with a visualization where the x 
axis might be continually changing? How does one compute a 
histogram when the bounds might shift? These questions call for 
new visualization techniques. 

The “Look at Data Faster” techniques, in contrast, focus on 
reducing the number of passes through the data. Database sketches 
are powerful techniques for estimating the number of values or 
approximate estimates in a large dataset; the visualization field has 
not yet caught up in presenting visual techniques that are good to 
show these sorts of approximations.  

One way to overcome limitations on computation and 
bandwidth is to distribute a job across multiple machines; this is a 
particularly popular solution with the recent rise of MapReduce 
[10],  as well as the continuing popularity of parallel processors, 
ranging from networked machines to GPUs.  

A major advantage of breaking data into smaller, tractable parts 
is that a second pass across data becomes tractable and affordable: 
as we noted above, quantitative histograms may require two passes 

across a dataset. As Chauduri et al note, a parallel computer can 
afford that second pass to collect bounds; a central reduce operation 
coalesces the bounds together and chooses buckets; and then 
individual machines bucket the data [8]. 

For these sorts of ‘embarrassingly parallel’ operations—ones 
where jobs can be easily segmented into individual units, and those 
parts can straightforwardly put back together—structures like 
MapReduce are very effective. VisReduce [21] extends 
MapReduce to rapidly bin and bucket data that will be seen only in 
aggregate. Because the bucketed representation of the data is so 
much smaller than the original source, it can place reduced pieces 
back together very late in the process. Budiu [4] et al extend this 
concept by (like M4) taking advantage of screen resolution to 
choose how much data to send. 

5.1 New Challenges in Visualization 
A number of the topics we have discussed in this paper raise new 
issues for visualization researchers. We have already noted the 
phenomenon of categorical data that gains too many categories, a 
scenario, which can happen in streaming data or incremental 
samples; and the challenges of adding brushing and linking to 
otherwise-simple visualizations. 

Kandel et al [25] note that there is value to a color scale that 
visibly separates “no data” from “at least one item.” In almost any 
continuous color scale, one item will fall close to empty; however, 
in a big data context, there is a substantial difference between the 
two: with millions of data items, a place where nothing has ever 
landed is probably out of the domain of useful points; a place where 
anything has landed is a clear indicator of an area of at least 
potential interest. InMems recommends placing the “one or more” 
items at the 15% level on the color scale. A different way to reach 
the same point is to use the histogram-dependent color scales of 
Thompson et al [32]. 

One theme that has come up several different times is 
probabilistic data. If a system has computation based on samples, 
if it utilizes database sketches or adaptive histograms, the results 
will be probabilistic rather than definitive. There is an opportunity 
here to look carefully at techniques for representing uncertain data 
across visualization to convey these sorts of uncertainty: times 
when the dataset has an answer embedded in it, but it is impractical 
to find. Merely showing confidence intervals is insufficient; it is 
remarkably hard for users to interpret intervals for many critical 
tasks [10]. Task-oriented overlays might help alleviate some of 
these difficulties [16], but there are many opportunities for 
improving these techniques. 
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Y Maintains flexibility Doesn’t see whole dataset. Requires randomized data 

Sample Stratified Y Good flexibility, fast and bounded cost Requires stratified pre-sample and sample queries 

Reduce Dimensions N Reduces complexity of buckets Reduces flexibility 

Filter rows N Reduces rows to be bucketed  

Index data N Increases query speed Comparatively small effect; must be precomputed 

Pre-aggregate N Very fast queries Reduces flexibility greatly 

L
o
o

k
 

a
t 

d
a

ta
 

fa
st

e
r 

Column-oriented 

database 

N Increase query speed Must be pre-computed 

One-pass techniques N Reduce memory impact Some queries cannot be formulated 

Database sketches Y Reduce memory impact Imprecise results 

Distributed 

computation 

N Parallelize computation Requires amenable problems 

 

Table 1: Summary of performance techniques 
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